
PAPER 10

Abstract—We propose a novel fine-grained causal inference
technique. Given two executions and some observed differences
between them, the technique reasons about the causes of such
differences. The technique does so by state replacement, i.e.
replacing part of the program state at an earlier point to
observe whether the target differences can be induced. It makes
a number of key advances: it features a novel execution model
that avoids undesirable entangling of the replaced state and
the original state; it properly handles differences of omission
by symmetrically analyzing both executions; it also leverages a
recently developed slicing technique to limit the scope of causality
testing while ensuring that no relevant state causes can be missed.
The application of the technique on automated debugging shows
that it substantially improves the precision and efficiency of
causal inference compared to state of the art techniques.

I. Introduction

Explaining why something happened is a subtle task;

philosophers have debated the notion of causation for cen-

turies [1]–[3]. One common thread among the myriad ap-

proaches is that they involve comparing a world in which

that something happened to others in which it did not. Many

software engineering techniques take similar approaches in

explaining software behavior. For example, in probabilistic

fault localization, a set of failing runs is contrasted with a

set of passing runs [4], [5] to provide probabilistic insights

into the cause of the failures. Compared to techniques that do

not rely on comparison to explain software behavior, such as

program slicing [6], these techniques are more precise as they

use comparison to trim unnecessary information.

One classic fine-grained comparative technique for identify-

ing causes when one execution (e.g., a buggy execution) differs

from another (e.g. a similar correct execution) is Zeller’s

delta debugging approach [7]. It is capable of reasoning

about causality at the granularity of individual instructions

and variables, generating much more informative and precise

failure explanations compared to other techniques [8]. The

technique involves replacing part of the state in the correct

execution with that from the buggy execution and determining

whether such replacement induces the failure in the modified

execution. However, due to the complexity of program state

(e.g. inter-connected data structures in the heap, pointers, and

external resources), it faces many problems in practice. In

particular, entangling the states from both executions allows

them affect each other in undesirable and unexpected ways,

leading to poor failure explanations. More discussion of the

limitations of the technique can be found in Section II.

In this paper, we propose a novel fine-grained causal in-

ference technique. Given two executions and some observed

differences between them, the technique can precisely reason

about the causes of such differences. While the technique

reasons about causality through state replacement, it makes

three key advances. It features a novel execution model that

avoids undesirable entangling of the replaced state and the

original state such that the precision of causal inference can

be substantially improved. It is capable of handling execution

omission errors by analyzing both executions symmetrically.

It also leverages an existing slicing technique called dual

slicing [9] to limit the scope of causality testing while ensuring

no relevant state differences can be missed. As a result, the

efficiency is substantially improved.

Our main contributions are highlighted as follows.

• We first thoroughly discuss the limitations of the state of

the art fine-grained causal inference technique that has been

used for many years. We especially study the problems in

state replacement.

• We propose a novel causal inference model that is symmet-

ric and comparative. We declare the goals of the model,

which reflect the user’s intention when reasoning about

software behavior by comparison.

• We propose a novel realization of the model. It leverages

dual slicing to ensure relevance of the causes and limit

the scope of causality testing. While it makes use of state

replacement to determine causality, a novel execution model

and its approximation are developed to avoid the undesirable

entangling of the state from both executions.

• We implement and evaluate a prototype. We apply the causal

inference engine toward failure explanation for 15 real

world bugs, including all the reported bugs for tar, make,

and grep in a one year period. Comparison against the

causal inference engine from the most recent improved

delta debugging [8] and dual slicing techniques shows that

our technique has substantially improved the efficiency and

effectiveness of failure explanation.

II. Causal StateMinimization in Delta Debugging

Delta debugging is a classic debugging technique that can

minimize failure inducing inputs [10] or the faulty internal

program state essential to reproducing a failure [7], [11]. The

original work first contrasts a buggy execution with a similar

correct execution to determine state differences [7], [11]. It

then performs Causal State Minimization (CSM) to determine



1 x← input()
2 y← input()
3 z← input()
4 if y>1 & z<6:
5 y← 5
6 else: y← y+1

7 print(y)
(a)

x← 1
y← 1
z← 3
if False:

y← 2
print(2)

(b)

x← 0
y← 2
z← 6
if False:

y← 3
print(3)

(c)

1
2
3
4

6
7

{

y 7→ 2
z 7→ 6

}

(d)

1
2
3
4

6
7

(e)

Fig. 1: (a) A program. (b-c) executions with differing input. (d) CSM.
(e) dual slice. Symbols 3 and _ denote the cause point and effect
point, respectively. The set in (d) represents the causal state set.

the minimal subset of state differences essential to reproducing

the failure. CSM involves performing the correct execution up

to a point of interest preceding the failure, called the cause

point, replacing a subset of program state with state from

the buggy execution, and continuing this patched execution

to determine whether the failure can be induced. If so, the

subset is called a causal state set or cause set. The technique

makes use of a generalized binary search to enumerate and

test different subsets until it identifies the minimal cause set.

Sumner et al. recently combined delta debugging with more

precise execution alignment techniques [8], [12] to improve

its robustness, precision, and efficiency. By applying CSM

inductively, a causal chain or summary of a failure can be

computed, comprising a sequence of the minimal causal state

sets computed for a sequence of execution points leading from

the root cause to the failure [8], [13].

Example. Consider the simple program presented in Fig. 1.

This program reads three integers, re-defines one of them, and

then prints it. In the execution of (b), the user inputs 1, 1,

3 and the program prints 2. In contrast, in the execution (c),

the user inputs 0, 2, 6 and the program prints 3. Suppose that

execution (c) is buggy. Given the buggy output 3 on line 7,

called the effect point, we apply CSM to determine what state

on line 4, called the cause point, actually caused the buggy

output. The cause and effect points are respectively marked in

the figure as empty and filled diamonds in (d).

Note, here the term “buggy” is a generalized notion as there

is not a faulty statement per se. Any behavioral difference

between the executions may be considered buggy and we are

interested in what caused these differences. The discussion and

the technique are universally applicable for cases where true

faults cause the behavioral differences.

CSM repeatedly replays execution (b) up to line 4. Each

time, it then replaces a subset of state with state from execution

(c) to identify a subset sufficient to produce y7→3 within execu-

tion (b). For instance, replacing (on line 4) the variable/value

mappings y7→1 and z 7→3 in execution (b) with y7→2 and z7→6

from execution (c) yields y7→3 on line 7. Thus, the process

identifies that the values of y and z are buggy on line 4 in

execution (c), leading to the buggy output. Fig. 1d presents

the causal state set on line 4 along with relevant program

dependences for comprehension. The computation continues

in order to determine whether a smaller causal set can be

identified. If not, the identified minimal set will be reported.

If we desire a summary of the failure, the current cause

point becomes the new effect point and the identified causal

state set becomes the new target buggy state. The algorithm

then continues to compute the causal state set for a preceding

new cause point, until no such sets can be computed [8].

Limitations. Delta debugging [7], [11] and its recent im-

provements [8], [13] all use CSM. While prior research

demonstrated the effectiveness of these techniques, we find

that inherent limitations of CSM often lead to low quality

failure summaries. Next, we discuss these limitations in detail

and motivate the need for a new causal inference engine.

a) Confounding caused by Partial State Replacement:

The first problem with CSM is that replacing only a subset

of the state in an execution can induce new behavior that

was not present in either of the original executions. We call

this problem the confounding of partial state replacement. The

introduced new behavior can affect the validity of a causality

test. Particularly, a causal chain may terminate prematurely

because key buggy state is excluded due to confounding, or it

may contain additional state that does not pertain to the failure.

In the worst case, the entire chain may not even be relevant

for explaining the failure. From our experiments, 11 of the 15

real bugs suffered from this problem.

For example, consider the program presented in Fig. 1. Pre-

viously, we showed that CSM can determine that {y7→2,z7→6}

is the causal state set on line 4. Suppose CSM tries to further

consider a smaller subset {y7→2}. When it replaces the value

of y in execution (b) with that from (c), the condition of

the if statement becomes True, and y is redefined by line

5, rendering the target state y7→3 uninducible. Because of

that condition, CSM finds that replacing the values of both

y and z is necessary. Note, however, that z is unrelated to the

original behavioral difference. The only contribution of z in

both executions is its use on line 4, which had the value False

in both executions. Ideally, only the definition of y7→2 should

be blamed for the failure.

1 x← input()
2 y← input()
3 if x < 3:
4 y← y−3
5 if x > y:
6 x← 3
7 print(x)

(a)

x← 5
y← 3
if False:

if True:
x← 3

print(3)
(b)

x← 1
y← 9
if True:

y← 6
if False:

print(1)
(c)

1
2
3
4
5

7

{x 7→1}

{x 7→1}

(d)

Fig. 2: Missing causes by execution omission. (a) program. (b-
c) executions with differing input. (d) CSM result.

b) Execution Omission: The second problem is that CSM

may miss important causal state in the presence of execution

omission errors [14], where the buggy target state is produced

because statements were not executed due to the bug. In such

cases, the computed failure summaries are usually incomplete.

The root cause of the problem is that CSM is asymmetric,

meaning the buggy and correct executions have asymmetric

roles in the process: CSM reasoning is based on modifying

state only in the correct execution; its final results only include

information from the buggy execution.



Fig. 2 presents an example. The correct execution in (b)

follows the False branch of line 3, then the True branch of line

5, and prints 3, whereas the “buggy” execution in (c) follows

the True branch of line 3, then the False branch of line 5, and

prints 1. Suppose that initially the effect point is line 7 and

the cause point is line 5. CSM determines that replacing the

value of x is sufficient to induce the buggy target state in (b),

so it identifies x7→1 as the only buggy state at the cause point.

However, the buggy output x7→1 on line 7 in (c) is due to the

undesirable omission of line 6, which is partially determined

by the buggy state of y7→6. Missing y7→6 in the cause set leads

to an incomplete summary of the failure.

Suppose the computation continues backward with a new

effect point on line 5 and new cause point on line 3. CSM

determines that replacing the value of x on line 3 is sufficient

to induce the buggy target state x7→1 on line 5. Fig. 2d shows

the result of this analysis. This implies x7→1 is the sole root

cause of the bug. However, replacing the value of x on line

3 in (b) cannot induce the final failure although it can induce

x 7→1 on line 5, because line 3 evaluates to True in the patched

execution. Hence, line 4 produces y7→0 and leads to to x7→3.

In our experiments, 5 of the 15 real bugs face this problem.

c) Efficiency: CSM may demand a large number of reexe-

cutions. The number of state differences can be as large as

the size of the allocated memory [8]. The number of possible

subsets that need to be tested for causality is potentially

combinatorial in terms of the full set. To combat this, existing

approaches use delta debugging [7] to perform a generalized

binary search over the subsets. However, the number of

reexecutions can still be quadratic in the size of all used

memory. Even the most recent implementation of CSM [8]

may take a few hours to reason about a failure while the

original execution time is just a few milliseconds.

III. Comparative Causality

In this paper, we propose a more effective and precise

causal inference model called comparative causality (CC).

This model focuses on symmetrically reasoning about two

executions, one buggy and one correct1, in order to explain

why they both differ from eachother. It also enables efficient

and practical implementation. In the following, we first define

a number of notations and concepts. Then we study the

intended properties of the new model. Here we assume we

can properly align the control flow and the variables/memory

regions of the two executions for fine-grained comparison

using existing work [8], [12].

• Execution point: We use a superscripted label le to denote a
point in execution e. Symbol l(e1 ,e2) denotes a point that appears
in both executions e1 and e2, determined by the given control
flow alignment [12]. It is also called an aligned point.

• State difference: we use {x 7→(v1,v2)} to denote that a variable x
has value v1 in e1 and value v2 in e2, with v1 , v2.

Problem Statement: Given a set of state differences ∆ at an

aligned execution point l
(e1,e2)
_

and a preceding aligned point

1How to acquire a correct execution given only the buggy execution can
be found in a survey [15].

l
(e1,e2)
3

, we want to find a set of state differences at l
(e1,e2)
3

that

is relevant, sufficient, and minimal for inducing ∆.

The preceding execution point is the cause point and the

latter one the effect point. We demand aligned points because

state comparison is not meaningful at non-aligned points. An

inducing state difference in the cause point is called a cause;

a state difference in ∆ is called an effect.

A. Property One: Relevance

The causes identified by CC must be relevant to the target

effects. Intuitively, a difference d is relevant to a later dif-

ference ds if ds is (transitively) produced from d through a

sequence of differences. It represents the notion that “buggy

state must be derived from preceding buggy state (except at

the root cause)”.

Consider the example presented in Fig. 1. The state differ-

ence {z 7→(3,6)} on line 3 is not relevant to {y 7→(2,3)} on line

7 even though there is a dynamic dependence path from line

3 to line 7, because the difference of z is neutralized on line

4, which yields False in both runs. In contrast, The difference

{y 7→(1,2)} on line 2 is relevant to {y 7→(2,3)} on line 7.

The formal definition is as follows:
Definition 1 (Relevance): A state difference δ3 at l

(e1 ,e2)
3

is relevant

to a target state difference δ_ at a later effect point l
(e1 ,e2)

_
if either

of the following conditions is satisfied.

1) There exists a dynamic program dependence path from δ_ to δ3
in e1 (e2) where all the statement computations along the path
yield different results from the other execution e2 (e1).

2) There exists a state difference δx in an aligned point in between

l
(e1 ,e2)
3

and l
(e1 ,e2)

_
such that δ3 is relevant to δx and δx is relevant

to δ_.

Condition (1) expresses the requirement that a difference

cannot be neutralized within an execution in order to be rele-

vant. Note that it is symmetric to both executions as relevance

can be determined by a dependence path in either execution.

It allows us to precisely capture relevance in the presence

of execution omission. Consider the example in Fig. 2, state

difference {y 7→(3,6)} on line 5 is relevant to {x 7→(3,1)} on

line 7, due to the dependence path y@5← True@5← 6← 7

in (Fig. 2b). Observe that there is no dependence between

y@5 and x@7 in the failing execution (Fig. 2c) due to

the omission of line 6. The intuition is that omission is

an asymmetric concept regarding one execution. An omitted

statement regarding one execution implies that it appears in the

opposing execution. With our symmetric definition, omissions

are conceptually precluded.

Condition (2) expresses that relevance can be transitive,

even across the two executions.

B. Property Two: Sufficiency

The identified set of causes must sufficiently induce the

target effect of each of the two executions within its opposing

execution. This inducement acts as a new causality test and

witnesses the causal relationship between the identified causes

and the target state.

The property is symmetric as it requires the set of effects

in either execution to be induced by the causes. It means that



if for all the variables in the cause set, we copy their values

from execution e1 to e2, we can induce the target effect of e1

at the effect point in e2, and vice versa.

Consider the example in Fig. 2. State differences {y 7→(3,6),

x 7→(5,1)} on line 5 form a sufficient set regarding the effect

{x 7→(3,1)} on line 7. In contrast, the state difference {x 7→(5,1)}

itself is not sufficient because although replacing x’s value 5

with 1 in (b) can induce the effect {x 7→1} on line 7, replacing

x’s value 1 with 5 in (c) cannot induce the effect {x7→3}. This

symmetry ensures that we capture relevance due to execution

omission.

More formally,

Definition 2 (Sufficiency): A cause set ∆3 at l
(e1 ,e2)
3

is sufficient for

a given target effect set ∆_ at a later effect point l
(e1 ,e2)

_
if and only

if, in the absence of confounding, copying the state of e2 in ∆3 to
e1 at the cause point induces the effect of e2 in ∆_ in execution e1

at the effect point, and vice versa.

One key condition is that reexecution should be

confounding-free. Unfortunately, normal program execution

cannot guarantee this. The remainder of this subsection focuses

on discussing confounding.

1) What is confounding: Determining sufficiency involves

replacing part of the state in one execution with values from

the opposing execution. However, the continuation of the

modified execution has the state from both original executions

entangled, affecting each other and inducing undesirable and

unexpected results in causal inference.

Recall in Fig. 1, we saw that partially changing the state of

execution (b) with the single desired cause variable y yielded

output different than in either execution (b) or (c). In addition,

we found that including z as a cause along with y would yield

the target state, although z is not relevant to the output. Both

of these are unexpected results that we call confounding from

partial state replacement. These confounding effects do not

just have the ability to include arbitrary state within the set

of identified causes, they can exclude arbitrary state, as well.

Examples are omitted due to the space limitations.

At a high level, these unexpected results occur because

partial state replacement created new behaviors that did not

exist in either of the original executions.

Definition 3 (Confounding): Given executions e1 and e2 as well as
a patched execution ep constructed from them, a causality test using
ep is confounded if either of the following conditions are satisfied:

1) An execution point in ep is not present in e1 or e2.
2) A data dependence in ep is not exercised in e1 or e2

Condition (1) corresponds to control flow confounding and

(2) to data flow confounding, which means confounding can

occur without exhibiting any new control flow.

1 x← [0, 1, 2, 3]
2 y← input()
3 z← input()
4 x[z]← 5
5 print(x[y])

x← . . .
y← 1
z← 2
x[2]← 5
print(1)

x← . . .
y← 2
z← 3
x[3]← 5
print(2)

1
2
3
4
5

{
y 7→ (1, 2),
z 7→ (2, 3)

}

(a) (b) (c) (d)

Fig. 3: Data flow confounding example. (a) program. (b-c) executions
with differing input. (d) confounded explanation.

Consider the example in Fig. 3. This time, the target state

is {x[y] 7→(1,2)} with cause and effect points at lines 4 and 5

respectively. Observe that in each execution, the read from and

written to elements of x are different. Thus, the only identified

cause for the different output should be the differing values of

y, which provides the index read from the list. However, when

only the value of y is replaced on line 4 in (b), the patched

execution reads the new value written to the list on line 4.

Thus, the target state is not induced. Observe that in this case,

a new data dependence from line 5 to line 4 is exercised.

In later sections, we will examine new execution models

that can avoid/mitigate confounding.

We argue that the two properties, together with the minimality

requirement, are essential for understanding execution differ-

ences. They precisely express the programmer’s intentions.

IV. Realizing Comparative Causal Inference

In this section, we discuss the realization of CC. Given a

target effect set and a cause point, we leverage a technique

called dual slicing to compute a set of candidate causes and

only apply causality testing on the candidate set. Dual slicing

is a symmetric slicing technique that works on two executions.

It first determines control flow and value differences in the

two executions through trace comparison and then performs

slicing on these differences (in and across both executions).

The benefits of using dual slicing are twofold. First, it en-

sures relevance of the candidates. Second, it is more efficient

because causality testing only needs to enumerate subsets of

the candidates instead of the full set of state differences as in

CSM [7], [8].

After acquiring the dual slice, we then symmetrically min-

imize the causes included in the slice to a minimal subset

sufficient for inducing the target state within both executions.

During the minimization process, one key step is to perform

causality testing by state replacement. In order to avoid

confounding, we devise an execution model that harnesses a

patched execution in such a way that it respects the control

flow and dependences in the two original executions while

allowing flexibility for reasoning about the effects of state

replacement.

A. Background: Dual Slicing

Dual slicing was first introduced to study concurrency

bugs [9] and software vulnerabilities [16].

Algorithm 1 presents the basic dual slicing algorithm. Al-

though it is not part of this paper’s contributions, we present

a simplified version of the algorithm for completeness.

Given a slicing criterion, an execution point that exhibits

a state difference, the algorithm returns its dual slice, a set

of dynamic dependences from both executions denoting the

causality of the difference. Lines 1-7 describe the process of

slicing in execution e1. It first ensures that the current criterion

l_ is present in e1 (line 1). Here, l
(⊥,e2)
_

denotes that l_ is not

present in e1. Lines 2-4 traverse each dynamic data dependence

edge of the criterion in e1 with x, the variable involved, de-

noted as l
(e1,e2)
_

x
−−→

e1

l
(e1,e

′
2
)

3
. We use variable e′

2
to represent that



Algorithm 1 Dual Slicing

dualSlice(l
(e1,e2)
_

)

Input: l
(e1 ,e2)
_

- the slicing criterion

Output: D - the dual slice, a set of deps in either execution

1: if e1 , ⊥ then

2: for each data dep dd ← {l
(e1 ,e2)

_

x
−−→

e1

l
(e1 ,e

′
2
)

3
} do

3: if e′
2
≡ ⊥ or x has different values on l3 then

4: D ← D∪ dd ∪ dualSlice(l
(e1 ,e

′
2
)

3
)

5: control dep cd ← {l
(e1 ,e2)

_
==⇒

e1

l
(e1 ,e

′
2
)

3
}

6: if e′
2
≡ ⊥ or l3 has different branch outcomes then

7: D ← D∪ cd ∪ dualSlice(l
(e1 ,e

′
2
)

3
)

8: if e2 , ⊥ then
9: /* operations symmetric to when e1 , ⊥ */

10: return D

l3 may or may not be in the second execution, disregarding the

value of e2. On line 3, if l3 is exclusively in e1 (i.e, e′
2
≡ ⊥),

meaning that it is a control flow difference, or even though

it is not exclusive, the variable x has different values in the

two executions, the data dependence is added to the slice (line

4). The dual slice of l3 is recursively computed and added to

the slice too (line 4). This suggests that when l3 is present

in both executions and produces the same value, it is not

added because it cannot induce the criterion. In lines 5-7, the

algorithm traverses the control dependence edge in e1, denoted

as “==⇒
e1

”. Similarly, if the guarding predicate is exclusive or

has different branch outcomes, the edge gets added and the

dual slice of the predicate is recursively computed. Lines 8-9

are symmetric to lines 1-7, describing the process of slicing

in execution e2.

1 t← input()
2 x← input()
3 y← input()
4 z← input()
5 if x + y + z > 3:
6 z← −10
7 if x + y + z > 0:
8 z← 5
9 if z < 0 and y > 0:

10 z← t
11 else: print(z)

(a)

t← 0

x← 1
y← 0

z← 4

if True:
z← −10

if False:

if False:

print(-10)
(b)

t← 1

x← 1
y← 1

z← 1

if False:

if True:
z← 5

if False:

print(5)
(c)

y← input()
z← input()
if 1+y+z >3:

z← −10
if 1+y+z >0:

z← 5

print(z)
(d)

3

4

5

6

7

8

11

✘ ✘

✘ ✘

(e)

4

5

6

7

8

11

{z 7→(4,1)}

{z 7→(-10,1)}

{z 7→(-10,5)}

(f)

Fig. 4: (a) program. (b-c) two runs. (d) program from the dual slice.
(e) dual slice. (f) CC explanation.

Example. Consider the program in Fig. 4a. The dual slice

of the two executions, (b) and (c), is presented in Fig. 4e

(including the crossed-out dependences). Part of the compu-

tation is represented as follows. We use dS() as a shorthand

for dualSlice(). The superscripts of execution points are elided

for brevity when explicit from the context. The box in a step

denotes that the next step is to execute the recursive call inside.

dS(11(b,c)) = {11
z
−−→

b
6} ∪ dS(6(b,⊥)) ∪ {11

z
−−→

c
8} ∪ dS(8(⊥,c)) [1]

= {11
z
−−→

b
6, 6 ==⇒

b
5} ∪ dS(5(b,c)) ∪ {11

z
−−→

c
8}... [2]

= {11
z
−−→

b
6, 6 ==⇒

b
5, 5

z
−−→

b
4, 5

z
−−→

c
4, ...}... [3]

Observe at step [1], the control dependence to line 9 is not

involved as it has the same branch outcome in the two runs.

Also, observe that dual slicing line 6 of execution (b) in step

[1] entails slicing line 5 in both executions (step [2]). Line 1

is not included, even though it denotes a difference, as it is

not reachable from the criterion.

The dual slice captures the behavioral differences of the two

executions related to the criterion.

B. Dual Slices are Relevant, but Confounding-prone and Re-

dundant

Dual slices are represented in terms of dependences,

whereas causal inference is conducted on program state.

Hence, we first introduce a projection from a dual slice to

the corresponding set of state differences at a given execution

point so that we can discuss the properties of dual slicing

in our context. These properties are unique to the proposed

technique and have not been studied before.
Given a dual slice and a cause point l(e1,e2), which is an

aligned point, we define the cut of the dual slice with respect
to the point as follows.

C(D, l(e1 ,e2)) = {x 7→ (v1, v2) | l
et

_

x
−−→

et

l
et
3
∈ D,

with l3 ≺et
l ≺et

l_ or l_ ≡ l,
and x 7→ (v1, v2) on l with v1 , v2}

It denotes the set of state differences involved in the dual

slice on the given cause point. It essentially denotes the set

of variables when we cut the dual slice on the cause point.

Symbol la ≺et
lb denotes la precedes lb in execution et.

Consider the dual slice in Fig. 4e. The cut on line 7 is

the following. C(D, 7(b,c)) = {z 7→(-10,1), y 7→(0,1)}. Note that

{t 7→(0,1)} is not in the cut.
Theorem 1: All the causes in a cut C(D, l(e1 ,e2)) are relevant to
the slicing criterion. All relevant causes on l(e1 ,e2)) are included
in its cut.

The proof is omitted due to space limitations. The property

suggests that dual slices cover all the causes the programmer

needs to inspect.

Unfortunately, a dual slice cut may not sufficiently induce

the slicing criterion given the confounding-prone regular ex-

ecution model. That is, replacing the state of all causes in a

cut may not induce the failure. Let us revisit the example in

Fig. 1. The dual slice is shown in Fig. 1e. Its cut on line 4 has

only y. However, from the discussion in Section II, we know

that replacing y7→1 with y7→2 in execution (b) does not lead

to the target effect due to the confounding from z.



A cut may also not be minimal. It may contain causes that

are not essential for inducing the target effect. In Fig. 4e,

the cut on line 7 is {z 7→(-10,1), y 7→(0,1)}, but the minimal

sufficient set is just {z 7→(-10,1)}.

These limitations motivate us to realize the proposed CC by

performing confounding-free minimization on dual slices.

C. The Basic Algorithm

In this subsection, we introduce the basic minimization

algorithm, assuming a confounding-free execution model. We

will discuss the execution model in the next subsection.

Algorithm 2 Minimizing Causes

inferCauses(D, l
(e1,e2)
3

, l
(e1,e2)
_

, ∆_)
Input: D - the dual slice l3 - the cause point

l_ - the effect point ∆_ - the target state
Output: causes of target at l3

1: ∆ ← C(D, l3)
2: ∆min ← ∆

3: for each s ⊂ ∆ by delta debugging do
4: if |s| < |∆min|

∧ Ee1 [s↓e2
/s↓e1

]
l3
l_

; ∆_ ↓e2

∧ Ee2 [s↓e1
/s↓e2

]
l3
l_

; ∆_ ↓e1
then

5: ∆min ← s
6: return ∆min

The basic algorithm is presented in Algorithm 2. Given a

precomputed dual slice, the cause and effect points, and the

target state, the algorithm returns a minimal set of causes

sufficient to induce the target state. The algorithm starts by

computing a dual slice cut at the cause point, which is essen-

tially the set of relevant causes. Lines 3-6 minimize the set to

only those sufficient for inducing the observed target state of

each execution in the other. We leverage the delta debugging

algorithm to enumerate subsets of the relevant causes and test

their causality. Symbol Ee1 [s ↓e2
/s ↓e1

]
l3
l_

means executing e1

up to the cause point l3, replacing its variable/value mappings

in s with those from e2, and continuing the execution up to

the effect point l_. Symbol s↓e1
denotes the projection of state

differences s on execution e1. If the variables in the target state

have the values from e2, we say that the target state of e2 was

induced, written ; ∆_ ↓e2
.

Observe that in contrast to existing CSM approaches [7],

[13], our minimization algorithm performs two symmetric

causality checks. This is necessary to include causes via

omission.

D. Confounding Free Execution Model

Recall that confounding occurs when new control flow or

data dependences not in either original execution occur in

a patched execution. By Theorem 1, we know that all the

relevant causes are included by the dual slice. This suggests

we only need to perform causality testing within the dual slice.

Conceptually, the essence of our new execution model is

to construct a program containing only the behavior of the

dual slice and all reexecutions for causality testing occur on

the constructed program. Statement executions not in the dual

slice should be prevented in order to minimize confounding.

Illustrative Example. Consider the example in Fig. 4. Assume

we start by using the target state {z 7→(-10,5)} at line 11.

Assume the cause point is line 7 and we apply Algorithm 2

to minimize the causes at this point. The cut of the dual

slice (Fig. 4e) involves variables y and z. When we consider

variable z with a regular execution model, we reexecute (c)

up to the cause point and replace the value of z with -10. It

induces the false branch outcome on line 7 but the true branch

outcome on line 9, which is different than execution (b). Hence,

{z 7→(-10,1)} is not considered a valid cause set.

With our new execution model, conceptually, we construct

a program representing the dual slice, as in Fig. 4d, in which

lines 1, 2, 9, and 10 are precluded as they are not in the slice.

Also, line 11 is no longer guarded by any predicate. Operands

that are in the slice and have identical values in both executions

are concretized (e.g. x on lines 5 and 7).

Again, let us determine the causality of variable z on line 7.

We reexecute (c) up to the cause point using the original

program. We replace the value of z with -10, then continue

execution with the program in Fig. 4d. Since lines 9 and

10 are not in the program, we avoid confounding and can

induce the desired target state. Hence {z 7→(-10,1)}} is the

minimal inducing cause set. Observe that it allows us to prune

the relevant but not necessary cause {y 7→(0,1)}}. Applying

Algorithm 2 transitively, we acquire a more concise failure

explanation as shown in Fig. 4f. 2

Semantics of the New Execution Model. In the following,

we discuss the semantics that allows achieving the effect of

executing exclusively within the dual slice without explicitly

constructing a new program. During minimization, we first

reexecute the original program with normal semantics up

to the cause point, and then continue executing the program

with the new semantics after state replacement, until the effect

point.

In the semantics, we assume the runtime availability of the

dual slice D and the traces of the original two executions,

denoted by T e1/2 . Without losing generality, we assume we

are patching e1 using information from e2. The value of a

variable x at a point le1 in the original execution e1 can be

queried from the trace by val(T e1 , l, x). If an execution point

le1 is a conditional statement, branch(T e1 , l) queries its branch

outcome in execution e1. The semantics is presented in Fig. 5.

Statement executions not in the dual slice are skipped when

they are not conditional statements (Rule 1). When executing

conditional statements, we cannot simply skip as we need to

select a branch to proceed. Rules 2-3 specify the cases for

conditional statements.

In Rule 3, if a conditional had different branch outcomes

originally or it was present in only one execution, the seman-

tics evaluates the predicate and follows the computed branch.

The essence is to allow the flexibility to take either branch

based on the predicate evaluation in order to reason about

the effect of state replacement when it is in the dual slice.



1) When l is not a conditional with l < D, skips l.
2) When l is a conditional and it was in both executions with

branch(T e1 , l) ≡ branch(T e2 , l), unconditionally continue with
the same branch as in the original executions.

3) When l is a conditional and it was in both executions with
branch(T e1 , l) , branch(T e2 , l) or l is in only one execution,
evaluate the statement according to Rule 4) and follow the
computed branch.

4) When l is not a conditional with l ∈ D, validate that all the
operands involved in some data dependence in D have the same
data dependence as they did in the original executions, otherwise
terminate and report confounding; For any operand not in any
dependences in D, denoted as x, set its value to val(T ex , l, x),
and continue.

Fig. 5: Semantics of E[].

If the statement is not in the dual slice, it does not matter

which branch is taken because all non-conditional statements

inside the branches must be skipped according to Rule 1.

These statements must not be in the dual slice; otherwise, the

conditional would have been in the slice according to the dual

slicing algorithm.

Rule 4 handles non-conditional statement execution in the

dual slice, for all the operands not involved in any dependences

in the slice, implying that they must have identical values

in the two executions, we concretize them with values from

the traces to achieve isolation. For operands involved in some

dependence, we ensure no data flow confounding.

This new model will not allow any confounded executions

to go through, as can be inferred from the semantic rules.

Theorem 2: A dual slice cut is sufficient within the new execution
model.

This theorem ensures that Algorithm 2 must be able to find

a minimal sufficient set of causes inducing the target state be-

cause in the worst case, the cut is the minimal set. Informally,

the theorem holds because reexecution is exclusively within

the dual slice and hence replacing all the state in a cut leads to

a reexecution equivalent to the part of the dual slice belonging

to the opposing execution, and hence the target state.

A Practical Approximation. Unfortunately, the semantics in

Fig. 5 demands a prohibitively expensive implementation. It

requires collecting traces with dependences and values. The

traces and the dual slice have to be accessed during each

reexecution. Each statement has to be instrumented to decide

if it is in the dual slice (Rule 1) or perform complex control

(Rules 2-4). The overhead could easily be many orders of

magnitude, not affordable for repeated reexecutions.

In practice, we observe that control flow confounding is the

dominant confounding factor and data flow confounding can

only affect the execution by causing control flow confounding

in most cases. We hence propose a practical approximation that

can completely prevent control flow confounding and mitigate

data flow confounding. The approximate model ensures a

patched execution can only follow dynamic branches taken

by at least one of the original executions. Consequently, it en-

forces a control flow path composed of segments that occurred

in either execution. What we do here is essentially constructing

guard rails for the execution so that it can never deviate from

the dual slice’s control flow. Since data dependences heavily

1) Rule 2 from Fig. 5.
2) When l is a conditional and it was in both executions with

branch(T e1 , l) , branch(T e2 , l), evaluate the statement normally
and follow the computed branch.

3) When l is a conditional and it was in only one execution ex,
follow the branch that was taken in ex.

4) Otherwise, evaluate l as in a regular execution model.

Fig. 6: Semantics of the Approximate Execution Model.

depend on control flow, the approximation can also mitigate

data flow confounding. The semantics is presented in Fig. 6.

Observe that the semantics does not require the runtime

of the dual slice or dependence/value traces for runtime

checking, but rather just the control flow trace. This can be

very efficiently represented and accessed by using bit streams

that simply record the sequence of boolean branch outcomes.

It does not skip statements. It hence avoids instrumenting all

statements to decide if one can be skipped at runtime.

Theorem 3: The approximate execution model is free of control
flow confounding.

The theorem can be inferred from the semantic rules. We

implemented the approximate semantics and in practice it was

able to suppress all confounding in our experience.

V. Evaluation

We implemented our technique using LLVM 3.0. We have

also implemented the CSM and dual slicing approaches [7]–

[9], [13] for comparison. Both implementations reflect the

latest published designs [8], [9]. The evaluation is in the

context of automated debugging. The techniques contrast

buggy and correct executions, using explanations for their

different behavior as explanations of bugs. First, we compute

explanations for a set of real world bugs by chaining together

the computed causes. We contrast the explanations computed

by the three different techniques. Second, we examine in depth

how the problems that CSM faces affect its results in practice.

We used real world bugs taken from the repositories of

open source programs. They include all deterministic bugs

from tar, grep, and make in a one year period that we

were able to reproduce. All the bugs in our study were non-

crashing, semantic bugs that produce incorrect outputs. Table I

presents the full set of programs and bugs. The first three

columns identify the buggy program, bug ID, and the version

of the program that actually contains the bug. The SSLOC

column contains the static source lines of code computed

with sloccount. The Alt. column identifies how a second,

correct execution was selected. We used a correct input when

the bug report also provided it, otherwise, we used predicate

switching [17] to automatically synthesize a correct execution

from the failing one. More information on acquiring a correct

execution from a given failing execution resides in Sumner’s

survey paper [15]. We performed all experiments on a 64-bit

2.4GHz CPU with 12GB RAM using one core.

A. Full Explanation Comparison
Our first experiment uses each of the three techniques to

compute an explanation for each bug. For each bug, we first

identify the last observable failure and use that as the initial



target state. CC and CSM select the last preceding definition

of a target effect as the cause point to compute the causes.

They also proceed transitively, using the computed causes as

the new target state and the current cause point as the new

effect point until there are no more causes to identify (e.g. the

two executions have no state differences).

We contrast the results of the different techniques through

their quality, scale, and efficiency. We measure quality through

precision and recall with respect to a relevant, sufficient, and

minimal explanation of why the correct and buggy executions

differed. This is manually checked at each step of the computa-

tion. Precision (P) is the proportion of the dynamic statements

in the computed explanation for a technique that coincide with

the statements in the correct explanation. Recall (R) is the pro-

portion of the dynamic statements in the correct explanation

that are also identified by the computed explanation. We have

to resort to manual inspection due to the lack of an automated

oracle to tell us the ideal explanations for execution differences.

As we show later, such ideal explanations are small enough

for line by line human inspection.

We have done the following to mitigate threats to validity.

First, we cross referenced the computed explanations with

the root causes identified by the bug fixes or reports. Second,

we calibrated our system using the Siemens suite before

our experiments. We computed the explanations for the over

10,000 failing runs in Siemens using the corresponding passing

executions of the provided correct versions and validated

that these explanations capture the injected faulty statements

as the root causes. The results are publicly available at

https://www.sites.google.com/site/explainedbugs/.

Third, we also release the experimental results of the real

world bugs at the same site for interested readers.

We measure the scale of a technique by the number of dy-

namic statements (Stmts) in the computed explanation. Finally,

we measure efficiency in three ways: the number of steps or

rounds of causal inference, the clock time required in seconds,

and the number of reexecutions needed. Note that the clock

time of CC includes dual slicing time. Table I shows the results.

From these, we make several observations.

1) CC consistently yields the highest quality explanations.

Dual slicing generally has good recall but poor precision

because it doesn’t minimize. CSM is unpredictable because it

can arbitrarily include or exclude causes, however, it frequently

fails to identify causes for even a single step of an execution.

We shall explore the unpredictability of CSM further in the

next section. In contrast, CC yields high precision and high

recall for every computed explanation. For the bugs, it captures

11 of 15 root causes whereas CSM fails to do so in 11 of 15

cases. Where CC failed to identify root causes, denoted by

-, it still explained why the two executions differed, thus the

precision and recall. In those cases, the second execution was

too different to meaningfully explain the bugs as well.

2) The extra reexecutions for CSM make it slower than

CC, even when it computes fewer steps.

On average, CSM takes just over 13.8 minutes to compute

an explanation, even though it produces less of the correct

explanation. In contrast, CC takes just over 2.5 minutes on

average. This is because the extra dual slice information allows

it to avoid considering all memory differences as potential

causes. This reduces the number of necessary reexecutions by

up to two orders of magnitude.

3) CC produces more concise explanations than dual

slicing. The precision numbers show that CC is more precise

than dual slicing, 1.0 vs 0.14. On average, CC produces

explanations of 35 dynamic statements, while dual slicing

produces 330 statements.

This experiment illustrates that CC produces superior expla-

nations in terms of quality, efficiency, and scale.

B. Why and how CSM fails

A single incorrect cause at any point of the full chain

computation can cascade through the rest of the computation,

causing more incorrect causes. It is hence difficult to determine

the reasons behind the incorrectness by simply looking at the

full chains. Our second experiment examines why and how

CSM missed or erroneously included causes on a per-step

basis. Note that CC does not encounter these problems for the

given benchmarks, and dual slicing does not do minimization.

Thus, we focus only on CSM for this experiment.

We first computed the causes for each step using CSM as

in the first experiment. For each step, we also supply the

same (CSM) target state and the same cause point to CC and

compare the resulting causes from the two approaches. This

allows us to quickly observe any effects from confounding.

In this per-step fashion, we carefully checked the results

of CSM for missing causes (M), extra causes (E), or even

failure to identify any causes (F). These are the different ways

that the technique can fail. We also checked why these failures

occurred, including control flow confounding (CFC), data flow

confounding (DFC), and execution omission (O). Table II

contains these results.

1) CSM suffers from all three problems. It misses causes

in almost all benchmarks (12 out of 15), has extra causes in

8 out of 15, and fails to produce any causes for a step in 6

out of 15 cases. These failures resulted both from omission

and from confounding, although confounding was the more

frequent cause.

2) Control flow confounding causes errors in most of the

CSM explanations. In 11 out of 15 cases, the CSM explana-

tions are directly impacted by control flow confounding. This

shows that control flow confounding is a real world challenge

that we must address.

2) Data flow confounding does not directly impact CSM.

While close inspection indicates that some data flow confound-

ing occurs, it impacts the executions only through control flow

confounding. As CC prevents control flow confounding, the

impact of the corresponding data flow confounding is also

suppressed. For example, data flow confounding may lead to

an incorrect branch, but CC forces the execution back to the

correct branch through its execution model.

Together, these fine grained comparisons allow us to see

that omission and confounding do indeed impact existing



TABLE I: Comparison of full explanations. Averages are arithmetic except for P and R, which are geometric. - means that the root cause
could not be captured.

Program ID Version SSLOC Alt.
CC CSM Dual Slicing

Steps Time Tests Stmts P R Roots Steps Time Tests Stmts P R Roots Stmts P R

find 1 4.5.7 73k switch 7 12 15 6 1.0 1.0 X 1 253 1260 0 0 0 - 185 0.03 1.0

gnuplot 2 4.5.0 144k switch 11 44 33 10 1.0 1.0 X 11 141 469 10 1.0 1.0 X 148 0.06 1.0

gnuplot 3 4.4.0 139k input 35 200 323 48 1.0 1.0 X 1 51 208 0 0 0 - 464 0.07 1.0

gnuplot 4 4.2.4 134k input 146 961 337 129 1.0 1.0 - 127 950 1888 121 0.97 0.91 - 368 0.33 1.0

gnuplot 5 4.2.4 134k switch 24 140 130 33 1.0 1.0 - 31 931 3012 38 0.87 1.0 - 237 0.14 1.0

grep 6 2.5.4 12k switch 59 114 186 62 1.0 1.0 - 24 8263 1012 23 0.96 0.35 - 153 0.51 1.0

grep 7 2.5.4 12k switch 45 156 327 69 1.0 1.0 - 33 183 1734 32 1.0 0.46 - 109 0.62 1.0

grep 8 2.5.4 12k switch 27 49 78 27 1.0 1.0 X 24 168 1546 23 0.96 0.81 - 95 0.26 1.0

make 9 3.81.90 30k switch 27 342 62 27 1.0 1.0 X 18 416 543 17 1.0 0.63 - 38 0.66 1.0

tar 10 1.22.90 20k switch 5 22 8 3 1.0 1.0 X 5 50 221 3 1.0 1.0 X 3 1.0 1.0

tar 11 1.22.90 24k input 30 124 125 48 1.0 1.0 X 1 110 332 0 0 0 - 61 0.79 1.0

tar 12 1.22.90 20k input 9 53 121 20 1.0 1.0 X 1 66 296 0 0 0 - 1239 0.01 1.0

tar 13 1.22.90 20k switch 11 43 28 10 1.0 1.0 X 6 439 2117 5 1.0 0.5 - 1270 0.01 1.0

tar 14 1.23 21k input 17 80 87 23 1.0 1.0 X 5 165 709 15 0.73 0.48 X 25 0.92 1.0

tar 15 1.23 21k switch 5 22 15 4 1.0 1.0 X 5 228 1283 4 1.0 1.0 X 557 0.01 1.0

Average 30.5 157.4 125 34.6 1.0 1.0 - 19.53 827.6 1108.7 19.7 0.22 0.26 - 330.1 0.14 1.0

TABLE II: CSM difficulties. This includes symptoms: (M)issing
causes, (E)xtra causes, and complete (F)ailure. It also lists reasons
why: control and data flow confounding (CFC/DFC) or (O)mission.

ID M E F CFC DFC O

1 X - X X - -

2 - - - - - -

3 X X X X - -

4 X X - X - X

5 X X - X - -

6 X - X X - X

7 X - - - - X

8 X X - X - X

9 X X - X - X

10 - - - - - -

11 X X X X - -

12 X X - X - -

13 X - X X - -

14 X X X X - -

15 - - - - - -

techniques. Furthermore, taken with the results in Table I they

show that CC is resilient when faced with them.

C. Example of Resulting Explanations

Next, we demonstrate a failure explanation generated by

CC and explain how CSM fails to compute that explanation.

This chain is for bug 13. Version 1.22.90 of tar has a bug

when using the --backup option. When extracting files from

an archive, this option copies any already existing files into a

backup directory, preventing these files from being overwritten.

When extracting a directory that already exists, however, it

appears to incorrectly prevent files from being extracted.

We used predicate switching to dynamically patch the buggy

execution and derive a correctly behaving execution. Both the

buggy and the switched executions first extract some files

before trying to extract a directory that already exists. The

switched execution renames the extracted directory so that it

does not conflict with the existing one, and it correctly extracts

files to the new directory without error. However, the buggy

Code Summary

1 int read header primitive():
2 file name = ”dir” vs. ”dir2”

3
4 int extract dir(file name):
5 tmp = mkdir(file name)
6 ...
7 status = tmp
8 if status:
9 if errno == EEXIST && IS DIR(file name):

10 pass

11 elif !maybe recoverable(filename):
12 mkdir error(file name);
13 return status
14
15 void extract archive():
16 ...
17 status = extract dir(file name)
18 if status && backup option:
19 undo last backup()

Explanation

At 2, file name is ”dir” vs. ”dir2”.
At 5, tmp is 0 vs. -1.
At 7, status is 0 vs. -1.
At 13, the return value is 0 vs. -1.
At 17, extract dir returns is 0 vs. -1.
At 18, (status && backup option) is False vs. True.
So ”undo last backup()” is called, overwriting the extracted

files with the original ones.

Fig. 7: Example of a derived explanation using our technique

execution appears to have not extracted any files at all, even

the previously extracted ones.

Fig. 7 shows a simplified version of the relevant code, as

well as the explanation by CC, which is slightly shortened

for readability. First, predicate switching renames one of the

extracted directories from ”dir2” to ”dir”. Next, a call to mkdir()

fails in the buggy execution, returning −1 because ”dir2” already

exists. In contrast, the call succeeds in the switched execution

and returns 0. This difference (0 vs. −1) gets propagated

through the variable status back into extract archive(), where it



makes the condition on line 18 True only in the failing execu-

tion, indicating an error when extracting ”dir2”. So the buggy

execution calls undo last backup(). This actually replaces all

of the extracted files with the original backups. As a result,

all of the files extracted before ”dir2” appear to never have

been extracted, even though they were. In fact, the original

bug reports for this failure assumed the files had not been

extracted, as well, but our generated explanation clearly shows

that they were first extracted and then incorrectly overwritten.

The root cause is that extract dir() should not fail even if

mkdir() fails due to the existence of the directory, because

extracting to an existing directory should not cause problems.

A tar developer can see this from the computed explanation

(on the bottom of Fig. 7) and know how to construct a fix.

Indeed, the applied fix set status to 0 on line 10.

Note, CSM cannot construct this explanation. Once it gets

to line 13, confounding prevents any further analysis of the

bug. First, the condition on line 9 only executes in the failing

execution, where it is True. CSM tries to replace the value of

tmp at line 7 to produce the failing status at line 13, but the

condition on line 9 evaluates to False this time because it also

requires a failing value for errno. Hence, CSM proceeds to

line 12, which reports an unrecoverable error and terminates.

This confounding prevents the identification of tmp alone as the

cause. Additional confounding not shown here also prevents

replacing both errno and tmp from inducing the failing status.

D. Threats and Limitations

We have shown that CC is effective at explaining why two

executions are different, but there are limits to the technique,

our evaluation, and what may be inferred from it.

We first note that explaining why a buggy and correct

execution differ does not always provide a useful explanation

of a bug, as observed in 27% of our generated explanations.

Also, manual examination of execution differences risks

human error. Most of the explanations generated by CC are

short enough that we can be confident of our inspection.

Finally, again, comparative causality is presently limited to

examining deterministic bugs. This inherently follows from

exploiting reexecution within the technique.

VI. RelatedWork
The most relevant work is causal state minimization (CSM)

that was originally introduced by Zeller [7], and subsequently

improved by others [8], [11], [13]. In contrast to CSM, our

SCC model avoids confounding, handles execution omission

by symmetric analysis, and is much more efficient.

Recently, Rößler et al. also noted problems with Zeller’s

original approach, although they did not delve into what

these problems were [18]. They also produce a technique for

explaining bugs, but it is based on test generation and requires

a strong oracle to evaluate each new test.

Traditional dynamic slicing [19] is a technique that captures

dynamic data and control dependences. It has been extensively

examined for its usefulness in debugging [20]. Dynamic slices

are usually problematically large and suffer from execution

omission. Dual slicing is a kind of dynamic slicing technique

that compares two executions and extracts the differing depen-

dencies between the two [9], [16]. It forms the initial basis

of our technique. In contrast, our computed explanations are

much smaller due to state replacement and minimization.

Several satisfiability based techniques also strive to precisely

explain failures, either within a single program [21], [22] or

when comparing correct and incorrect versions [23], [24]. The

present limitations in constraint solving, however, have thus far

mostly limited these techniques to programs of a few thousand

lines of code. In contrast, our technique explains failures in

programs with well over 100K lines.

Our technique requires that the executions of interest be

reproducible. Tools that aid failure reproduction, for instance,

can make this more feasible in practice [25],

VII. Conclusions

We presented a novel causal inference technique called

comparative causality. It allows precise and concise explations

for the differences between two executions at a very fine

granularity. It advances the state of the art in three aspects:

it improves robustness of underlying state replacement tech-

niques by preventing confounding through novel execution

models; it handles execution omission errors by analyzing

two executions symmetrically; and it substantially improves

efficiency by leveraging dual slicing. Evaluation on a set of real

world bugs shows that the proposed technique can generate

high quality explanations at low cost.

VIII. Acknowledgements

We would like to thank the anonymous reviewers for their

insightful comments. This research is supported in part by

the National Science Foundation (NSF) under grants 0917007

and 0845870. Any opinions, findings, and conclusions or

recommendations in this paper are those of the authors and

do not necessarily reflect the views of NSF.

References

[1] I. Douven, “Abduction,” in The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed.

[2] J. Klein, “Francis bacon,” in The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed.

[3] P. Menzies, “Counterfactual theories of causation,” in The Stanford

Encyclopedia of Philosophy, E. N. Zalta, Ed.

[4] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in ICSE, 2002.

[5] G. K. Baah, A. Podgurski, and M. J. Harrold, “Mitigating the confound-
ing effects of program dependences for effective fault localization,” in
FSE, 2011.

[6] X. Zhang and R. Gupta, “Cost effective dynamic program slicing,” in
PLDI, 2004.

[7] A. Zeller, “Isolating cause-effect chains from computer programs,” in
FSE, 2002.

[8] W. N. Sumner and X. Zhang, “Memory indexing: canonicalizing ad-
dresses across executions,” in FSE ’10, 2010.

[9] D. Weeratunge, X. Zhang, W. N. Sumner, and S. Jagannathan, “Analyz-
ing concurrency bugs using dual slicing,” in ISSTA ’10, 2010.

[10] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” TSE, vol. 28, no. 2, pp. 183–200, 2002.

[11] H. Cleve and A. Zeller, “Locating causes of program failures,” in ICSE,
2005.

[12] B. Xin, W. N. Sumner, and X. Zhang, “Efficient program execution
indexing,” in PLDI, 2008.



[13] W. N. Sumner and X. Zhang, “Algorithms for automatically computing
the causal paths of failures,” in FASE, 2009.

[14] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards locating
execution omission errors,” in PLDI, 2007, pp. 415–424.

[15] W. N. Sumner, T. Bao, and X. Zhang, “Selecting peers for execution
comparison,” in ISSTA, 2011.

[16] N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant, P. Poosankam,
D. Reynaud, and D. Song, “Differential slicing: Identifying causal
execution differences for security applications,” in IEEE S&P, 2011.

[17] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in ICSE, 2006.

[18] J. Roessler, G. Fraser, A. Zeller, and A. Orso, “Isolating failure causes
through test case generation,” in ISSTA, 2012.

[19] B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process. Lett.,

vol. 29, no. 3, 1988.
[20] F. Tip, “A survey of program slicing techniques,” J. Prog. Lang., vol. 3,

no. 3, 1995.
[21] M. Jose and R. Majumdar, “Cause clue clauses: error localization using

maximum satisfiability,” in PLDI, 2011.
[22] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error explanation

with distance metrics,” STTT, vol. 8, no. 3, pp. 229–247, 2006.
[23] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani, “Darwin: an

approach for debugging evolving programs,” in FSE, 2009.
[24] A. Banerjee, A. Roychoudhury, J. A. Harlie, and Z. Liang, “Golden

implementation driven software debugging,” in FSE, 2010.
[25] S. Artzi, S. Kim, and M. D. Ernst, “Recrash: Making software failures

reproducible by preserving object states,” in ECOOP, 2008.


