
VLSI-1Class Notes

Lecture 20:
Hardware Description Languages & Logic
Simulation

Mark McDermott
Electrical and Computer Engineering

The University of Texas at Austin

8/26/18 Page 1

VLSI-1Class Notes

Agenda

§ Verilog Hardware Description Language
§ Brief Overview of Logic Synthesis

8/26/18 Page 2

VLSI-1Class Notes

Verilog Hardware Description Language

8/26/18 Page 3

VLSI-1Class Notes

Languages Usage

8/26/18

Requirements

Algorithm and Architectural

Func & SW Development

Behavioral

SoC Verification

IP Verification

RTL

Gates

Transistors

Verilog
VHDL

System
Verilog

Vera
E

Sugar

SystemC

Matlab
C/C++

Page 4

VLSI-1Class Notes

Features of Verilog

§ A concurrent language (syntax similar to C)
§ Models hardware
§ Provides a way to specify concurrent activities
§ Allows timing specifications

§ Originally developed by Phil Moorby at Gateway Design
Automation, acquired by Cadence, now IEEE Standard 1364
(Open Verilog International)

8/26/18 Page 5

VLSI-1Class Notes

Applications of Verilog

§ Description of design at a higher level
§ Development of formal models
§ System documentation
§ Simulation to uncover errors (bugs) in design
§ Synthesis of designs
§ Design reuse

8/26/18 Page 6

VLSI-1Class Notes

Verilog Modes

1. Structural: describes the structure of the hardware components,
including how ports of modules are connected together
– module contents are built in gates:
• and, or, xor, not, nand, nor, xnor, buf
• or other modules previously declared

2. Behavioral: describes what should be done in a module
– module contents are C-like assignment statements, loops

Page 78/26/18

VLSI-1Class Notes

Structural Model of Adder

§ Structural models: interconnections of primitive gates (AND, OR,
NAND, NOR, etc...) and other modules

input a,b;
output s, c;

xor G1 (s, a, b);
and G2 (c,a,b);

endmodule

module HA(a, b, s, c) module FA(X,Y,Z,S,C
input X, Y, Z;
output S, C;

HA FA1 (X, Y, S1, C
HA FA2 (S1,Z, S, C2
or O1 (C, C2,

endmodule

X

Y

Z

S

C

HALF Adder
HALF Adder

FA1
FA2

O1

S1

C1
C2

8/26/18 Page 8

VLSI-1Class Notes

Specification of Gate-Level Model

§ Gate function
– Verilog built-in: and, nand, or, nor, xor, xnor, buf, not, etc.

§ Gate specification format example:
– and #delay inst-name (out,in1, in2,...,ink);
– Delay and inst-name are optional

8/26/18 Page 9

xor #(4,5) (sum, a, b, cin); // rise time=4 , fall time = 5

or #5 (co, ab,bc,ac); // rise time = fall time = 5

VLSI-1Class Notes

Logic Values

§ A bit can have any of these values
– 0 representing logic low (false)
– 1 representing logic high (true)
– x representing either 0, 1, or z
– z representing high impedance for tri-state
– (unconnected inputs are set to z)

x1 z
0 1

0

0
x x

x0 x
xA

B

FA
B

z

1
0

0
0 0

x x
0
x
x

F

8/26/18 Page 10

VLSI-1Class Notes

Test Generation

§ Test_gen: Generates test and capture the response
§ FA: The design under test
§ Wrapper: Wraps Test_gen and FA into one module

X

Y

C

S

X_o

Y_o

S_i
C_i

Input are generated in Test_gen

Response from the adder is read by Test_ge

Test_gen FA

Wrapper

8/26/18 Page 11

VLSI-1Class Notes

Test Generation, Cont d

module wrapper;
wire a, b, sum, cout;

FA(a,b,c,sum,cout);
test_gen(a,b,c,sum,cout);
endmodule

- initial
tells Verilog to execute all statement within begin end once it starts

- monitor
tells Verilog to monitor the list of variables and every time a var. changes

module test_gen(a,b,c,sum,cout);

reg a, b;
initial begin

endmodule
end

#5 a = 1;
a = 0; b=0;

output sum, cout;
input a,b,c;

$monitor($time," A=%b B=%b Sum=%b Cout=%b",

#5 c = 1;
#5 b = 1;

xor G1 (s, a, b);

endmodule
module FA(X,Y,Z,S,C);

module HA(a, b, s, c)
input a,b;

endmodule

or O1 (C, C2, C1);
HA FA2 (S1,Z, S, C2);
HA FA1 (X, Y, S1, C1);

output S, C;
input X, Y, Z;

and G2 (c,a,b);

output s, c;

a, b, sum, cout);

8/26/18 Page 12

VLSI-1Class Notes

Test Generation, Cont d

cout
sum

C

B
A

module wrapper;

endmodule
test_gen(a,b,c,sum,cout);
FA(a,b,c,sum,cout);
wire a, b, sum, cout;

module test_gen(a,b,c,sum,cout);

endmodule
end

#5 c = 1;
#5 b = 1;
#5 a = 1;

a = 0; b=0; c=0;

output sum, cout;
input a,b,c;

reg a, b;
initial begin
$monitor($time," A=%b B=%b Sum=%b Cout=%b",

a, b, sum, cout);

8/26/18 Page 13

VLSI-1Class Notes

Behavioral Modeling

§ Behavioral model consists of always and initial constructs
§ All behavioral statements must be within these blocks
§ Many initial/always statements can exist within module
initial construct execute once at the start of the simulation

always construct executes at the beginning of the simulation and
continually loops

initial
begin

statements
end

always @(sensitivity list)
begin

statements
end

8/26/18 Page 14

VLSI-1Class Notes

Behavioral Statements

if(expr) then statement; else statement;

case(selector) val0: stat.; val1: stat.;
default: stat; endcase;

for(i=0; i < 10; i=i+1) A = B + i;

i=0; while(i < 15)
begin A = B + i; i = i + 1; end

8/26/18 Page 15

VLSI-1Class Notes

Concurrent Constructs

§ @ means wait for a change in value
– @(a) w = 4; Wait for 'a' to change to resume execution

§ wait(condition)
– wait(a==1) w = 4; wait for a to become 1 to resume execution

8/26/18 Page 16

VLSI-1Class Notes

Behavioral Timing

§ Advance time when:
– #20 delay 20 time units
– @(list) delay until an event occurs
– wait: delay until a condition is satisfied

@r rega = regb; // load rega when r changes
@(posedge r) rega = regb;

// load rega on positive edge of r
@(negedge r) rega = regb;

// load rega on negative edge of r
wait(!r) rega = regb;

// execution is suspended until r is 0

8/26/18 Page 17

VLSI-1Class Notes

Edge Triggered DFF

module dff(q,qb,d,clk);
input d, clk;
output q, qb;

reg q;

always @(posedge clk)
begin

q = d;
end

not G1 (qb, q);

endmodule

// left hand side must be a register

DFF
D

CLK QB

Q

8/26/18 Page 18

VLSI-1Class Notes

Shift Register

Is the order of execution important?

DFF
D

CLK

Q

DFF
D

CLK

Q

DFF
D

CLK

Qmodule dff(q,d,clk);
input d, clk;
output q;
reg q;

module shift(YO,XI,CLK);

endmodule
dff (YO,d2,CLK);
dff (d2,d1,CLK);
dff (d1,XI,CLK);

output YO;
input CLK, XI;

always @(posedge clk)
q <= d;

endmodule

XI

d2

d1

CLK

YO

CLK

CLK

8/26/18 Page 19

VLSI-1Class Notes

Another Example

module mux(f, sel, b, a);

input sel, b, a;

output f;

reg f;

always @(sel or a or b)

if(sel == 1) f = b;

else f = a;

endmodule

assign f = sel ? b : a;

// Another way to do the same thing

8/26/18 Page 20

VLSI-1Class Notes

Case Statement
module function_table(f,a,b,c);
input a,b,c;
output f;

reg f;

always @(a or b or c)
case({a,b,c}) // concatenate a,b,c to form a 3 bit number

3'b000: f = 1'b0;
3'b001: f = 1'b1;
3'b010: f = 1'b0;
3'b011: f = 1'b0;
3'b100: f = 1'b0;
3'b101: f = 1'b1;

3'b111: f = 1'b0;
3'b110: f = 1'b0;

endcase

endmodule

8/26/18 Page 21

VLSI-1Class Notes

Adder With Delays

module adder(co,su,a,b,ci);

input a,b,ci;

output co,su;

xor #(4,5) (sum, a, b, cin); // rise time=4 , fall time = 5

or #5 (co, ab,bc,ac); // rise time = fall time = 5

and #(4,2) (ab,a,b),

(ac,a,ci),

(bc,bci);

// three similar and gates

endmodule

8/26/18 Page 22

VLSI-1Class Notes

Blocking and Nonblocking Assignments

§ Blocking assignments are executed in the order they are coded
– sequential execution of statements
– block the execution of the next statement till the current statement is

executed
a = b;

§ Nonblocking assignments are executed in parallel
– execution of next statement is not blocked due to execution of current

statement
a <= b;

8/26/18 Page 23

VLSI-1Class Notes

Adder using Continuous Assignments

Specifies
combinational logic

Any time the right
hand side changes,
the simulator re-
evaluates the output

module adder(co,su,a,b,ci);
input a,b,ci;
output co,su;

assign su = a ^ b ^ cin,
co = a&b | b&cin | a&ci ;

endmodule

module adder(co,su,a,b,ci);
input a,b,ci;
output co,su;

assign #(5,4) su = a ^ b ^ cin;

endmodule
assign #(10,4) co = a&b | b&cin | a&ci ;

Another Version with Delays

8/26/18 Page 24

VLSI-1Class Notes

Counter
module counter(Q , clock, clear);

output [3:0] Q;
input clock, clear;
reg [3:0] Q;

always @(posedge clear or negedge clock)
begin

if (clear) Q = 4'd0;
else Q = (Q + 1) ; // Q = (Q + 1) % 16;

end
endmodule

module stimulus;
reg CLOCK, CLEAR;
wire [3:0] Q;

8/26/18 Page 25

VLSI-1Class Notes

Counter, Cont d

8/26/18

counter c1(Q, CLOCK, CLEAR);

initial
begin
$monitor($time, " Count Q = %b Clear= %b",

Q[3:0],CLEAR);
CLEAR = 1'b1;
#34 CLEAR = 1'b0;
#200 CLEAR = 1'b1;
#50 CLEAR = 1'b0;
#400 $stop;

end

initial begin CLOCK = 1'b0; forever #10 CLOCK = ~CLOCK;end

endmodule

Page 26

VLSI-1Class Notes

Bus Select
module select_bus(out, b0, b1, b2, b3, enable, s);

parameter n = 16;
parameter Z = 16'bz; // define a 16 bit of z
output [1:n] out; // n-bit output
input [1:n] b0, b1, b2, b3; // n-bit inputs
input enable;
input [1:2] s;

tri [1:n] data; // tri-state net
tri [1:n] out = enable ? data: Z; // net declaration with

// continuous assignment
assign

data = (s==0) ? b0 : Z, // 4 continuous assignment
data = (s==1) ? b1 : Z,
data = (s==2) ? b2 : Z,
data = (s==3) ? b3 : Z;

endmodule

8/26/18 Page 27

VLSI-1Class Notes

Tri-State Latch

module tri_latch(q, nq, clk, data, enable);
output q, nq;
input clk, data, enable;
tri q, nq;

not #5 (ndata, data);
nand #(3, 5) (wa, data, clk), (wb, ndata, clk);
nand #(12,15) (ql, nql, wa), (nql, ql, wb);

bufif1 #(3,5,13) // rise, fall, change to z
q_dr (q, ql, enable), // when enable = 1, q=ql
nq_dr (nq, nql, enable); // when enable = 0, q=ql=z

endmodule

8/26/18 Page 28

VLSI-1Class Notes

User-Defined Primitives (UDP)

primitive mux(mux, ctl, A, B);
output mux;
input ctl, A, B;

table
// ctl A B mux

0 1 ? : 1 ; // ? represents don t care
0 0 ? : 0 ;
1 ? 0 : 0 ;
1 ? 1 : 1 ;
x 0 0 : 0 ;
x 1 1 : 1 ;

endtable
endprimitive

8/26/18 Page 29

VLSI-1Class Notes

User-Defined Primitives, Cont d

primitive latch(q, clk, data);
output q; reg q;
input clk, data;

table
// clk data state output/nxtstate

0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // represent no change

endtable
endprimitive

8/26/18 Page 30

VLSI-1Class Notes

Looping
module mult(res, a, b);

parameter size = 8, longsize = 16;
input [size:1] a, b;
output [longsize:1] res;

reg [size:1] a, b;
reg [longsize:1] res;

always @(a or b)
begin :mult

reg [longsize:1] shifta, shiftb;
shifta = a;
shiftb = b;
result = 0;
repeat (size)

begin
if(shiftb[1]) // check if bit1 == 1

res = res + shifta;
shifta = shifta << 1;
shiftb = shiftb >> 1;

end
end

endmodule

8/26/18 Page 31

VLSI-1Class Notes

Looping, Cont d

module count_ones(res, a);
output [3:0] res; reg [3:0] res;
input [7:0] a;

always @(a)
begin :count1s

reg [7:0] tempa;
res = 0; tempa = a;
while(tempa) // while tempa != 0

begin
if(tempa[0]) res = res + 1;
tempa = tempa >> 1;

end
end

endmodule

8/26/18 Page 32

VLSI-1Class Notes

Parallel Blocks

§ Statements executed concurrently
§ Delay values for each statement are relative to the simulation

when control enters block
§ Control passed out of the block when the last time-ordered

statement is executed
Order of statements is not important

// Parallel block
fork
#100 r = 100;
#50 r = 50;
#150 r = 150;

join

// Equivalent sequential block
// assuming c changes every 50 units:

begin
@c r = 50;
@c r = 150;
@c r = 200;

end

8/26/18 Page 33

VLSI-1Class Notes

More Examples

§ areg is loaded when both A and B occur in any order

begin
fork

@A;
@B;

join
areg = breg;

end

8/26/18 Page 34

VLSI-1Class Notes

Tasks

§ Tasks provide a way to execute common procedures at different
places

§ They provide the means of breaking a large procedure into
smaller ones

§ They make it easy to debug and read the source code

8/26/18 Page 35

VLSI-1Class Notes

Task Format

task proc_name;
input a, b;
inout c;
output d, e;

<<operation>>

endtask

// The task is called as so:
proc_name(v, w, x, y, z);

// Performs the following assignments upon entry to the task:
a = v ; b = w; c = x;

// Upon completion of the operation the following assignments are made:
x = c; y = d; z = e;

8/26/18 Page 36

VLSI-1Class Notes

Functions

§ Functions differ from tasks in the following ways:
– They return a value to be used in an expression
– They must have zero simulation time duration
– They must have at least one input

8/26/18 Page 37

VLSI-1Class Notes

Function Format

8/26/18

function [7:0] func_name;
input [15:0] a;

begin
<<statement>>;
func_name = expression;

end
endfunction

// The function is called as so:

new_address = b * func_name(old_address)

Page 38

VLSI-1Class Notes

Latches and Flip-Flops (Flops)

Latch is synthesized if you write:

always @(CLK) begin
if (CLK) begin

LatchOut = LatchInput
end

end

Flop is synthesized with:

always @(posedge CLK) begin
LatchOut = LatchInput

end

8/26/18 Page 39

VLSI-1Class Notes

Logic Synthesis

8/26/18 Page 40

VLSI-1Class Notes

Brief History of Logic Synthesis

§ 1960s: first work on automatic test pattern generation used for
Boolean reasoning
– D-Algorithm

§ 1978: Formal Equivalence checking introduced at IBM in
production for designing mainframe computers
– SAS tool based on the DBA algorithm

§ 1979: IBM introduced logic synthesis for gate array based main
frame designed
– LSS, next generation was BooleDozer

§ End 1986: Synopsys founded
– first product remapper between standard cell libraries
– later extended to full blown RTL synthesis

§ 1990s other synthesis companies enter the marker
– Ambit, Compass, Synplicity. Magma, Monterey, ...

8/26/18 Page 41

VLSI-1Class Notes

Synthesis in the Design Flow

Circuit Simulator
Router

Designer Tasks Tools

Text Editor
C Compiler

Logic Simulation

Synthesis

Cell Libraries

RTL Simulator
Synthesis Tools

Timing Analyzer

Power Estimator

Schematic Editor

Define Overall Chip
C/RTL Model

Initial Floorplan

Behavioral Simulation

Datapath Schematics

Circuit Schematics

Circuit Simulation
Megacell Blocks

Layout and Floorplan

Place and Route
Parasitics Extraction

DRC/LVS/ERC

Logic
Synthesis

Architect

Logic
Designer

Designer
Circuit

Physical
Designer

Place/Route Tools
Physical Design
and Evaluation

Tools

8/26/18 Page 42

VLSI-1Class Notes

What is Logic Synthesis?

§ Design described in a Hardware Description Language (HDL)
– Verilog, VHDL

§ Simulation to check for correct functionality
– Simulation semantics of language

§ Synthesis tool
– Identifies logic and state elements
– Technology-independent optimizations (state assignment, logic

minimization)
– Map logic elements to target technology (standard cell library)
– Technology-dependent optimizations (multi-level optimization, gate

strengths, etc.)

8/26/18 Page 43

VLSI-1Class Notes

What is Logic Synthesis? (cont)

D

X Yλ
δ

Given: Finite-State Machine F(X,Y,Z, ,) where:λ δ
X: Input alphabet
Y: Output alphabet
Z: Set of internal states

: X x Z Z (next state function)
: X x Z Y (output function)

λ
δ

Target: Circuit C(G, W) where:

G: set of circuit components g {Boolean gates,
flip-flops, etc}

W: set of wires connecting G

∈

8/26/18 Page 44

VLSI-1Class Notes

Objective Function for Synthesis

§ Minimize area
– in terms of literal count, cell count, register count, etc.

§ Minimize power
– in terms of switching activity in individual gates, deactivated circuit blocks,

etc.
§ Maximize performance
– in terms of maximal clock frequency of synchronous systems, throughput for

asynchronous systems
§ Any combination of the above
– combined with different weights
– formulated as a constraint problem

• minimize area for a clock speed > 300MHz

§ More global objectives
– feedback from layout

• actual physical sizes, delays, placement and routing

8/26/18 Page 45

VLSI-1Class Notes

Constraints on Synthesis

§ Given implementation style:
– two-level implementation (PLA, CAMs)
– multi-level logic
– FPGAs

§ Given performance requirements
– minimal clock speed requirement
– minimal latency, throughput

§ Given cell library
– set of cells in standard cell library
– fan-out constraints (maximum number of gates connected to another gate)
– cell generators

8/26/18 Page 46

VLSI-1Class Notes

Develop HDL files

Specify Libraries

Library Objects
link_library
target_library
symbol_library
synthetic_library

Read Design

analyze
elaborate
read_file

Set Design Constraints
Design Rule Constraints
set_max_transition
set_max_fanout
set_max_capacitance
Design Optimisation Constraints
Create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainty
set_clock_transition
set_input_delay
set_output_delay
set_max_area

Select Compile Strategy

Top Down
Bottom UpOptimize the Design

Compile
Analyze and Resolve

Design Problems Check_design
Report_area
Report_constraint
Report_timingSave the

Design database
write

Define Design Environment

Set_operating_conditions
Set_wire_load_model
Set_drive
Set_driving_cell
Set_load
Set_fanout_load
Set_min_library

Synthesis Flow

8/26/18 Page 47

VLSI-1Class Notes

References

§ http://www.verilog.net/
§ http://www.eda.org/
§ http://www.verilogtutorial.info/
§ http://www.asic-world.com/verilog/veritut.html

8/26/18 Page 48

VLSI-1Class Notes

Logic Simulation

Courtesy of:
dropzone.tamu.edu/~wshi/475/Logic_Simulation.ppt

8/26/18 Page 49

VLSI-1Class Notes

Logic Simulation

§ Outline
– Logic Simulation
– Logic Design Description
– Logic Models

§ Goal
– Understand logic simulation problem
– Understand logic models

8/26/18 Page 50

VLSI-1Class Notes

What is Logic Simulation?

§ Simulate temporal behavior of logic design
§ Logic design description
– netlist, network
– components

• e.g. AND, OR, RAM, Pentium
– component interconnections

§ Logic models
– component behavior
– interconnect behavior
– signal values

§ Timing models
– component behavior
– interconnect behavior
– signal delays

A
B

C

D
E

A

B

C

D

E

Time

8/26/18 Page 51

VLSI-1Class Notes

Logic Simulation Goals

§ Functional correctness
– circuit does what you want
– validate by using lots of input stimuli

§ Performance
– circuit runs fast enough
– no hazards or races
– validate using lots of stimuli

§ Test generation
– simulate faulty circuits
– does input stimulus cause faulty output?

8/26/18 Page 52

VLSI-1Class Notes

Logic Design Description

§ Components
– modules, cells,...
– primitive - e.g. AND, OR, NOT
– predefined - from library

• functional behavior
• timing behavior

– composite - user-defined
• subnetwork
• hierarchy

§ Component connections
– wiring - nets
– attachment points - pins, ports, terminals
– can include wiring structure

• fan-in, fan-out
• parasitics

8/26/18 Page 53

VLSI-1Class Notes

Logic Models

§ Logical Primitive
– Boolean logic operations

• AND, OR, NAND, NOR, NOT, XOR, XNOR
– often special-cased in simulator for speed

§ Behavioral Model
– finite state machine

• outputs are function of inputs, next state
– often supplied by model library vendors

• implementation is secret

§ Subnetwork
– composed of primitives, behavioral models, subnetworks
– use hierarchy, regularity in logic design C = f(A,B)

8/26/18 Page 54

VLSI-1Class Notes

Logic Values

§ Component output values - states
§ 2-state simulation

– 0 - logical 0
– 1 - logical 1

§ 3-state simulation
– add X state

• unknown, uninitialized, intermediate

§ 5-state simulation
– add rising, falling states

§ Other states
– Z - high impedance - for buses
– U - unknown, but 0 or 1

• X for intermediate value
– D, D - fault signals - for fault simulation
– more states => closer to analog simulation

0 X 1

2:1 MUX

A

B

Sel

Out

8/26/18 Page 55

VLSI-1Class Notes

Logic Model Implementation

§ Truth table
– list of all input/output choices
– fast - table lookup evaluation

• use 0, 1, 2 for 3 states
– impractical for many inputs, logic values

§ Latch
– truth table with knowledge of previous state

§ Logic equations
– can be compiled and executed fast
– must support value system

§ Behavioral description
– HLL description of input/output relationship

• hardware description language - Verilog, VHDL
• general-purpose language

– usually precompiled for speed

0 1 X
0 0 0 0
1 0 1 X
X 0 X X

if (gate == and2)
out = in1 && in2;

else if (gate == or2)
out = in1 || in2;

8/26/18 Page 56

VLSI-1Class Notes

Hardware Description Languages

§ Special-purpose languages
– special constructs for hardware description
– timing, concurrency, bit vectors, etc.
– can usually include structural description
– examples

• Verilog
• VHDL

§ Standard programming languages
– add data types and objects for hardware description
– examples

• C
• C++
• Matlab

8/26/18 Page 57

VLSI-1Class Notes

Example

§ 4-bit Up/Down Counter
– 4-bit input "countin"
– 4-bit output "countout"
– up/down control "up"
– count control "count"
– internal state "i"
– implied clock

§ Behavior
– up = 1 => count up
– up = 0 => count down
– count = 1 => count
– count = 0 => load

4

countin

i

countout

up

count

4

1

1 clock

8/26/18 Page 58

VLSI-1Class Notes

Verilog Example

/* ----- Programmable 4-bit up/down counter ----- */

module counter(countin, countout, up, count, clk);

input countin[4], up, count, clk;
output countout[4];
reg countout[4];

always @(posedge clk)
begin
if (count == 0)
countout = countin;

else if (up == 1)
countout = countout + 1;

else
countout = countout – 1;

end
endmodule

8/26/18 Page 59

VLSI-1Class Notes

C Example

/* ----- Programmable 4-bit up/down counter ----- */

unsigned int counter_private;

counter(unsigned int countin,
unsigned int up,
unsigned int count,

unsigned int *countout)
{

while (1) {
if (count) {

if (up) counter_private ++;
else counter_private --;

else
counter_private = countin;

*countout = counter_private;
}

}

8/26/18 Page 60

VLSI-1Class Notes

HDL vs. Programming Language

§ HDL strengths
– concurrency
– bit manipulations
– module representations
– timing constraints
– structural representation support

§ Programming Language strengths
– data structures
– language support

§ Mostly VHDL and Verilog today
– most vendors support both languages

8/26/18 Page 61

VLSI-1Class Notes

Timing

§ Outline
– Timing Models
– Simulation Algorithms

§ Goal
– Understand timing models
– Understand simulation algorithms

8/26/18 Page 62

VLSI-1Class Notes

Component Timing Models

§ Zero delay
– no delay from gate inputs to outputs - a boolean equation
– good when just considering functional behavior

• e.g. combinational fault simulation

§ Unit delay
– gate delay is one unit
– appropriate when all gates are same delay

• e.g. gate array, ignores wiring load

0

0

0

0

1

1

1

1

0

1

1

0

0

1->0

0

1

1

1

0->1
(1)

1->0
(2)

1->0
(2)

0

8/26/18 Page 63

VLSI-1Class Notes

Component Timing Models

§ Propagation delay
– fixed delay from inputs to outputs
– can vary with fan-out, output load
– delay = time or multiple unit delays
– varies among gate types

• XOR vs. inverter
– varies between gate instances

• manufacturing variations
– make output unknown for interval

• rise/fall, min/max delay

§ Inertial delay
– delay time before gate responds
– input value must be present long enough for the gate to respond
– gates are low-pass filters

inertial delay

5

5

5

5

5
5

0

0

0
1->0
(0)

0

1

1

1

0->1
(5)

1->0
(10)

1->0
(10)

8/26/18 Page 64

VLSI-1Class Notes

Component Timing Models

§ Output Loading Delay
– gate delay is function of load it drives
– wiring capacitance
– type of gate

• e.g. small vs. driver
– number of fan-outs
– types of fan-outs
– depends on interconnect delay model

§ Compute prior to simulation

PropDelay = f(load)

PropDelay = UnloadedDelay[gatetype]
+ CL*LoadFactor[gatetype]
+ fanoutcnt*FanFactor[gatetype]

8/26/18 Page 65

VLSI-1Class Notes

Interconnect Timing Models

§ Isochronic
– zero delay
– interconnect acts as capacitor
– all delay assigned to driving gate

§ Wave propagation
– transmission line
– fixed delay

• function of wire length
– can model as different propagation delay times for different fan-outs

§ Signal diffusion
– distributed RLC parasitics
– inertial delay
– usually combine with driver timing model

Tdelay

8/26/18 Page 66

VLSI-1Class Notes

Simulation Algorithms

§ Compiled simulation
– logic equations compiled to code
– execute code - fast
– works well with zero and unit delay models
– difficult with general timing models
– no use of latency, multi-rate behavior

§ Event-driven simulation
– input changes cause evaluation of model, scheduling of output change event

• use timing models to determine new event times
– output change evaluated at scheduled time
– advantage

• real circuits have 10-30% activity
• dormant parts of circuit are not evaluated

EE460 Class Notes

Simulation Algorithms

§ Compiled simulation
– logic equations compiled to code
– execute code - fast
– works well with zero and unit delay models
– difficult with general timing models
– no use of latency, multi-rate behavior

§ Event-driven simulation
– input changes cause evaluation of model, scheduling of output change event

• use timing models to determine new event times
– output change evaluated at scheduled time
– advantage

• real circuits have 10-30% activity
• dormant parts of circuit are not evaluated

8/26/18 Page 67

VLSI-1Class Notes

Compiled Simulation

§ Algorithm
– mark feedback paths
– levelize circuit - topological sort
– generate evaluation code

• by level in circuit
– compile and link with control and I/O
– execute

§ Issues
– compilation time vs. execution time

• use only on big problems
– which gate inputs/outputs to watch

• compilation can eliminate nodes
– simple delay models only

8/26/18 Page 68

VLSI-1Class Notes

Circuit Level Assignment

§ Topologically order circuit
– assign gate and its outputs to a level
– primary inputs = level 0
– for each gate

• level = max(nonfeedback input levels) + 1
– use breadth-first search
– sort gates by level

§ Marking feedback paths
– feedback == cycle in directed graph
– gates are vertices
– gate outputs are directed edges
– during breadth-first search

• if hit visited node, then feedback

0 1 2 3

8/26/18 Page 69

VLSI-1Class Notes

Zero and Unit Delay Simulation

§ Zero-delay simulation
– evaluate gates in levelized order
– for each gate update output from inputs

• inputs already computed from previous level
– feedback oscillation improperly modeled

§ Unit-delay simulation
– evaluate gates in levelized order
– for each gate update output from inputs
– output time is max(controlling input change times)+1

0

0

0

0

1

1

1

1

0

1

1

0

0

1->0

0

1

1

1

0->1
(1)

1->0
(2)

1->0
(2)

0

8/26/18 Page 70

VLSI-1Class Notes

Event Driven Simulation

§ Outline
– Event-driven simulation algorithms
– Event-driven simulation implementation

§ Goal
– Understand event-driven simulation
– Understand simulator implementation

§ Reading
– Gate-Level Simulation by D Abreu
– Types of Simulators by Trimberger

8/26/18 Page 71

VLSI-1Class Notes

Event-Driven Logic Simulation

§ Evaluate gate when inputs change
– use logic model to compute new output value
– use timing model to compute when output will change

§ Schedule an output change event
– store the event on a time-sorted event queue

§ Process events from the queue
– output change evaluated at scheduled time
– causes new events to be scheduled

5

5

7

5

5
5

0

0

0
1->0
(0)
0

1

1

1

0->1
(5)

1->0
(12)

1->0
(10)

8/26/18 Page 72

VLSI-1Class Notes

Event-Driven Logic Simulation

1. t=X: Schedule PI:1->0 at t=0
2. t=0: PI changes 1->0
– Evaluate A, schedule A:0->1 at t=5

4. t=5: A changes 0->1
– Evaluate B, schedule B:1->0 at t=10
– Evaluate C, schedule C:1->0 at t=12

5. t=10: B changes 1->0, output
6. t=12: C changes 1->0, output

5

5

7

5

5
5

0

0

0
1->0
(0)
0

1

1

1

0->1
(5)

1->0
(12)

1->0
(10)A

B

C

8/26/18 Page 73

VLSI-1Class Notes

Simulation Algorithm

while (HaveEvents())

event = NextEvent(); /* time-sorted order */

currenttime = event->time; /* update global time */

event->gate->output = event->output /* change gate output */

print output if it is primary output;

for (all gates g in event->gate fan-out list)

newoutput = EvalGate(g); /* new gate output */

newtime = currenttime + g->delay; /* when it changes */

ScheduleEvent(g, newoutput, newtime);

8/26/18 Page 74

VLSI-1Class Notes

Simulator Initialization

§ Set all gate outputs to X (3-state logic)
§ Start simulation from primary inputs
– inputs from outside world

§ 0/1 values are set as inputs propagate
§ Problems
– feedback and memory increase initialization time
– some states may never initialize

§ Solution
– real circuits have initialization logic
– reading before writing memory is an error

8/26/18 Page 75

VLSI-1Class Notes

Event Scheduling

§ Only schedule event on a gate output if it:
– occurs after the last pending event and has a different value

• otherwise creates useless work
– occurs before first pending event

• remove next event if same value, now obsolete
– occurs between two events and is different than previous one

• remove next event if same value, now obsolete
– has different value than current output, and no pending events

• otherwise creates useless work

§ Note: typically 0, 1, or 2 pending events on a gate

A: 0->1 at 3ns
B: 1->0 at 3ns

B first, then A:
1 at 10ns - discard
0 at 10ns - keep

7ns

8/26/18 Page 76

VLSI-1Class Notes

Event Scheduling

§ Note: cases 2 & 3 cannot happen for pure propagation delay
model
– events always arrive in time-sorted order
– new event must come >= last pending event
– can happen for more complex timing models

§ Inertial delay
– remove pending event pair if new event caused them to be spaced < inertial

delay and return to original value
– for pure propagation model, just add time check in case 1 against last

pending event
– wait for all events at time T -don t delete until you are sure

Pending: 1: 0 at 1ns
2: 1 at 5ns

7ns prop. delay
3ns inertial delay

New: 0 at 6ns - discard, remove #2
0 at 9ns - add to queue0

X
1

8/26/18 Page 77

VLSI-1Class Notes

Optimizations

§ Problem
– multiple events at time T can cause multiple gate evaluations
– up to N evaluations for N inputs

§ Solution
– for all events at time T put gates to be evaluated on a list
– evaluate all gates at same time, scheduling events

§ Problem
– multiple events at time T cause multiple printed output

§ Solution
– wait until time advances to print primary outputs
– print them only if any primary outputs changed

A: 0 at 2ns

B: 1 at 2ns

1

0
0

1. Evaluate gate using event A
2. Schedule event C: 1 at 9ns
3. Evaluate gate using event B
4. Delete event C

7ns

8/26/18 Page 78

VLSI-1Class Notes

Ambiguity – Is Your Fault

§ Verilog Example

always @(posedge clk) begin
a = 0;

end

always @(posedge clk) begin
a = 1;

end

8/26/18 Page 79

VLSI-1Class Notes

Simulation Control

§ Visualization
– timing diagrams
– back annotation of schematic

§ Inputs
– timing diagrams
– vectors - especially for synchronous circuits

§ Probing
– examine events at a node
– straightforward for event-driven simulation

• mark each node to save value
• can force node to value

– must make a primary output for compiled simulation
§ Control
– stop and start time sequence
– insert breakpoint events, like debugger

8/26/18 Page 80

VLSI-1Class Notes

Event Queue Implementation

§ Events must be processed in time order
– event queue must sort by time

§ Must be able to delete events
– cancel obsolete events on a gate

§ Implementations
– priority queue

• O(logN) time to insert/delete for N-item queue
• many implementations - AVL tree, heap, etc.
• problem: N is often large

– bucket queue - time wheel
• divide time into time quanta Q, e.g. 1ps
• circular buffer of N entries 1 quantum in size
• can store events Q*N into future
• events beyond buffer go into unsorted far list
• O(1) time to insert, nearly so for delete

8/26/18 Page 81

VLSI-1Class Notes

Time Wheel

0
1
i-1
i
i+1

999

event event

curtime

curtime+999ps

curtime+1ps

time wheel of time quantums

all events scheduled
for a given time
quantum

Wheel only needs to be big enough to hold most variation in gate delays

8/26/18 Page 82

VLSI-1Class Notes

Time Wheel Operation

§ Insertion
if (eventtime - curtime >= WHEELLENGTH*quantum)
insert event into far list

else
insert at wheel[eventtime % (WHEELLENGTH*quantum)]

§ Deletion
i = curtime % (WHEELLENGTH*quantum)
while (wheel[i] == NULL)
if (i == WHEELLENGTH-1)
i = 0; timebase += (WHEELLENGTH*quantum);
for all events in far list
if (eventtime - timebase < WHEELLENGTH*quantum) insert
event into wheel

else i++
remove first event from wheel[i] list and return it

8/26/18 Page 83

VLSI-1Class Notes

Fault Simulation

§ Outline
– Fault Simulation
– Fault Models
– Parallel Fault Simulation
– Concurrent Fault Simulation

§ Goal
– Understand fault simulation problem
– Understand fault simulation methods

8/26/18 Page 84

VLSI-1Class Notes

Fault Simulation

§ Simulate behavior of faulty logic design
– inject faults into logic circuit
– run logic simulation to determine faulty behavior

§ Goals
– test generation

• does vector cause fault to be detected at primary outputs?
– fault coverage

• what fraction of faults are detected by test set?
– fault analysis

• does fault modify circuit behavior?
• what parts of circuit are affected?
• use in defect and fault tolerant design

Faulty
gate

Affected
primary
outputs

8/26/18 Page 85

VLSI-1Class Notes

Example

0

0

0

0

1

1

1

0->1 1->0

1->0

0

0

0

1->0

0

SA0

1

1

0->1 1

1->0

Good
Circuit

Faulty
Circuit

1->0

8/26/18 Page 86

VLSI-1Class Notes

Fault Models

§ Fault model
– logic-level abstraction of circuit fault
– permanent faults caused during manufacturing
– transient and permanent faults during operation

§ Stuck-at model
– gate inputs or outputs stuck at 0 or 1
– developed for TTL, but still used
– convenient

• logical values, single node influence

§ Bridging model
– short between two or more nodes
– logical behavior difficult

• nodes fight, both affected
• feedback and oscillation

– cannot consider all possible node pairs

SA0 1

8/26/18 Page 87

VLSI-1Class Notes

Fault Simulation

§ Problem
– fault simulation can be expensive
– Example: C7552

• 7552 possible faults to simulate
• 243 test vectors
• 1.8M test vector simulations

§ Observation
– stuck-at faults do not change netlist structure
– only node values and gate functions

§ Observation
– faulty behavior only occurs in gate s cone of influence

• transitive closure of fan-out list

8/26/18 Page 88

VLSI-1Class Notes

Parallel Fault Simulation

§ Simulate all faults in parallel on same netlist structure
– each gate output value is really a vector of values
– good output and all faulty outputs

G F1 F2 F3 • • •

0 00

0 00

0 00

0 00

1 01

1 10

1 11

0 10

0 000 00

1 11

A

B

Good A.out
SA0

B.out
SA0

8/26/18 Page 89

VLSI-1Class Notes

Parallel Fault Simulation

§ Compute gate output with bit-wise operations
– AND, OR, NOT operate on all bits in data word
– each bit is a separate good or faulty circuit
– execute 32-64 faults in parallel
– very high parallelism on MPP

• 64k faults in parallel on CM-2

§ Problems
– 0, 1, X requires 2 bits to represent

• choose right encodings
• 0 = 00
• 1 = 11
• X = 10

– not all functions available as opcodes
• use sequence of bitwise ops

G F1 F2 F3 • • •

1 1 0 0

1 0 1 0

1 0 0 0

bitwise AND

=

00 00 00 11 11 01

00 11 01 11 01 01

00 00 00 11 01 01

bitwise AND

=

8/26/18 Page 90

VLSI-1Class Notes

Concurrent Fault Simulation

§ Only track differences in fault cone of influence
– cone can be very small

§ Only propagate value differences
– behavior differences caused by faults
– for 3-value logic, can only be 3 possible behaviors at gate output

• faulty and good behavior are same at a gate output
• several faulty behaviors are same at a gate output

– several faulty netlist behaviors are collapsed to one behavior

Good
0
1
1

F79
0
[0]
1

F383
[1]
1
1

F993
0
[0]
1

Good
0

F79
0

F383
[1]

F993
0

Good
F79

F993
0

F383
[1]

in1: 0 - Good, F79, F993; [1] - F383
in2: 1 - Good, F383; [0] - F79, F993
in3: 1 - Good, F79, F383, F993

intersect 6 lists to get
2 lists on output

8/26/18 Page 91

VLSI-1Class Notes

Parallel Pattern Single-Fault Simulation

§ Apply test patterns to fault until detected
– one fault at a time
– apply test patterns with parallel simulation

§ Advantages
– up to 400X faster since most faults detected in first few vectors
– avoid list overhead of concurrent fault simulation

8/26/18 Page 92

