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Agenda

§ Verilog Hardware Description Language
§ Brief Overview of Logic Synthesis
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Verilog Hardware Description Language

8/26/18 Page 3



VLSI-1Class Notes

Languages Usage
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Requirements

Algorithm and Architectural

Func & SW Development

Behavioral

SoC Verification

IP Verification

RTL

Gates

Transistors

Verilog
VHDL

System
Verilog

Vera
E

Sugar

SystemC

Matlab
C/C++
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Features of Verilog

§ A concurrent language (syntax similar to C)
§ Models hardware
§ Provides a way to specify concurrent activities
§ Allows timing specifications

§ Originally developed by Phil Moorby at Gateway Design 
Automation, acquired by Cadence, now IEEE Standard 1364 
(Open Verilog International)
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Applications of Verilog

§ Description of design at a higher level
§ Development of formal models
§ System documentation
§ Simulation to uncover errors (bugs) in design
§ Synthesis of designs
§ Design reuse
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Verilog Modes

1. Structural: describes the structure of the hardware components, 
including how ports of modules are connected together
– module contents are built in gates: 
• and, or, xor, not, nand, nor, xnor, buf
• or other modules previously declared

2. Behavioral: describes what should be done in a module
– module contents are C-like assignment statements, loops
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Structural Model of Adder

§ Structural models: interconnections of primitive gates (AND, OR, 
NAND, NOR, etc...) and other modules

input a,b;
output s, c;

xor G1 (s, a, b);
and G2 (c,a,b);

endmodule

module HA( a, b, s, c) module FA(X,Y,Z,S,C
input   X, Y, Z;
output  S, C;

HA FA1 (X, Y, S1, C
HA FA2 (S1,Z, S, C2
or    O1   (C, C2, 

endmodule

X

Y

Z

S

C

HALF Adder
HALF Adder

FA1
FA2

O1

S1

C1
C2
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Specification of Gate-Level Model

§ Gate function
– Verilog built-in: and, nand, or, nor, xor, xnor, buf, not, etc.

§ Gate specification format example:
– and #delay inst-name (out,in1, in2,...,ink);
– Delay and inst-name are optional
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xor  #(4,5)  (sum, a, b, cin);  // rise time=4 , fall time = 5

or   #5      (co, ab,bc,ac);    // rise time = fall time = 5
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Logic Values

§ A bit can have any of these values
– 0 representing logic low  (false)
– 1 representing logic high (true)
– x representing either 0, 1, or z
– z representing high impedance for tri-state
– (unconnected inputs are set to z)

x1 z
0 1

0 

0 
x x

x0 x
xA

B

FA
B

z

1
0

0 
0 0 

x x
0 
x
x

F
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Test Generation

§ Test_gen: Generates test and capture the response
§ FA: The design under test
§ Wrapper: Wraps Test_gen and FA into one module

X

Y

C

S

X_o

Y_o

S_i
C_i

Input are generated in Test_gen

Response from the adder is read by Test_ge

Test_gen FA

Wrapper
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Test Generation, Cont d

module wrapper;
wire   a, b, sum, cout;

FA(a,b,c,sum,cout);
test_gen(a,b,c,sum,cout);
endmodule

- initial 
tells Verilog to execute all statement within begin end once it starts

- monitor
tells Verilog to monitor the list of variables and every time a var. changes

module test_gen(a,b,c,sum,cout);

reg  a, b;
initial begin

endmodule
end

#5 a = 1;
a  = 0;   b=0;

output   sum, cout;
input a,b,c;

$monitor($time," A=%b  B=%b Sum=%b Cout=%b", 

#5 c = 1;
#5 b = 1;

xor G1 (s, a, b);

endmodule
module FA(X,Y,Z,S,C);

module HA( a, b, s, c)
input a,b;

endmodule

or    O1   (C, C2, C1);
HA FA2 (S1,Z, S, C2);
HA FA1 (X, Y, S1, C1);

output  S, C;
input   X, Y, Z;

and G2 (c,a,b);

output s, c;

a, b, sum, cout);
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Test Generation, Cont d

cout
sum

C

B
A

module wrapper;

endmodule
test_gen(a,b,c,sum,cout);
FA(a,b,c,sum,cout);
wire   a, b, sum, cout;

module test_gen(a,b,c,sum,cout);

endmodule
end

#5 c = 1;
#5 b = 1;
#5 a = 1;

a  = 0;   b=0;  c=0;

output   sum, cout;
input  a,b,c;

reg  a, b;
initial begin
$monitor($time," A=%b  B=%b Sum=%b Cout=%b", 

a, b, sum, cout);
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Behavioral Modeling

§ Behavioral model consists of always and initial constructs
§ All behavioral statements must be within these blocks
§ Many initial/always statements can exist within module
initial construct execute once at the start of the simulation

always construct executes at the beginning of the simulation and 
continually loops

initial
begin

statements
end

always @(sensitivity list)
begin

statements
end

8/26/18 Page 14



VLSI-1Class Notes

Behavioral Statements

if( expr ) then statement; else statement;

case(selector) val0: stat.; val1: stat.;
default: stat; endcase;

for(i=0; i < 10; i=i+1) A = B + i;

i=0; while(i < 15)
begin A = B + i; i = i + 1; end
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Concurrent Constructs

§ @ means wait for a change in value
– @(a) w = 4;  Wait for 'a' to change to resume execution

§ wait(condition)
– wait( a==1 ) w = 4;  wait for a to become 1 to resume execution
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Behavioral Timing

§ Advance time when:
– #20 delay 20 time units
– @(list) delay until an event occurs
– wait: delay until a condition is satisfied

@r rega = regb; // load rega when r changes
@(posedge r) rega = regb;

// load rega on positive edge of r
@(negedge r) rega = regb;

// load rega on negative edge of r
wait(!r) rega = regb;

// execution is suspended until r is 0
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Edge Triggered DFF

module  dff(q,qb,d,clk);
input d, clk;
output  q, qb;

reg       q;

always @(posedge clk) 
begin

q = d;
end

not G1 (qb, q);

endmodule

//  left hand side must be a register

DFF
D

CLK QB

Q

8/26/18 Page 18



VLSI-1Class Notes

Shift Register

Is the order of execution important?

DFF
D

CLK

Q

DFF
D

CLK

Q

DFF
D

CLK

Qmodule  dff(q,d,clk);
input d, clk;
output  q;
reg       q;

module shift(YO,XI,CLK);

endmodule
dff (YO,d2,CLK);
dff (d2,d1,CLK);
dff (d1,XI,CLK);

output YO;
input CLK, XI;

always @(posedge clk) 
q <= d;

endmodule

XI

d2

d1

CLK

YO

CLK

CLK
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Another Example

module mux(f, sel, b, a);

input sel, b, a;

output f;

reg    f;

always @(sel or a or b) 

if( sel == 1 ) f = b;

else           f = a;

endmodule

assign f = sel ? b : a;

// Another way to do the same thing
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Case Statement
module function_table(f,a,b,c);
input a,b,c;
output f;

reg  f;

always @( a or b or c)
case( {a,b,c} ) // concatenate a,b,c to form a 3 bit number

3'b000:  f = 1'b0;
3'b001:  f = 1'b1;
3'b010:  f = 1'b0;
3'b011:  f = 1'b0;
3'b100:  f = 1'b0;
3'b101:  f = 1'b1;

3'b111:  f = 1'b0;
3'b110:  f = 1'b0;

endcase

endmodule
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Adder With Delays

module adder(co,su,a,b,ci);

input a,b,ci;

output co,su;

xor  #(4,5)  (sum, a, b, cin);  // rise time=4 , fall time = 5

or   #5      (co, ab,bc,ac);   // rise time = fall time = 5

and #(4,2)   (ab,a,b),

(ac,a,ci),

(bc,bci);

// three similar and gates

endmodule
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Blocking and Nonblocking Assignments

§ Blocking assignments are executed in the order they are coded
– sequential execution of statements
– block the execution of the next statement till the current statement is 

executed
a = b;

§ Nonblocking assignments are executed in parallel
– execution of next statement is not blocked due to execution of current 

statement
a <= b;
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Adder using Continuous Assignments

Specifies 
combinational logic

Any time the right 
hand side changes, 
the simulator re-
evaluates the output

module adder(co,su,a,b,ci);
input a,b,ci;
output co,su;

assign su = a ^ b ^ cin,
co = a&b  | b&cin | a&ci ;

endmodule

module adder(co,su,a,b,ci);
input a,b,ci;
output co,su;

assign  #(5,4) su = a ^ b ^ cin;

endmodule
assign #(10,4) co = a&b  | b&cin | a&ci ;

Another Version with Delays
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Counter
module counter(Q , clock, clear);

output [3:0] Q;
input clock, clear;
reg [3:0] Q;

always @( posedge clear or negedge clock)
begin

if (clear)   Q = 4'd0;
else  Q = (Q + 1) ; //   Q = (Q + 1) % 16;

end
endmodule

module stimulus;
reg CLOCK, CLEAR; 
wire [3:0] Q;
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Counter, Cont d

8/26/18

counter c1(Q, CLOCK, CLEAR);

initial 
begin
$monitor($time, " Count Q = %b Clear= %b", 

Q[3:0],CLEAR); 
CLEAR = 1'b1;
#34 CLEAR = 1'b0;
#200 CLEAR = 1'b1;
#50 CLEAR = 1'b0;
#400 $stop;

end

initial begin CLOCK = 1'b0; forever #10 CLOCK = ~CLOCK;end

endmodule
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Bus Select
module select_bus( out, b0, b1, b2, b3, enable, s);

parameter    n = 16;
parameter    Z = 16'bz;  // define a 16 bit of z
output [1:n] out;        // n-bit output
input  [1:n] b0, b1, b2, b3;  // n-bit inputs
input  enable;
input  [1:2] s;

tri   [1:n] data;          // tri-state net
tri   [1:n] out = enable ? data: Z; // net declaration with

// continuous assignment
assign

data = (s==0) ? b0 : Z,     // 4 continuous assignment
data = (s==1) ? b1 : Z,
data = (s==2) ? b2 : Z,
data = (s==3) ? b3 : Z;

endmodule
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Tri-State Latch

module tri_latch( q, nq, clk, data, enable);
output q, nq;
input  clk, data, enable;
tri    q, nq;

not #5 (ndata, data);
nand #(3, 5) (wa, data, clk), (wb, ndata, clk);
nand #(12,15) (ql, nql, wa), (nql, ql, wb);

bufif1 #(3,5,13)              // rise, fall, change to z
q_dr ( q, ql, enable),     // when enable = 1, q=ql
nq_dr (nq, nql, enable);   // when enable = 0, q=ql=z

endmodule
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User-Defined Primitives (UDP)

primitive mux(mux, ctl, A, B);
output mux;
input  ctl, A, B;

table
// ctl  A B   mux

0   1 ? : 1 ;  // ? represents don t care
0   0 ? : 0 ;
1   ? 0 : 0 ;
1   ? 1 : 1 ;
x   0 0 : 0 ;    
x   1 1 : 1 ;

endtable
endprimitive
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User-Defined Primitives, Cont d

primitive latch(q, clk, data);
output    q; reg q;
input     clk, data;

table
//  clk  data state output/nxtstate

0    1  : ?   :   1 ;
0    0  : ?   :   0 ;
1    ?  : ?   :   - ; // represent no change

endtable
endprimitive
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Looping
module mult( res, a, b);

parameter size = 8, longsize = 16;
input [size:1] a, b;
output [longsize:1] res;

reg [size:1] a, b;
reg [longsize:1] res;

always @( a or b) 
begin :mult

reg [longsize:1] shifta, shiftb;
shifta = a;
shiftb = b;
result = 0;
repeat (size)

begin
if( shiftb[1] )  // check if bit1 == 1

res = res + shifta;
shifta = shifta << 1;
shiftb = shiftb >> 1;

end
end

endmodule
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Looping, Cont d

module count_ones( res, a);
output [3:0] res; reg    [3:0] res;
input  [7:0] a;

always @(a)
begin :count1s

reg [7:0] tempa;
res = 0; tempa = a;
while(tempa) // while tempa != 0

begin
if( tempa[0] ) res = res + 1;
tempa = tempa >> 1;

end
end

endmodule
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Parallel Blocks

§ Statements executed concurrently
§ Delay values for each statement are relative to the simulation 

when control enters block
§ Control passed out of the block when the last time-ordered 

statement is executed
Order of statements is not important

// Parallel block
fork
#100 r = 100;
#50 r = 50;
#150 r = 150;

join

// Equivalent sequential block
// assuming c changes every 50 units:  

begin
@c r = 50;
@c r = 150;
@c r = 200;

end
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More Examples

§ areg is loaded when both A and B occur in any order

begin
fork

@A;
@B;

join
areg = breg;

end
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Tasks

§ Tasks provide a way to execute common procedures at different 
places

§ They provide the means of breaking a large procedure into 
smaller ones

§ They make it easy to debug and read the source code
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Task Format

task proc_name;
input a, b;
inout c;
output d, e;

<<operation>>

endtask

// The task is called as so:
proc_name(v, w, x, y, z);

// Performs the following assignments upon entry to the task:
a = v ; b = w; c = x;

// Upon completion of the operation the following assignments are made: 
x = c; y = d; z = e;
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Functions

§ Functions differ from tasks in the following ways:
– They return a value to be used in an expression
– They must have zero simulation time duration
– They must have at least one input
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Function Format

8/26/18

function [7:0] func_name;
input [15:0] a;

begin
<<statement>>;
func_name = expression;

end
endfunction

// The function is called as so:

new_address = b * func_name(old_address)
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Latches and Flip-Flops (Flops)

Latch is synthesized if you write:

always @(CLK)  begin
if (CLK) begin

LatchOut = LatchInput
end

end

Flop is synthesized with:

always @(posedge CLK)  begin
LatchOut = LatchInput

end 
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Logic Synthesis
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Brief History of Logic Synthesis

§ 1960s:  first work on automatic test pattern generation used for 
Boolean reasoning
– D-Algorithm

§ 1978: Formal Equivalence checking introduced at IBM in 
production for designing mainframe computers
– SAS tool based on the DBA algorithm

§ 1979: IBM introduced logic synthesis for gate array based main 
frame designed
– LSS, next generation was BooleDozer

§ End 1986: Synopsys founded
– first product remapper between standard cell libraries
– later extended to full blown RTL synthesis

§ 1990s other synthesis companies enter the marker
– Ambit, Compass, Synplicity. Magma, Monterey, ...
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Synthesis in the Design Flow

Circuit Simulator
Router

Designer Tasks Tools

Text Editor
C Compiler

Logic Simulation

Synthesis

Cell Libraries

RTL Simulator
Synthesis Tools

Timing Analyzer

Power Estimator

Schematic Editor

Define Overall Chip
C/RTL Model

Initial Floorplan

Behavioral Simulation

Datapath Schematics

Circuit Schematics

Circuit Simulation
Megacell Blocks

Layout and Floorplan

Place and Route
Parasitics Extraction

DRC/LVS/ERC

Logic
Synthesis

Architect

Logic
Designer

Designer
Circuit

Physical
Designer

Place/Route Tools
Physical Design
and Evaluation

Tools
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What is Logic Synthesis?

§ Design described in a Hardware Description Language (HDL)
– Verilog, VHDL

§ Simulation to check for correct functionality
– Simulation semantics of language

§ Synthesis tool
– Identifies logic and state elements
– Technology-independent optimizations (state assignment, logic 

minimization)
– Map logic elements to target technology (standard cell library)
– Technology-dependent optimizations (multi-level optimization, gate 

strengths, etc.)
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What is Logic Synthesis? (cont)

D

X Yλ
δ

Given: Finite-State Machine F(X,Y,Z,   ,   ) where:λ δ
X:  Input alphabet
Y:  Output alphabet
Z:  Set of internal states

:  X x Z      Z    (next state function)
:  X x Z      Y    (output function)

λ
δ

Target: Circuit C(G, W) where:

G:   set of circuit components g    {Boolean gates,
flip-flops, etc}

W:  set of wires connecting G

∈
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Objective Function for Synthesis

§ Minimize area
– in terms of literal count, cell count, register count, etc.

§ Minimize power
– in terms of switching activity in individual gates, deactivated circuit blocks, 

etc.
§ Maximize performance
– in terms of maximal clock frequency of synchronous systems, throughput for 

asynchronous systems
§ Any combination of the above
– combined with different weights
– formulated as a constraint problem 

• minimize area for a clock speed > 300MHz

§ More global objectives
– feedback from layout

• actual physical sizes, delays, placement and routing
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Constraints on Synthesis

§ Given implementation style:
– two-level implementation (PLA, CAMs)
– multi-level logic
– FPGAs

§ Given performance requirements
– minimal clock speed requirement
– minimal latency, throughput

§ Given cell library
– set of cells in standard cell library
– fan-out constraints (maximum number of gates connected to another gate)
– cell generators
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Develop HDL files

Specify Libraries

Library Objects
link_library
target_library
symbol_library
synthetic_library

Read Design

analyze
elaborate
read_file

Set Design Constraints
Design Rule Constraints
set_max_transition
set_max_fanout
set_max_capacitance
Design Optimisation Constraints
Create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainty
set_clock_transition
set_input_delay
set_output_delay
set_max_area

Select Compile Strategy

Top Down
Bottom UpOptimize the Design

Compile
Analyze and Resolve

Design Problems Check_design
Report_area
Report_constraint
Report_timingSave the

Design database
write

Define Design Environment

Set_operating_conditions
Set_wire_load_model
Set_drive
Set_driving_cell
Set_load
Set_fanout_load
Set_min_library

Synthesis Flow
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References

§ http://www.verilog.net/
§ http://www.eda.org/
§ http://www.verilogtutorial.info/
§ http://www.asic-world.com/verilog/veritut.html
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Logic Simulation

Courtesy of: 
dropzone.tamu.edu/~wshi/475/Logic_Simulation.ppt 
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Logic Simulation

§ Outline
– Logic Simulation
– Logic Design Description
– Logic Models

§ Goal
– Understand logic simulation problem
– Understand logic models
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What is Logic Simulation?

§ Simulate temporal behavior of logic design
§ Logic design description
– netlist, network
– components

• e.g. AND, OR, RAM, Pentium
– component interconnections

§ Logic models
– component behavior
– interconnect behavior
– signal values

§ Timing models
– component behavior
– interconnect behavior
– signal delays

A
B

C

D
E

A

B

C

D

E

Time
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Logic Simulation Goals

§ Functional correctness
– circuit does what you want
– validate by using lots of input stimuli

§ Performance
– circuit runs fast enough
– no hazards or races
– validate using lots of stimuli

§ Test generation
– simulate faulty circuits
– does input stimulus cause faulty output?
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Logic Design Description

§ Components
– modules, cells,...
– primitive - e.g. AND, OR, NOT
– predefined - from library

• functional behavior
• timing behavior

– composite - user-defined
• subnetwork
• hierarchy

§ Component connections
– wiring - nets
– attachment points - pins, ports, terminals
– can include wiring structure

• fan-in, fan-out
• parasitics
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Logic Models

§ Logical Primitive
– Boolean logic operations

• AND, OR, NAND, NOR, NOT, XOR, XNOR
– often special-cased in simulator for speed

§ Behavioral Model
– finite state machine

• outputs are function of inputs, next state
– often supplied by model library vendors

• implementation is secret

§ Subnetwork
– composed of primitives, behavioral models, subnetworks
– use hierarchy, regularity in logic design C = f(A,B)
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Logic Values

§ Component output values - states
§ 2-state simulation

– 0 - logical 0
– 1 - logical 1

§ 3-state simulation
– add X state

• unknown, uninitialized, intermediate

§ 5-state simulation
– add rising, falling states

§ Other states
– Z - high impedance - for buses
– U - unknown, but 0 or 1

• X for intermediate value
– D, D - fault signals - for fault simulation
– more states => closer to analog simulation

0 X 1

2:1 MUX

A

B

Sel

Out
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Logic Model Implementation

§ Truth table
– list of all input/output choices
– fast - table lookup evaluation

• use 0, 1, 2 for 3 states
– impractical for many inputs, logic values

§ Latch
– truth table with knowledge of previous state

§ Logic equations
– can be compiled and executed fast
– must support value system

§ Behavioral description
– HLL description of input/output relationship

• hardware description language - Verilog, VHDL
• general-purpose language

– usually precompiled for speed

0 1 X
0  0 0 0
1  0 1 X
X  0 X X

if (gate == and2)
out = in1 && in2;

else if (gate == or2)
out = in1 || in2;
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Hardware Description Languages

§ Special-purpose languages
– special constructs for hardware description
– timing, concurrency, bit vectors, etc.
– can usually include structural description
– examples

• Verilog
• VHDL

§ Standard programming languages
– add data types and objects for hardware description
– examples

• C
• C++
• Matlab
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Example

§ 4-bit Up/Down Counter
– 4-bit input "countin"
– 4-bit output "countout"
– up/down control "up"
– count control "count"
– internal state "i"
– implied clock

§ Behavior
– up = 1 => count up
– up = 0 => count down
– count = 1 => count
– count = 0 => load

4

countin

i

countout

up

count

4

1

1 clock
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Verilog Example

/* ----- Programmable 4-bit up/down counter ----- */

module counter(countin, countout, up, count, clk);

input countin[4], up, count, clk;
output countout[4];
reg countout[4];

always @(posedge clk)
begin
if (count == 0)
countout = countin;

else if (up == 1)
countout = countout + 1;

else
countout = countout – 1;  

end
endmodule
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C Example

/* ----- Programmable 4-bit up/down counter ----- */

unsigned int counter_private;

counter(unsigned int countin,
unsigned int up,
unsigned int count,

unsigned int *countout)
{  

while (1) {
if (count) {

if (up) counter_private ++;
else    counter_private --;

else
counter_private = countin;

*countout = counter_private;
}

}
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HDL vs. Programming Language

§ HDL strengths
– concurrency
– bit manipulations
– module representations
– timing constraints
– structural representation support

§ Programming Language strengths
– data structures
– language support

§ Mostly VHDL and Verilog today
– most vendors support both languages
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Timing

§ Outline
– Timing Models
– Simulation Algorithms

§ Goal
– Understand timing models
– Understand simulation algorithms
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Component Timing Models

§ Zero delay
– no delay from gate inputs to outputs - a boolean equation
– good when just considering functional behavior

• e.g. combinational fault simulation

§ Unit delay
– gate delay is one unit
– appropriate when all gates are same delay

• e.g. gate array, ignores wiring load

0

0

0

0

1

1

1

1

0

1

1

0

0

1->0

0

1

1

1

0->1
(1)

1->0
(2)

1->0
(2)

0
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Component Timing Models

§ Propagation delay
– fixed delay from inputs to outputs
– can vary with fan-out, output load
– delay = time or multiple unit delays
– varies among gate types

• XOR vs. inverter
– varies between gate instances

• manufacturing variations
– make output unknown for interval

• rise/fall, min/max delay

§ Inertial delay
– delay time before gate responds
– input value must be present long enough for the gate to respond
– gates are low-pass filters

inertial delay

5

5

5

5

5
5

0

0

0
1->0
(0)

0

1

1

1

0->1
(5)

1->0
(10)

1->0
(10)
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Component Timing Models

§ Output Loading Delay
– gate delay is function of load it drives
– wiring capacitance
– type of gate

• e.g. small vs. driver
– number of fan-outs
– types of fan-outs
– depends on interconnect delay model

§ Compute prior to simulation

PropDelay = f(load)

PropDelay = UnloadedDelay[gatetype]
+ CL*LoadFactor[gatetype]
+ fanoutcnt*FanFactor[gatetype]
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Interconnect Timing Models

§ Isochronic
– zero delay
– interconnect acts as capacitor
– all delay assigned to driving gate

§ Wave propagation
– transmission line
– fixed delay

• function of wire length
– can model as different propagation delay times  for different fan-outs

§ Signal diffusion
– distributed RLC parasitics
– inertial delay
– usually combine with driver timing model

Tdelay
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Simulation Algorithms

§ Compiled simulation
– logic equations compiled to code
– execute code - fast
– works well with zero and unit delay models
– difficult with general timing models
– no use of latency, multi-rate behavior

§ Event-driven simulation
– input changes cause evaluation of model, scheduling of output change event

• use timing models to determine new event times
– output change evaluated at scheduled time
– advantage

• real circuits have 10-30% activity
• dormant parts of circuit are not evaluated

EE460 Class Notes

Simulation Algorithms

§ Compiled simulation
– logic equations compiled to code
– execute code - fast
– works well with zero and unit delay models
– difficult with general timing models
– no use of latency, multi-rate behavior

§ Event-driven simulation
– input changes cause evaluation of model, scheduling of output change event

• use timing models to determine new event times
– output change evaluated at scheduled time
– advantage

• real circuits have 10-30% activity
• dormant parts of circuit are not evaluated
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Compiled Simulation

§ Algorithm
– mark feedback paths
– levelize circuit - topological sort
– generate evaluation code

• by level in circuit
– compile and link with control and I/O
– execute

§ Issues
– compilation time vs. execution time

• use only on big problems
– which gate inputs/outputs to watch

• compilation can eliminate nodes
– simple delay models only

8/26/18 Page 68



VLSI-1Class Notes

Circuit Level Assignment

§ Topologically order circuit
– assign gate and its outputs to a level
– primary inputs = level 0
– for each gate

• level = max(nonfeedback input levels) + 1
– use breadth-first search
– sort gates by level

§ Marking feedback paths
– feedback == cycle in directed graph
– gates are vertices
– gate outputs are directed edges
– during breadth-first search

• if hit visited node, then feedback

0 1 2 3
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Zero and Unit Delay Simulation

§ Zero-delay simulation
– evaluate gates in levelized order
– for each gate update output from inputs

• inputs already computed from previous level
– feedback oscillation improperly modeled

§ Unit-delay simulation
– evaluate gates in levelized order
– for each gate update output from inputs
– output time is max(controlling input change times)+1

0

0

0

0

1

1

1

1

0

1

1

0

0

1->0

0

1

1

1

0->1
(1)

1->0
(2)

1->0
(2)

0
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Event Driven Simulation

§ Outline
– Event-driven simulation algorithms
– Event-driven simulation implementation

§ Goal
– Understand event-driven simulation
– Understand simulator implementation

§ Reading
– Gate-Level Simulation by D Abreu
– Types of Simulators by Trimberger
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Event-Driven Logic Simulation

§ Evaluate gate when inputs change
– use logic model to compute new output value
– use timing model to compute when output will change

§ Schedule an output change event
– store the event on a time-sorted event queue

§ Process events from the queue
– output change evaluated at scheduled time
– causes new events to be scheduled

5

5

7

5

5
5

0

0

0
1->0
(0)
0

1

1

1

0->1
(5)

1->0
(12)

1->0
(10)
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Event-Driven Logic Simulation

1. t=X: Schedule PI:1->0 at t=0
2. t=0: PI changes 1->0
– Evaluate A, schedule A:0->1 at t=5

4. t=5: A changes 0->1
– Evaluate B, schedule B:1->0 at t=10
– Evaluate C, schedule C:1->0 at t=12

5. t=10: B changes 1->0, output
6. t=12: C changes 1->0, output

5

5

7

5

5
5

0

0

0
1->0
(0)
0

1

1

1

0->1
(5)

1->0
(12)

1->0
(10)A

B

C
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Simulation Algorithm

while (HaveEvents())

event = NextEvent(); /* time-sorted order */

currenttime = event->time; /* update global time */

event->gate->output = event->output /* change gate output */

print output if it is primary output;

for (all gates g in event->gate fan-out list)

newoutput = EvalGate(g); /* new gate output */

newtime = currenttime + g->delay; /* when it changes */

ScheduleEvent(g, newoutput, newtime);

8/26/18 Page 74



VLSI-1Class Notes

Simulator Initialization

§ Set all gate outputs to X (3-state logic)
§ Start simulation from primary inputs
– inputs from outside world

§ 0/1 values are set as inputs propagate
§ Problems
– feedback and memory increase initialization time
– some states may never initialize

§ Solution
– real circuits have initialization logic
– reading before writing memory is an error
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Event Scheduling

§ Only schedule event on a gate output if it:
– occurs after the last pending event and has a different value

• otherwise creates useless work
– occurs before first pending event

• remove next event if same value, now obsolete
– occurs between two events and is different than previous one

• remove next event if same value, now obsolete
– has different value than current output, and no pending events

• otherwise creates useless work

§ Note:  typically 0, 1, or 2 pending events on a gate

A: 0->1 at 3ns
B: 1->0 at 3ns

B first, then A:
1 at 10ns - discard
0 at 10ns - keep

7ns
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Event Scheduling

§ Note:  cases 2 & 3 cannot happen for pure propagation delay 
model
– events always arrive in time-sorted order
– new event must come >= last pending event
– can happen for more complex timing models

§ Inertial delay
– remove pending event pair if new event caused them to be spaced < inertial 

delay and return to original value
– for pure propagation model, just add time check in case 1 against last 

pending event
– wait for all events at time T -don t delete until you are sure

Pending:  1: 0 at 1ns
2: 1 at 5ns

7ns prop. delay
3ns inertial delay

New:  0 at 6ns - discard, remove #2
0 at 9ns - add to queue0

X
1
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Optimizations

§ Problem
– multiple events at time T can cause multiple gate evaluations
– up to N evaluations for N inputs

§ Solution
– for all events at time T put gates to be evaluated on a list
– evaluate all gates at same time, scheduling events

§ Problem
– multiple events at time T cause multiple printed output

§ Solution
– wait until time advances to print primary outputs
– print them only if any primary outputs changed

A: 0 at 2ns

B: 1 at 2ns

1

0
0

1. Evaluate gate using event A
2. Schedule event C: 1 at 9ns
3. Evaluate gate using event B
4. Delete event C

7ns
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Ambiguity – Is Your Fault

§ Verilog Example

always @(posedge clk) begin
a = 0;

end

always @(posedge clk) begin
a = 1;

end
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Simulation Control

§ Visualization
– timing diagrams
– back annotation of schematic

§ Inputs
– timing diagrams
– vectors - especially for synchronous circuits

§ Probing
– examine events at a node
– straightforward for event-driven simulation

• mark each node to save value
• can force node to value

– must make a primary output for compiled simulation
§ Control
– stop and start time sequence
– insert breakpoint events, like debugger
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Event Queue Implementation

§ Events must be processed in time order
– event queue must sort by time

§ Must be able to delete events
– cancel obsolete events on a gate

§ Implementations
– priority queue

• O(logN) time to insert/delete for N-item queue
• many implementations - AVL tree, heap, etc.
• problem:  N is often large

– bucket queue - time wheel
• divide time into time quanta Q, e.g. 1ps
• circular buffer of N entries 1 quantum in size
• can store events Q*N into future
• events beyond buffer go into unsorted far list
• O(1) time to insert, nearly so for delete

8/26/18 Page 81



VLSI-1Class Notes

Time Wheel

0
1
i-1
i
i+1

999

event event

curtime

curtime+999ps

curtime+1ps

time wheel of time quantums

all events scheduled 
for a given time 
quantum

Wheel only needs to be big enough to hold most variation in gate delays
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Time Wheel Operation

§ Insertion
if (eventtime - curtime >= WHEELLENGTH*quantum)
insert event into far list

else
insert at wheel[eventtime % (WHEELLENGTH*quantum)]

§ Deletion
i = curtime % (WHEELLENGTH*quantum)
while (wheel[i] == NULL)
if (i == WHEELLENGTH-1)
i = 0; timebase += (WHEELLENGTH*quantum);
for all events in far list
if (eventtime - timebase < WHEELLENGTH*quantum) insert 
event into wheel

else i++
remove first event from wheel[i] list and return it
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Fault Simulation

§ Outline
– Fault Simulation
– Fault Models
– Parallel Fault Simulation
– Concurrent Fault Simulation

§ Goal
– Understand fault simulation problem
– Understand fault simulation methods
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Fault Simulation

§ Simulate behavior of faulty logic design
– inject faults into logic circuit
– run logic simulation to determine faulty behavior

§ Goals
– test generation

• does vector cause fault to be detected at primary outputs?
– fault coverage

• what fraction of faults are detected by test set?
– fault analysis

• does fault modify circuit behavior?
• what parts of circuit are affected?
• use in defect and fault tolerant design

Faulty
gate

Affected
primary
outputs
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Example

0

0

0

0

1

1

1

0->1 1->0

1->0

0

0

0

1->0

0

SA0

1

1

0->1 1

1->0

Good
Circuit

Faulty
Circuit

1->0
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Fault Models

§ Fault model
– logic-level abstraction of circuit fault
– permanent faults caused during manufacturing
– transient and permanent faults during operation

§ Stuck-at model
– gate inputs or outputs stuck at 0 or 1
– developed for TTL, but still used
– convenient

• logical values, single node influence

§ Bridging model
– short between two or more nodes
– logical behavior difficult

• nodes fight, both affected
• feedback and oscillation

– cannot consider all possible node pairs

SA0 1
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Fault Simulation

§ Problem
– fault simulation can be expensive
– Example:  C7552

• 7552 possible faults to simulate
• 243 test vectors
• 1.8M test vector simulations

§ Observation
– stuck-at faults do not change netlist structure
– only node values and gate functions

§ Observation
– faulty behavior only occurs in gate s cone of influence

• transitive closure of fan-out list
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Parallel Fault Simulation

§ Simulate all faults in parallel on same netlist structure
– each gate output value is really a vector of values
– good output and all faulty outputs

G F1 F2 F3 • • •

0 00

0 00

0 00

0 00

1 01

1 10

1 11

0 10

0 000 00

1 11

A

B

Good A.out
SA0

B.out
SA0
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Parallel Fault Simulation

§ Compute gate output with bit-wise operations
– AND, OR, NOT operate on all bits in data word
– each bit is a separate good or faulty circuit
– execute 32-64 faults in parallel
– very high parallelism on MPP

• 64k faults in parallel on CM-2

§ Problems
– 0, 1, X requires 2 bits to represent

• choose right encodings
• 0 = 00
• 1 = 11
• X = 10

– not all functions available as opcodes
• use sequence of bitwise ops

G F1 F2 F3 • • •

1 1 0 0

1 0 1 0

1 0 0 0

bitwise AND

=

00    00    00    11    11    01

00    11    01    11    01    01

00    00    00    11    01    01

bitwise AND

=
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Concurrent Fault Simulation

§ Only track differences in fault cone of influence
– cone can be very small

§ Only propagate value differences
– behavior differences caused by faults
– for 3-value logic, can only be 3 possible behaviors at gate output

• faulty and good behavior are same at a gate output
• several faulty behaviors are same at a gate output

– several faulty netlist behaviors are collapsed to one behavior

Good
0
1
1

F79
0
[0]
1

F383
[1]
1
1

F993
0
[0]
1

Good
0

F79
0

F383
[1]

F993
0

Good
F79

F993
0

F383
[1]

in1:  0 - Good, F79, F993; [1] - F383
in2:  1 - Good, F383; [0] - F79, F993
in3:  1 - Good, F79, F383, F993

intersect 6 lists to get
2 lists on output
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Parallel Pattern Single-Fault Simulation

§ Apply test patterns to fault until detected
– one fault at a time
– apply test patterns with parallel simulation

§ Advantages
– up to 400X faster since most faults detected in first few vectors
– avoid list overhead of concurrent fault simulation
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