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Network pricing games provide a framework for modeling real-world settings with two types of strategic

agents: operators of a network and users of the network. Operators of the network post a price so as to

attract users and maximize profit; users of the network select routes based on these prices and congestion

from other users.

Motivated by the fact that an equilibrium in these games may not exist, may not be unique and may

induce an inefficient network performance, our main result is to observe that a simple regulation on the

network owners market solves all these three issues. Specifically, if an authority could set appropriate caps

(upper bounds) on the tolls (prices) operators can charge, then: the game among the link operators has a

unique and strong Nash equilibrium and the users’ game results in a Wardrop equilibrium that achieves the

optimal total delay. We call any price vector with these properties a great set of tolls and investigate the

efficiency of great tolls with respect to the users’ surplus. We derive a bicriteria bound that compares the

users’ surplus under great tolls with the users’ surplus under optimal tolls.

Lastly, we consider two different extensions of the model. First, we assume that operators face operating

costs that depend on the amount of flow on the link, for which we prove existence of great tolls. Second, we

allow operators to own more than one link. In this case, we prove that when operators own complementary

links (i.e., links for which an increase in toll value may only increase the flow on the other owned links), any

toll vector that induces the optimal flow and that is upper bounded by the marginal tolls is a great set of

tolls, and furthermore show that when all links in the network are complementary, then the aforementioned

toll vector is also a strong cap equilibrium.
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1. Introduction

Network pricing games provide a framework for modeling real-world settings with two types of

strategic agents: operators of a network and users of the network. Operators of the network post

a price for usage of the links they own so as to attract users and maximize profit, while users

of the network select routes based on these prices and congestion from other users. A landmark

example of this type of interaction, that sets the ground in which we describe our work, occurs
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in transportation networks. Here, link owners are road operators and may toll the usage of their

road. Users are travelers that seek to minimize their travel time plus payments. The challenge in

these games is that there are two levels of competition: one, among the owners to attract users to

their link so as to maximize profit; and second, among users of the network to select routes that

are cheap yet not too congested.

In the absence of self-interested link owners, these games reduce to the well-studied network

congestion games—a widely accepted and practically useful model for selfish resource allocation in

transportation and communication networks (see, e.g., Beckmann et al. 1956, Roughgarden 2005,

Correa and Stier-Moses 2011, and references therein). In congestion games, self-interested users

travel in a network from their origin to their destination with the goal of minimizing their own

travel cost. The natural solution concept of the game is the so-called Wardrop equilibrium flow,

under which all users route along shortest paths, given the strategic choices of other users. We

assume that the total amount of traffic is dependent on the disutility the users experience, a model

also known as congestion games with elastic demand.

Since selfish behavior usually drives systems to socially inefficient situations, a central authority

is typically interested in optimizing the social welfare for the network users—a task that can be

implemented by setting appropriate marginal tolls (Beckmann et al. 1956), which simply charge

each user the negative externality she imposes on the system. However, the goal of the link owners is

to set tolls so as to attract users and maximize their own profit. Imagine a link owner increasing the

price. Clearly, some of the users will move to alternative routes, thereby increasing the congestion

on these routes and making them less attractive. This implies that link owners have an incentive

to set a price that is higher than what is socially desired and thereby introduce new inefficiencies.

For instance, under marginal tolls, some operators may want to increase their toll in order to make

a higher profit. In this regard, an equilibrium for the link owners is a toll vector such that a change

in a single toll does not increase the profit of the corresponding toll operator (under the implied

user Wardrop equilibrium flow).
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In this more complex game-theoretic environment, (i) an equilibrium may fail to exist (the

only case where an equilibrium is proved to exist is in parallel link networks with affine latency

functions, see, e.g., Acemoglu and Ozdaglar 2007a, Hayrapetyan et al. 2007, Harks et al. 2019); (ii)

an equilibrium might not be unique (see, e.g., Acemoglu and Ozdaglar 2007b, Harks et al. 2019)

and; (iii) the total delay of the equilibrium flow can be arbitrarily higher than the optimal delay,

implying that the network can behave arbitrarily worse than the case where tolls are completely

absent (see, e.g., Acemoglu and Ozdaglar 2007b, Harks et al. 2019).

In the face of these challenges, we set out to find ways to mitigate the effect of selfish toll operator

behavior. We introduce competition regulation by allowing a regulator to set specific price caps

on the toll values that each toll operator can set on her link. Different price caps for different

operators is consistent with the practice in some privately operated networks of highways. For

example, in Santiago de Chile there are currently 12 different operators who set tolls on different

urban highways, as shown in Fig. 1. The current regulation sets a price cap that is unique to each

highway and the toll operators are allowed to set tolls upper bounded by the caps (Gonzalez 2016).

As it turns out, introducing such regulation can resolve all of the above issues, as there are caps

for which the game has a unique (strong) Nash equilibrium, under which the Wardrop equilibrium

is optimal.

Figure 1 Privately operated highways in Santiago de Chile. Each highway has its own toll cap.
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Contribution

Since the unregulated network pricing game behaves so poorly, in Section 3 we set out to study a

simple mechanism that improves it. In particular, we investigate the regulatory policy of setting

upper bounds (caps) on the toll values that each operator is allowed to set. Note that there is a

tension between the toll charged by the operator and the amount of flow she will get. It is plausible

for a toll operator to gain from decreasing her toll since her link will attract more flow, which

may result in an overall higher profit. For large enough caps it indeed happens that it is optimal

for the operator to set a toll upper bounded by the cap. Our main result, Theorem 1, shows that

when the central planner chooses the marginal tolls as caps, then the unique Nash equilibrium for

the operators is to set the tolls equal to the caps, which is known to induce the optimal flow as

a Wardrop equilibrium. In what follows, any toll vector that induces the optimal flow as Wardop

equilibrium will be called an optimal toll. Under this definition, the theorem shows something

stronger: any optimal cap vector upper bounded by the marginal tolls when chosen as toll caps

leads to a unique Nash equilibrium in which every operator charges precisely the cap. Moreover,

we show this equilibrium is robust to coalitions, a concept known as strong Nash equilibrium. We

show that even though the flow on a given link is a decreasing function of the toll on that link (as

we show in Lemma 1), the profit of the toll operator as a function of the toll she charges is an

increasing function up to a certain point (Lemma 2), which is a key tool to prove Theorem 1.

Inspired by Theorem 1 we study great tolls in more detail in Section 4. These are optimal toll

vectors that when they are set as caps are themselves the unique Nash equilibrium. It is easy to

observe that given an optimal flow, if for every commodity there are some users that do not travel,

then great tolls are unique. However, there are also simple examples in which great tolls are not

unique. A basic question to ask is how efficient great tolls are with respect to the users’ surplus.

Note that the users’ total delay under great tolls is fixed, since all great tolls are optimal; thus,

our question is equivalent to that of finding great tolls that minimize the total payments. By the

results in Section 3, any optimal toll vector that is upper bounded by the marginal toll vector, is
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a great set of tolls. As a benchmark we use the minimum payment tolls, defined as those tolls that

among the optimal ones, minimize the total payments. Minimum payment tolls, just as great tolls

upper bounded by the marginal tolls, can be computed by a linear program. On the negative side,

we give an example that shows that the users’ surplus under great tolls can be arbitrary worse than

the optimal users’ surplus. On the positive side, we prove that the users’ surplus under great tolls

is at least as high as the optimal surplus if each user had no less than half the original valuation

(Theorem 2).

In Section 5, we study two different extensions of our model. First, we consider the setting in

which each of the operators faces operating costs for maintaining the link. We prove that the main

result, the existence of great tolls, is still valid. However, if toll caps are too low or operating costs

are too high, there might be links for which the profit in the Nash equilibrium is negative.

Second, we study the setting in which operators are allowed to own more than one link. We

start by showing that for instances where players own complementary links, i.e., links for which an

increase of the toll value in one of them may only increase the flow on the other (complementary)

links, any optimal tolls upper bounded by the marginal tolls are great tolls (Theorem 5). Intuitively,

this holds because an operator that operates a single link has an incentive to use the upper bound

as toll and this incentive remains if by doing so she only gains more flow on her other links and thus

only gains more profit. Then we show that when all the links are complementary, e.g., in a parallel

link network, such tolls are additionally a strong Nash equilibrium for the operators (Theorem 6).

Lastly, we show that Theorems 5 and 6 are essentially tight by providing two examples.

Related Work

Acemoglu and Ozdaglar (2007a) introduced a model of price competition between link operators

where each user has some fixed reservation value for travel. They show that increasing competition

among operators from a monopoly to an oligopoly may cause a reduction in efficiency, measured

as the difference between the users’ willingness to pay and the delay, and provide a (tight) bound

on efficiency in pure strategy equilibria. In a follow up work, Acemoglu and Ozdaglar (2007b)
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generalized the above study to slightly more general topologies in which parallel paths with multiple

links may replace the parallel links. They showed that even this slight generalization can make the

game arbitrarily inefficient, where the efficiency is measured as mentioned above.

Hayrapetyan et al. (2007) considered instances on parallel links where the demand to be routed

is elastic and decreases in a concave way as the cost for using the network increases. The social

cost in that work is the sum of the players’ profits plus a term that represents the utility gathered

by the traffic that gets routed, with a nice tradeoff occurring between these two terms. For that

game they showed that in a network with parallel links and linear latencies, there is always a pure

Nash equilibrium with the price of anarchy, i.e., the measure for inefficiency, being bounded by

a constant factor even when the latency functions are relaxed to be convex. For the case where

latencies have zero value under zero flow, they improve the constant. Following that work, Ozdaglar

(2008) studied the same model and managed to prove tight bounds on the efficiency of that game.

Musacchio (2009) and Musacchio and Wu (2007) rederived and generalized those (upper) bounds

for the case of series-parallel networks via a connection to electrical circuits; see the survey by

Ozdaglar and Srikant (2007) for further discussion. Johari et al. (2010) study an extension of

network pricing games in which operators compete in prices and investments.

Harks et al. (2019) use a very similar policy to regulate competition between link operators.

There, a regulator is able to set a unique price cap for all link operators. As it turns out this restricts

the regulator so that the induced network performance is not always optimal. For two-link parallel

networks this reduction in performance is characterized for different classes of latency function.

Our price competition model corresponds to Bertrand competition in a network setting (Dixon

2001, Chapter 6). Under this setting Chawla et al. (2008) addressed questions regarding the price

of anarchy and price of stability with respect to two objectives: the social welfare of all the players

(users and sellers), and the total profit obtained by all the sellers. Their work only considers

capacity-based (capacity-based congestion corresponds to latency functions which are identically

zero until capacity is reached, and then jump to infinity) and no regulation is imposed on the game.
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Their results show a dependence of the price of anarchy/stability on the number of monopolistic

links, namely the links whose removal disconnects an origin-destination pair. In contrast, our

model does not suffer from monopolies: setting caps on prices prevents monopolistic links from

charging arbitrarily large prices. Following the same model and focusing on the social welfare of the

consumers as the objective, Chawla and Niu (2009) extended the results of Chawla et al. (2008).

An interesting and related model is raised by Anshelevich and Sekar (2015). They consider the

edges of a network as goods, and each edge is owned by a different profit maximizing seller. In

the first stage of the game, sellers set prices for the use of their edges and have production costs

depending on the level of use. In the second stage, the users of the network, i.e., the buyers, choose

origin to destination paths so as each of them maximizes her utility minus the payments to the

sellers. The main difference with the model presented here is that users impose an externality on

the sellers, via the production costs, and not on the other users, as is the case in our model. This

crucially affects the equilibrium pricing and the social welfare (e.g., for single commodity networks,

if no monopolies are present, there is always an optimal equilibrium, which is not the case in our

model).

In other related work, Papadimitriou and Valiant (2010) consider the case where the routing is

no longer selfish, but is controlled by the edges of the network, and each edge either minimizes

its average latency, or announces a suitable price to its neighbors in order to maximize its profit.

Caragiannis et al. (2017) consider a model of buyers and sellers of a similar product, that under some

reformulation can be seen as a variant of the parallel links model of Acemoglu and Ozdaglar (2007a)

with heterogeneous buyers but constant latencies. Instead of minimizing traffic costs, maximizing

the profit from tolls, has been considered in the past (Kuiteing et al. 2016, Castelli et al. 2017,

Briest et al. 2012). There, a central authority/unique owner has control of all the toll-able edges,

yet, more importantly, the edge costs are constants rather than flow dependent. Recently, Schmand

et al. (2019) consider a two-stage game in which operators compete in investments so as to increase

the bandwith of a link to attract users.
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The study of network congestion games where a central operator is allowed to charge tolls in order

to improve efficiency has a long history, starting with Beckmann et al. (1956). Cole et al. (2003) and

Fleischer (2005) provided upper bounds on tolls that induce the optimal flow as an equilibrium, and

Dial (1999) considered the objective of minimizing users’ payments among optimal flow-inducing

tolls. The study of network users games where for each link a (potentially adversarially chosen)

upper bound on the toll is present was first considered by Bonifaci et al. (2011) and later by Jelinek

et al. (2014) and Fotakis et al. (2015). Results in these papers show that when upper bounds are

present, optimality cannot in general be achieved, yet, on the positive side, algorithms are proposed

under rather restrictive settings with provable guarantees regarding the efficiency of the network.

The transportation literature also addresses questions regarding the pricing of privately operated

roads in transportation networks. A recent stream of papers focusses on the so-called build-operate-

transfer (BOT) scheme in which private investors build and operate roads at their own expenses,

and in return receive the revenue from tolls charged within some years, after which the roads are

transferred to the government. See, for example, Yang and Meng (2000), Yang et al. (2002), and

Meng and Lu (2017).

2. Preliminaries

We study a network pricing game, where nonatomic players, which we call users, selfishly minimize

their cost (delays plus tolls) across a network; on top of this, each network link is operated by a

different selfish agent which maximizes profit by charging tolls on users traversing her link.

The Network Users’ Game: Selfish Routing

Let G = (V,E) be a network, with V the set of nodes, and E the set of directed edges/links of

the network. We consider a multi-commodity flow instance, described by origin-destination node

pairs {(ok, dk)}k∈K , for a finite set of commodities K. For each commodity k, we assume that the

total amount of traffic is dependent on the costs the traffic experiences; the higher the costs, the

lower the traffic. We analyze the elastic traffic demand model as introduced by Beckmann et al.
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(1956) and later used for network pricing games by Hayrapetyan et al. (2007) and Ozdaglar (2008).

We model elastic demand with a utility function uk : [0, rk]→ R+ for each k ∈ K, where uk(x)

captures the reservation value for travel of the particle of the demand (i.e., the infinitesimally small

user) at level x and rk ∈ R+ is the maximum demand of commodity k. We assume that uk(·) is

nonincreasing and continuous for each k ∈K, so that, in a sense, the users are ordered decreasingly

according to their utility for traveling. Let u= (uk)k∈K be the vector of all utility functions. Define

the aggregate utility function Uk : [0, rk]→R+ by Uk(x) =
∫ x

0
uk(y)dy. By definition, this function

is nondecreasing, concave and continuously differentiable.

For each link e∈E, there is a latency function `e : R+→R+, that represents the delay experienced

by users traversing this link, as a function of the total flow on the link. We will assume this function

to be nondecreasing, convex and smooth.

Paths and Flows. For each commodity k ∈K, let Pk denote the set of ok − dk paths and let

P = ∪kPk be the union of all these paths. A flow for commodity k is a nonnegative vector xk =

(xkP )P∈Pk such that
∑

P∈Pk xkP ≤ rk. For each commodity k ∈K, let rkx =
∑

P∈Pk xkP be the amount

of flow that is routed on the network by xk. A flow x is a vector (xk)k∈K , where each xk is a flow for

commodity k. Let X denote the set of all flows. For a flow x∈X and e∈E, let xke =
∑

P∈Pk:e∈P x
k
P

be the amount of flow that xk routes on each link e and let xe =
∑

k∈K x
k
e be the amount of flow

that x routes on e. With a slight abuse of notation, we will also denote x= (xe)e∈E, the link-wise

description of a flow.

Wardrop Equilibria and Optimal Flows. Given a flow x ∈ X, the delay experienced on e

is `e(xe). In the case a toll te ≥ 0 is charged for link usage, the combined cost of traversing e is

[`e(xe) +α · te], where α> 0 represents the trade-off factor between delay and tolls and is assumed

to be identical for all users. Without loss of generality, we can assume α to be equal to 1 because we

can always divide all tolls by α. A flow x∈X is a Wardrop equilibrium if all the routed traffic goes

through shortest paths for the respective commodity, the utility for each traveling user is at least

equal to the common shortest path cost of her commodity, and the utility of each user not traveling
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is at most equal to the common shortest path cost of her commodity. Formally, for every k, for

every path P ∈ Pk with xkP > 0, and every path P ′ ∈ Pk,
∑

e∈P [`e(xe) + te] ≤
∑

e∈P ′ [`e(xe) + te]

and
∑

e∈P [`e(xe) + te]≤ uk(rkx) with rkx = rk if
∑

e∈P [`e(xe) + te]< uk(rkx). Given such a flow, any

ok − dk path achieving the minimum end-to-end cost will be called an active path, and any link

that belongs to an active path will be called an active link.

For any toll vector t ≥ 0, a Wardrop equilibrium exists, moreover it minimizes the convex

Wardrop potential Φt(x) (Beckmann et al. 1956), and thus is given by:

x(t), arg max
x∈X

{∑
k∈K

Uk(rkx)−
∑
e∈E

∫ xe

0

(`e(y) + te)dy

}
. (1)

We will restrict attention to instances in which the Wardrop equilibrium is unique for all t≥ 0. In

particular, this can be achieved by assuming that `e(x) is strictly increasing for all e ∈ E, or by

assuming that there is no pair of paths with common endpoints and constant latency. In particular,

(xe(t))e∈E is a well-defined function, which is moreover continuous by Berge’s theorem (Berge

1963).

Given a flow x∈X and toll vector t, define the total users’ cost by C(x, t) =
∑

e∈E[`e(xe)+ te]xe

and the users’ surplus (or consumer surplus) by

CS(x, t,u) =
∑
k∈K

Uk(rkx)−C(x, t).

We define the social welfare by

SW (x,u) =
∑
k∈K

Uk(rkx)−
∑
e∈E

`e(xe) ·xe.

Notice that the social welfare is simply the users’ surplus plus the toll operators’ profits, yet the

tolls do not appear in the definition as they are transfers from users to toll operators.

An optimal flow x∗(u) is a flow that maximizes the social welfare w.r.t. to u. The classical result

by Beckmann et al. (1956) shows that a flow x∗(u) is an optimal flow if and only if x∗(u) =x(t̂(u)),

where t̂e(u) = x∗e(u)`′e(x
∗
e(u)): the toll vector t̂ is known as the marginal tolls. By our assumptions

on the latency functions, optimal flows are unique. Any toll vector that induces the optimal flow

will be called optimal.
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The Network Operators’ Game: Price Competition on Tolls

In our model, additionally, every link e∈E is operated by a different operator: these are the players

of the price competition game. Each player e is allowed to charge a nonnegative toll te for the usage

of her link. Under the resulting toll vector t, each link gets flow xe(t) according to the induced

Wardrop equilibrium, and thus the profit of player e is given by πe(t), texe(t). We are interested

in the equilibrium outcomes of this game.

Profit functions. For each player e∈E, her strategy is given by toll te, and her profit is given by

πe(te, t−e) = texe(te, t−e), where we use the standard game-theoretic notation t= (te, t−e).

Regulated Network Pricing Game and Nash Equilibria. The regulated network pricing

game we consider is the following. A central planner may choose a cap vector t̄≥ 0 for tolls, and each

player wants to maximize her own profit under this constraint. We study two solution concepts,

(pure) Nash equilibrium and strong (pure) Nash equilibrium. Tolls t are a Nash equilibrium for

the network pricing game if for every e∈E, te is the best response of player e to t−e, i.e., we have

te ∈BRe(t−e), where the best response mapping BRe(t−e) is defined as

BRe(t−e), arg max{πe(se, t−e) : 0≤ se ≤ t̄e}.

Tolls t are a strong Nash equilibrium if there is no coalition that jointly decides for a deviation

so that all operators in the coalition increase their profit (Aumann 1959). Formally, tolls t are a

strong Nash equilibrium if for any set E∆ ⊆E, there exists no t′ with {e ∈E : t′e 6= te} ⊆E∆ such

that πe(t
′)>πe(t) for all e∈E∆. Notice that any strong Nash equilibrium is a Nash equilibrium.

Definition 1 (Cap equilibrium and great tolls). Given an instance of the profit maximiza-

tion game, we say that a nonnegative vector t̄= (t̄e)e∈E is

(a) a (strong) cap equilibrium if when restricting the strategy space for every player e to tolls

se ∈ [0, t̄e], then (se)e∈E = (t̄e)e∈E is the unique (strong) Nash equilibrium;

(b) a great set of tolls if it is optimal (i.e., induces the optimal flow) and a cap equilibrium.
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3. Regulated Network Pricing Game

In this section, we study the regulated profit maximization game and some of its structural prop-

erties. We prove that the marginal tolls, when used as caps, are always a Nash equilibrium for

the profit maximization game, thus resolving the issues of equilibrium existence, uniqueness and

inefficiency raised in the literature. Our main result, presented in Theorem 1, strengthens the above

by showing that a potentially larger set of optimal tolls, when used as caps, leads to a unique Nash

equilibrium, which is furthermore robust to coalitions.

We start the section by proving two monotonicity properties of the Wardrop flow as a function

of tolls. These properties are related to the lower level game.

Lemma 1. Let t, t′ ≥ 0 be two toll vectors such that t≤ t′ and E< , {e∈E : te < t
′
e} is nonempty.

Then, there exist e1, e2 ∈E< such that:

(i) xe1(t′)≤ xe1(t),

(ii) [xe2(t′)−xe2(t)][`e2(xe2(t′)) + t′e2 − `e2(xe2(t))− te2 ]≤ 0.

Proof. To prove (i), we compare flows x(t) and x(t′) with respect to the Wardrop potentials.

By the optimality of the Wardrop flow on its respective potential, we get the following inequalities:

∑
k∈K

Uk(rkx(t))−
∑
e∈E

∫ xe(t)

0

(`e(x) + te)dx ≥
∑
k∈K

Uk(rkx(t′))−
∑
e∈E

∫ xe(t′)

0

(`e(x) + te)dx

∑
k∈K

Uk(rkx(t′))−
∑
e∈E

∫ xe(t′)

0

(`e(x) + t′e)dx ≥
∑
k∈K

Uk(rkx(t))−
∑
e∈E

∫ xe(t)

0

(`e(x) + t′e)dx.

Combining these inequalities we get

∑
e∈E<

[t′e− te][xe(t)−xe(t′)]≥ 0,

and thus since E< is nonempty, there must exist an e1 ∈E< such that xe1(t′)≤ xe1(t), proving (i).

Let us now prove (ii). Notice that since x(t) + (x(t′) − x(t)) = x(t′) is a feasible flow, then

x(t′)−x(t) is a feasible direction for x(t) in the space of feasible flows. By the first-order optimality

conditions of the Wardrop potential,

∑
k∈K

∑
P∈Pk

[
uk(rkx(t))−

∑
e∈P

[`e(xe(t)) + te]
]
[xkP (t′)−xkP (t))]≤ 0.
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Analogously, x(t)−x(t′) is a feasible direction for x(t′), and thus

∑
k∈K

∑
P∈Pk

[
uk(rkx(t′))−

∑
e∈P

[`e(xe(t
′)) + t′e]

]
[xkP (t)−xkP (t′)]≤ 0.

Adding up these inequalities and using that for any two flows y,z, we have

∑
k∈K

∑
P∈Pk

[
ykP ·

∑
e∈P

(`e(ze) + te)
]

=
∑
e∈E

[ye · (`e(ze) + te)],

we obtain

∑
k∈K

[
rkx(t′)− rkx(t)

] [
uk(rkx(t))−uk(rkx(t′))

]
+
∑
e∈E=

[xe(t
′)−xe(t)][`e(xe(t′))− `e(xe(t))]

+
∑
e∈E<

[xe(t
′)−xe(t)][`e(xe(t′)) + t′e− `e(xe(t))− te]≤ 0,

where E= , {e ∈ E : te = t′e}. Observe now that the first and second summation terms are non-

negative, as uk is decreasing for all k and `e is noncreasing for all e. Thus,
∑

e∈E< [xe(t
′) −

xe(t)][`e(xe(t
′)) + t′e − `e(xe(t))− te] ≤ 0, implying that there exists e2 ∈ E< such that [xe2(t′)−

xe2(t)][`e2(xe2(t′)) + t′e2 − `e2(xe2(t))− te2 ]≤ 0, proving (ii). �

The following result gives an intriguing inequality satisfied by any profit maximizing toll. It says

that in a (local) maximum, the toll is at least as high as the induced marginal costs of the users.

The interpretation of this result is that firms have an incentive to increase prices above what is

socially desired due to the congestion effects of the users. This property is a consequence of the

first-order optimality conditions, in combination with the monotonicity properties stated above.

We will later see this lemma is crucial for our main result.

Lemma 2. Let t≥ 0 be a toll vector. If te is a local optimum for the profit maximization problem

(that is, for objective πe(·, t−e)) then xe(t) · `′e(xe(t))≤ te.

Proof. Notice first that in the case xe(t) = 0 the result obviously holds and thus we may restrict

ourselves to the case xe(t) > 0. By continuity of the induced Wardrop flow, te = 0 is not a local

maximizer. Also by continuity and te being a local maximizer, there exists a δ > 0 so that 0 <

xe(se, t−e)<xe(t) for any se ∈ (te, te + δ).
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Now, since te is a local maximizer, we can use the first-order optimality conditions,

D+[πe(te, t−e)] ≤ 0, where D+[f(x)] , limsuph→0+
f(x+h)−f(x)

h
is the upper-right Dini derivative.

Using the linearity of Dini derivatives, we get

xe(t) + teD
+[xe(t)] =D+[πe(te, t−e)]≤ 0. (2)

On the other hand, since xe(se, t−e) < xe(t) for any se ∈ (te, te + δ), by Lemma 1 (ii), we have

that [`e(xe(se, t−e)) + se− `e(xe(t))− te]/[xe(se, t−e)−xe(t)]≤ 0. After re-arranging terms, we get

`e(xe(se, t−e))− `e(xe(t))
xe(se, t−e)−xe(t)

≤− se− te
xe(se, t−e)−xe(t)

.

Taking lim supse→t+e in the expression above, we get that the left hand side converges to `′e(xe(t)),

whereas the right hand side converges to − (D+[xe(t)])
−1

. Since D+[xe(t)]< 0, we conclude that

`′e(xe(t))≤− 1
D+[xe(t)]

. This, in combination with (2), gives

xe(t)`
′
e(xe(t))≤−

xe(t)

D+[xe(t)]
≤ te,

which proves the result. �

Our main result below shows a strong consequence of the lemma above. All optimal tolls upper

bounded by the marginal tolls, when used as caps, lead to a unique (strong) Nash equilibrium and

thus are great tolls.

Theorem 1. Let t̄ be an optimal toll vector with t̄≤ t̂, where t̂e(u) = x∗e(u)`′e(x
∗
e(u)). Then t̄ is a

(strong) cap equilibrium.

Remark 1. Our proof below shows a property that is stronger than strong Nash Equilibrium. In

fact, what we prove is that for any E∆ ⊆ E, there exists no t′ with {e ∈ E : t′e 6= te} ⊆ E∆ such

that πe(t
′)≥ πe(t) for all e ∈E∆ with at least one strict inequality. This property clearly implies

the classical notion of strong Nash equilibrium stated in Section 2, but we believe it might be of

independent interest. The same stronger property is proved in Theorem 4 and Theorem 6.



Correa et al.: Network Pricing: How to Induce Optimal Flows Under Strategic Link Operators
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Proof. First, we prove that t̄ is a strong Nash equilibrium. By way of contradiction, let E∆ be

a set of links and t≤ t̄ with e ∈E< , {e ∈E : te < t̄e} ⊆E∆ such that πe(t)≥ πe(t̄) for all e ∈E∆

with at least one strict inequality. Then for all e ∈ E<, we have texe(t) ≥ t̄exe(t̄), which implies

xe(t)>xe(t̄) and

te ≥
t̄exe(t̄)

xe(t)
. (3)

By Lemma 1 (ii), there exists e∈E< such that [xe(t̄)−xe(t)][`e(xe(t̄)) + t̄e− `e(xe(t))− te]≤ 0,

which in combination with xe(t)>xe(t̄) gives

`e(xe(t̄)) + t̄e ≥ `e(xe(t)) + te. (4)

Let e∈E< be a link satisfying (4). We have the following inequalities

`′e(xe(t̄))(xe(t)−xe(t̄))≤ `e(xe(t))− `e(xe(t̄))≤ t̄e− te ≤ t̄e
(

1− xe(t̄)
xe(t)

)
, (5)

where the first inequality follows from convexity of `e, the second from (4), and the third from (3).

Since t̄e ≤ t̂e = `′e(xe(t̄))xe(t̄) as t̄ is optimal, we obtain from (5) that

`′e(xe(t̄))(xe(t)−xe(t̄))≤ `′e(xe(t̄))xe(t̄)
(
xe(t)−xe(t̄)

xe(t)

)
.

Since `′e(xe(t̄))> 0 and xe(t)>xe(t̄), we conclude that xe(t)≤ xe(t̄), a contradiction.

Now we show that there is a unique Nash equilibrium. By way of contradiction, suppose there

exists another Nash equilibrium t≤ t̄ (with at least one strict inequality) for the profit maximization

game with caps t̄. Since all players are playing their best response, we can use Lemma 2, concluding

that xe(t)`
′
e(xe(t))≤ te for all e∈E< (which is nonempty by assumption), which in turn gives

xe(t)`
′
e(xe(t)) ≤ te < t̄e ≤ t̂e = x∗e`

′
e(x
∗
e) ,

concluding that xe(t)<x
∗
e = xe(t̄) for all e∈E<. But from Lemma 1 (i) there exists e1 ∈E< such

that xe1(t)≥ xe1(t̄), a contradiction. �
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Remark 2. If for an optimal flow we have that for every commodity there are some users that

travel and some users that do not travel, then marginal tolls are the unique optimal toll vector

and thus the unique toll vector that satisfies the condition of Theorem 1. Otherwise, there might

be multiple optimal toll vectors. We refer to Appendix A for a related discussion on the linear

program MPT, whose feasible set is all optimal toll vectors and its solution minimizes the users’

surplus at equilibrium.

4. Maximizing Consumer Surplus

We now consider the question how efficient great tolls are with respect to the consumer surplus.

The main result in this subsection, Theorem 2, only applies to single-source, single-sink networks,

and thus we will restrict ourselves to these instances and omit any dependence on k ∈K.

In what follows, we compare the maximum consumer surplus of an optimal toll vector upper

bounded by the marginal tolls (this is a great set of tolls by Theorem 1) to the maximum consumer

surplus of any optimal toll vector. Among all optimal toll vectors, let tM be the one that maximizes

the consumer surplus, and let tB the one that maximizes the consumer surplus, restricted to being

upper bounded by the marginal tolls. Both these toll vectors can be calculated by means of a linear

program, i.e., linear programs BMT and MPT in Appendix A for tB and tM , respectively, and in

general they may differ. The following example shows that the consumer surplus under tB can be

arbitrarily lower than the consumer surplus under tM .

Example 1. Consider the Braess network of Figure 2 with r units of flow to be routed and

u(x) = 2r for x∈ [0, r].

o

u

v

d

x

r

0

r

x

Figure 2 The network of Example 1.
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An optimal flow in this case is to split the demand into half on the upper and half on the lower

path; in particular, no flow traverses the middle uv link. This way, marginal tolls are given by

(t̂ou, t̂uv, t̂vd) = (r/2,0, r/2), and notice that this is the only feasible toll vector that satisfies the

conditions of Theorem 1, achieving a value of 2r2−2r2 = 0. On the other hand, it is easy to see that

consumer surplus maximizing optimal toll vector just needs to assign a sufficiently large value for

tuv (more precisely, tuv ≥ r/2) and the rest of the tolls can be zero, therefore the optimal consumer

surplus is 2r2− 3r2/2 = r2/2.

The main result of this subsection is a comparison in the spirit of the bicriteria bound of Rough-

garden and Tardos (2002): by how much should we decrease the utility function in order to induce

the same level of consumer surplus when comparing tB to tM . A consequence of this result is that

the consumers’ surplus under tB is at least as much as the optimal surplus if each of them had half

the valuation.

For particular values of the parameter β ∈ [1,∞) in the next theorem, we refer to Theorem 7

and Theorem 8 in Appendix A. For the proof of Theorem 2 we will need the following lemma. The

proof of Lemma 3 can be found in Appendix A.

Lemma 3. Let ũ and u be utility functions so that ũ(x) = α ·u(x), where 0<α≤ 1. Then

(i) rx∗(u) ≥ rx∗(ũ),

(ii) CS(x∗(u), tB, u)≥CS(x∗(ũ), tB, ũ),

(iii) CS(x∗(u), tM , u)≥CS(x∗(ũ), tM , ũ).

Theorem 2. Let C(x∗(u), tB)≤ β ·C(x∗(u), tM) for some β ∈ [1,∞). Then

CS(x∗(u), tB, u)≥CS(x∗(ũ), tM , ũ),

where ũ(x) = β
2β−1

·u(x).

Proof. By the optimal flow characterization of Beckmann et al. (1956), we have that rx∗(u) < r

for all u with C(x∗(u), t̂)> r ·u(r), and rx∗(u) = r for all u with C(x∗(u), t̂)≤ r ·u(r).
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We consider the following three cases: (1) u(r)<C(x∗(u), t̂)/r, (2) C(x∗(u), t̂)/r≤ u(r)< 2β−1
β
·

C(x∗(u), t̂)/r and (3) u(r)≥ 2β−1
β
·C(x∗(u), t̂)/r.

Case (1). Assume that u(r)<C(x∗(u), t̂)/r. Then rx∗(u) < r and thus

CS(x∗(u), tB, u) =CS(x∗(u), tM , u)≥CS(x∗(ũ), tM , ũ),

where the equality follows since CS(x∗(u), t, u) =U(rx∗(u))− rx∗(u) ·u(rx∗(u)) for all optimal t and

the inequality by Lemma 3.

Case (2). Assume that C(x∗(u), t̂)/r ≤ u(r) < 2β−1
β
· C(x∗(u), t̂)/r. Then rx∗(u) = r and since

ũ(r) = β
2β−1

·u(r)<C(x∗(u), t̂)/r, we have rx∗(ũ) < r. Thus

CS(x∗(u), tB, u)≥CS(x∗(ũ), tB, ũ) =CS(x∗(ũ), tM , ũ),

where the inequality follows by Lemma 3 and the equality since CS(x∗(u), t, u) =U(rx∗(u))−rx∗(u) ·

u(rx∗(u)) for all optimal t.

Case (3). Assume that u(r)≥ 2β−1
β
·C(x∗(u), t̂)/r. Then rx∗(u) = r and since ũ(r) = β

2β−1
·u(r)≥

C(x∗(u), t̂)/r, we have rx∗(ũ) = r. Thus,

C(x∗(u), tB)−C(x∗(u), tM)≤
(

1− 1

β

)
·C(x∗(u), tB)

≤
(

1− 1

β

)
·C(x∗(u), t̂)

≤ r · β− 1

2β− 1
·u(r)−

∫ r

0

u(x)dx+

∫ r

0

u(x)dx

≤−
∫ r

0

β

2β− 1
·u(x)dx+

∫ r

0

u(x)dx

=−
∫ r

0

ũ(x)dx+

∫ r

0

u(x)dx=U(r)− Ũ(r),

where the first inequality follows from C(x∗(u), tB)≤ β ·C(x∗(u), tM), which is true by assumption,

the second from C(x∗(u), tB) ≤ C(x∗(u), t̂), the third from β
2β−1

· u(r) ≥ C(x∗(u), t̂)/r, and the

fourth from r ·u(r)≤
∫ r

0
u(x)dx and the definition of ũ(x). Rearranging terms yields

CS(x∗(u), tB, u)≥ Ũ(r)−C(x∗(u), tM) = Ũ(r)−C(x∗(ũ), tM) =CS(x∗(ũ), tM , ũ),

as needed. �
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Remark 3. Theorem 2 cannot be extended to multicommodity networks. Consider, for example,

the network of Figure 3. Commodities o− d1, o− d2 have a maximum demand of 1. If u1(x) = 8

for x ∈ [0,1] and u2(x) = 4 for x ∈ [0,1], then the optimal flow is 3/4 for commodity 1 and 1 for

commodity 2. The unique optimal toll vector is (3/4,7/4); inducing a consumer surplus of 1/2.

If u1(x) = 4 for x∈ [0,1] and u2(x) = 2 for x∈ [0,1], then the optimal flow is 0 for commodity 1

and 1 for commodity 2. The unique optimal toll vector is (0,0); inducing a consumer surplus of 1.

o d1 d2

2 +x x

Figure 3 The network of Remark 3.

5. Extensions

In this last section, we consider two different extensions of our model. First, we study an extension

in which operators face operating costs. The main result states that any optimal toll vector upper

bounded by the marginal tolls is a great set of tolls with a unique equilibrium. Second, we investigate

the setting in which operators own multiple links. We show that marginal tolls induce a unique

Nash equilibrium as long as the links owned by each operator are complementary.

5.1. When Links Have Operating Costs

Extra Preliminaries

In this case, each operator e ∈E is allowed to charge a nonnegative toll te for its usage while she

additionally faces operating costs as a function of the amount of flow on the link. We assume that

this (cost) function ce : R+→R+ is nondecreasing, convex and smooth. Convexity of operating costs

reflects that with higher traffic, there is a higher chance for accidents and correspondingly higher

costs for clean-up and maintenance that the toll operator is responsible for. Under the resulting

toll vector t, each link gets flow xe(t) according to the induced Wardrop equilibrium, and thus the

profit of player e is given by πe(t), texe(t)− ce(xe(t)).
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Profit functions. For each player e∈E, her strategy is given by toll te ≥ 0, and her profit is given

by πe(te, t−e) = texe(te, t−e)− ce(xe(t)).

Optimal Flows. Given a flow x, the social welfare is defined by

SW (x,u) =
∑
k∈K

Uk(rkx)−
∑
e∈E

`e(xe) ·xe−
∑
e∈E

ce(xe).

An optimal flow x∗(u) is a flow that maximizes the social welfare w.r.t. to u. The vector of

marginal tolls t̂, now defined as t̂e = x∗e(u)`′e(x
∗
e(u)) + c′e(x

∗
e(u)) induces the optimal flow, that is

x(t̂) =x∗(u).

Results

By the next theorem, even with operating costs the existence of great tolls remains guaranteed.

The proofs of the two theorems are along the lines of the proof of Theorem 1 (their analogue in

the basic model) and can be found in Appendix B.

Theorem 3. Let t̄ be an optimal toll vector with t̄≤ t̂. Then t̄ is a cap equilibrium.

Remark 4. Theorem 3 does not guarantee that each provider earns a positive profit. If the cap

is too low or the operating costs are too high, the profit of a provider might be negative. Notice

that it is easy to check whether a given cap induces a negative profit, as tolls and flows are known

in the equilibrium.

Theorem 4. Let t̄≤ t̂ be an optimal toll vector. If πe(t̄)≥ 0 for all e ∈E and operating costs are

affine, i.e., ce(x) = ae ·xe + be with ae ≥ 0 for all e∈E, then t̄ is a strong cap equilibrium.

Remark 5. If operating costs are linear, i.e., ce(x) = ae · xe with ae ≥ 0 for all e ∈E, we have by

definition of t̂ that πe(t̂) ≥ 0 for all e ∈ E. Thus, marginal tolls are a strong cap equilibrium if

operating costs are linear.
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5.2. Allowing Multiple Links per Operator

Extra Preliminaries

In the case of multiple links per operator the network users’ game remains the same, but we have

to redefine some notions for the the network operators’ game. For every player i ∈ [n], where n is

the number of players, player i owns a subset Ei ⊆E and is allowed to charge a nonnegative toll

te to every e ∈ Ei. We assume that Ei and Ej are disjoint for all i, j ∈ [n] with i 6= j. Under the

resulting toll vector t, each link gets flow xe(t) according to the induced Wardrop equilibrium and

the profit from link e is πe(t) := texe(t). The profit of player i is given by πi(t) :=
∑

e∈Ei
πe(t).

Profit functions. For each player i∈ [n], her strategy is given by toll vector ti = (te)e∈Ei
, and her

profit as a function of her strategy is given by πi(ti, t−i) =
∑

e∈Ei
πe(ti, t−i) =

∑
e∈Ei

texe(ti, t−i).

We will also need the profit function of a link e when tolls on other links are fixed according to

some vector t−e, defined as πe(te, t−e). Whenever t−e is clear from the context, we will simply write

xe(te) and πe(te). Note that all these profit functions are continuous since for every toll vector t,

the flow function x(t) is continuous.

The following definition will be important for the analysis when operators own multiple links.

Definition 2. A set of links E′ ⊆E is called complementary if for all e ∈E′, all 0≤ te ≤ t′e and

all t−e ≥ 0, it is xe′(te, t−e)≤ xe′(t′e, t−e) for all e′ ∈E′ with e′ 6= e.

Series-Parallel Graphs. A directed o− d multi-graph is series-parallel if it consists of a single

link (o, d) or from two series-parallel graphs with terminals (o1, d1) and (o2, d2) composed either in

series or in parallel. In a series composition, d1 is identified with o2, o1 becomes o, and d2 becomes

d. In a parallel composition, o1 is identified with o2 and becomes o, and d1 is identified with d2

and becomes d. Any series-parallel graph has a decomposition tree that reveals all the “building

blocks” of the graph, i.e., every parent is a series or a parallel combination of its children.

The following proposition shows that a set of links whose pairs cannot belong to the same path

in a series-paralllel graph, is complementary. The proof lies in Appendix B
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Proposition 1. Let G be series-parallel and E′ ⊆ E. If for all e, e′ ∈ E′ and all paths P : e ∈ P ,

we have e′ /∈ P , then E′ is complementary.

Note that the above proposition implies that in parallel-link networks any set E′ ⊆E is comple-

mentary.

The following example shows that two links of different paths need not be complementary.

o d

x

1

2 + t2

t1

1

x

Figure 4 Noncomplementary links.

Example 2. Consider the graph of Figure 4 with 2 units of flow to be routed from o to d and

assume that the utilities are sufficiently large so that all users travel. If t1 = 0 and t2 = 0, then 1

unit of flow is routed on the zig-zag path, and 1 unit of flow is routed on the direct path from o

to d. If t1 = 1 and t2 = 0, then 3/5 units of flow are routed on the upper and lower path, and 4/5

units of flow are routed on the direct path from o to d. Hence by increasing t1, the flow on the

direct path is reduced.

Results

The existence of great tolls is guaranteed if all players own complementary links.

Theorem 5. Let G be an instance in which each player owns a set of complementary links and let

t̄≤ t̂ be an optimal toll vector. Then t̄ is a cap equilibrium.

The proof can be found in Appendix B and is quite technical. The main idea of the proof is that

an operator that operates a single link has an incentive to use the upper bound as toll and this
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incentive remains if by doing so she only gains more flow on her other links and thus only gains

more profit.

For series-parallel graphs we get the following corollary. For its proof, one simply has to combine

Proposition 1, that yields that players own complementary links, with Theorem 5.

Corollary 1. Let G be an instance in which each player owns a set of links that in pairs cannot

belong to the same path and let t̄≤ t̂ be an optimal toll vector. Then t̄ is a cap equilibrium.

Theorem 5 is tight in the sense that for instances where some player operates noncomplementary

links, there exist optimal tolls upper bounded by the marginal ones, and such that when they

are set as caps they are not a Nash equilibrium. An example follows. Note that the network is

series-parallel, which makes also Corollary 1 tight.

o d
x+ t1

x+ t2

1 + t4

x+ t3

Figure 5 The single-commodity series-parallel network used in Example 3.

Example 3. Consider the series-parallel graph of Figure 5 with 1 unit of flow to be routed and

assume that the utilities are sufficiently large so that all users travel. Let player 1 operate links

e1 and e3 and the other links being operated by other players, one link per player. It is easy to

check that links e1 and e3 are noncomplementary, e.g., increasing the toll on e1 may decrease the

flow on e3. In this instance, the optimal flow x∗ routes x∗1 = 1/6 units through e1, x∗2 = 1/6 units

through e2, x∗3 = 1/3 units through e3 and x∗4 = 2/3 units through e4. Thus, the vector of marginal

tolls is t̂= (1/6,1/6,1/3,0). If all players play the marginal tolls then player 1 has profit equal to

(1/6)2 + (1/3)2 = 5/36. But playing marginal tolls is not a best response for player 1 as she can

play t1 = 1/8< t̂1 and t3 = 1/3 = t̂3 getting a profit of 121/864> 5/36 (the equilibrium flow under

t= (1/8,1/6,1/3,0) is x(t) = (7/36,11/72,25/72,47/72)). Thus, when t̂ are set as caps, they are

not a Nash equilibrium.
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It is worth noting that on instances in which players operate complementary links, t̄ is not a

strong Nash equilibrium (despite being a Nash equilibrium). Example 4 has such an instance.

o

x+ t5

x+ t6

1 + t8

x+ t7

x+ t1

x+ t2
1 + t4

x+ t3

0

0

d

0

0

Figure 6 The single-commodity series-parallel network used in Example 4.

Example 4. Consider the series-parallel graph of Figure 6 with 2 units of flow to be routed and

assume that utilities are high enough so that all users travel. Let player 1 operate links e1 and e7,

player 2 operate links e3 and e5 and the other links being operated by other players, one link per

player. It is easy to check that links e1 and e7 are complementary, and the same holds for links

e3 and e5. Note that Figure 6 is essentially two copies of Figure 5 connected in parallel. Based

on that one can derive that the optimal flow x∗ is such that (x∗1, x
∗
2, x
∗
3, x
∗
4) = (1/6,1/6,1/3,0) and

(x∗5, x
∗
6, x
∗
7, x
∗
8) = (1/6,1/6,1/3,0), and the marginal tolls for links e1 through e8 are (t̂1, t̂2, t̂3, t̂4) =

(1/6,1/6,1/3,0) and (t̂5, t̂6, t̂7, t̂8) = (1/6,1/6,1/3,0). If all players play the marginal tolls then

player 1 and player 2 both have profit equal to (1/6)2 + (1/3)2 = 5/36. But player 1 and player 3

can form a coalition and together deviate and play t1 = 1/8< t̂1 and t3 = 1/3 = t̂3, and t5 = 1/8< t̂1

and t7 = 1/3 = t̂3 getting this way a profit of 121/864> 5/36 each. Thus, when t̂ are set as caps,

they are not a strong Nash equilibrium.

Yet, we have the following theorem. Its proof can be found in Appendix B.

Theorem 6. Let G be an instance where all links are complementary links and let t̄ ≤ t̂ be an

optimal toll vector. Then t̄ is a strong cap equilibrium.
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6. Conclusion

In this work, we propose a simple regulation policy for network owners in network pricing games.

Network owners have an incentive to set prices that are higher than their marginal externality,

yielding inefficiencies for the network users. Moreover, Nash equilibria in the network owners market

need not even exist. We have showed that if a central authority regulates the market by setting

the appropriate upper bounds on the prices, all of the above issues get resolved. In particular, the

well-known marginal tolls as caps have the property that the network owners market has a unique

(strong) Nash equilibrium and induces a socially optimal flow. In general, every toll vector that

is upper bounded by marginal tolls and induces the optimal flow will result as the unique Nash

equilibrium when being imposed as caps.

Given that the optimal social welfare can be achieved by imposing great tolls as caps, we asked

the question on how to fairly distribute the social welfare among the network owners and network

users. We have studied the efficiency of great tolls that are upper bounded by marginal tolls from

the perspective of the network users. Another approach could be to study the efficiency of great

tolls from the perspective of the network owners. In order to do so, a complete characterization of

great tolls would be needed.

The main result, that marginal tolls are great tolls, applies to the setting in which each link

owners owns only one link in the network. The result extends to the setting in which link owners

own complementary links (i.e., links for which an increase in toll value may only increase the flow

on the other owned links). In general, the result that marginal tolls are great tolls breaks down if

network owners own non-complementary links, e.g., multiple links on the same path. This implies

that market regulation works well in markets with a high degree of competition, whereas it is less

effective in markets with less competition.

Appendix A: Missing proofs of Section 4

We start with the proof of Lemma 3 that we used to the prove Theorem 2.

Proof of Lemma 3. We first note that, by the definition of the total users’ cost C(x(t), t), for

an equilibrium x(t) under tolls t, the common users’ path cost equals C(x(t), t)/rx.
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To prove (i), we can assume that rx∗(u) < r as otherwise the result follows trivially, since r≥ rx∗(ũ).

By recalling that the optimal flow is a Wardrop equilibrium w.r.t. the marginal latency functions,

rx∗(u) < r implies that the common users’ path cost at that equilibrium is equal to u(rx∗(u)), i.e.,

C(x∗(u), t̂(u))/rx∗(u) = u(rx∗(u)).

To reach a contradiction, let rx∗(u) < rx∗(ũ). Hall (1978) and Lin et al. (2004) show that the

common path cost of a Wardrop equilibrium is nondecreasing in r, and additionally, the common

path cost is strictly increasing in r when the latencies are strictly increasing. Since an optimal

flow is a Wardrop equilibrium w.r.t. the marginal latency functions, and the latency functions

are strictly increasing, we have C(x∗(u), t̂(u))/rx∗(u) <C(x∗(ũ), t̂(ũ))/rx∗(ũ). Additionally, by the

definition of equilibrium, C(x∗(ũ), t̂(ũ))/rx∗(ũ) ≤ ũ(rx∗(ũ)). Putting it all together and using the

hypothesis for u(x) and ũ(x) for the first inequality, we get

ũ(rx∗(u))≤ u(rx∗(u)) =C(x∗(u), t̂(u))/rx∗(u) <C(x∗(ũ), t̂(ũ))/rx∗(ũ) ≤ ũ(rx∗(ũ)),

a contradiction, since ũ(x) is nonincreasing.

To prove (ii) and (iii), we consider the following three cases: (1) rx∗(u) < r and rx∗(ũ) < r, (2)

rx∗(u) = r and rx∗(ũ) < r and (3) rx∗(u) = r and rx∗(ũ) = r. We only give the proof of (ii), the proof

of (iii) follows analogously, simply by changing tB with tM .

Case (1). Assume that rx∗(u) < r and rx∗(ũ) < r. Then, by definition of a Wardrop equilibrium,

CS(x∗(u), tB, u) = U(rx∗(u))− rx∗(u) · u(rx∗(u)) and CS(x∗(ũ), tB, ũ) = Ũ(rx∗(ũ))− rx∗(ũ) · ũ(rx∗(ũ)).

Thus, we have

CS(x∗(u), tB, u) =

∫ rx∗(u)

x=0

[u(x)−u(rx∗(u))] dx=

∫ rx∗(u)

x=0

1

α
[ũ(x)− ũ(rx∗(u))] dx

≥
∫ rx∗(ũ)

x=0

[ũ(x)− ũ(rx∗(ũ))] dx=CS(x∗(ũ), tB, ũ),

where for the second equality we used the definition of ũ(x) and for the inequality we used α∈ (0,1],

rx∗(u) ≥ rx∗(ũ) and ũ(rx∗(u))≤ ũ(rx∗(ũ)).

Case (2). Assume that rx∗(u) = r and rx∗(ũ) < r. Then, by definition of a Wardrop equilibrium,

CS(x∗(ũ), tB, ũ) = Ũ(rx∗(ũ))− rx∗(ũ) · ũ(rx∗(ũ)). Thus, we have

CS(x∗(u), tB, u) =U(r)−C(x∗(u), tB)

≥
∫ r

x=0

[u(x)−u(r)] dx=

∫ r

x=0

1

α
[ũ(x)− ũ(r)] dx

≥
∫ rx∗(ũ)

x=0

[ũ(x)− ũ(rx∗(ũ))] dx=CS(x∗(ũ), tB, ũ),

where the first inequality follows from C(x∗(u), tB)≤ C(x∗(u), t̂(u))≤ r · u(r), because of all the

demand being routed under x∗(u) and the constraint νt − νs ≤ u(r) in (BMT2), and the second

inequality follows from α∈ (0,1], r > rx∗(ũ) and ũ(r)≤ ũ(rx∗(ũ)).
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Case (3). Assume that rx∗(u) = r and rx∗(ũ) = r. Then we have

CS(x∗(u), tB, u) =U(r)−C(x∗(u), tB)

≥ Ũ(r)−C(x∗(ũ), tB) =CS(x∗(ũ), tB, ũ),

where the inequality follows from u(x) ≥ ũ(x) for all x ∈ [0, r], which implies U(r) ≥ Ũ(r), and

x∗(u) =x∗(ũ) =x∗, since all the flow is routed by the optimal solution under either utility function.

�

Theorem 7, Corollary 2 and Theorem 8, presented next, can be used to get an upper bound on β

in Theorem 2. The family of Braess graphs (see, e.g., Roughgarden 2006, Kleer and Schäfer 2016)

can be used to show that these bounds are tight.

Theorem 7 considers an approximation bound based on properties of the latency functions. The

result can be interpreted as follows: if the sensitivity of links to changes in the flows is bounded by

a factor, then the performance of the proposed solution is also bounded by that factor (plus one)

times the value of the optimal solution.

Theorem 7. Suppose all latency functions ` in the profit maximization game satisfy supx≥0
x`′(x)

`(x)
≤

γ, then C(x∗(u), tB)≤ β ·C(x∗(u), tM), where β = γ+ 1.

Proof. By the assumption on latency functions,

C(x∗(u), tB)≤
∑
e

[`e(x
∗
e(u))+x∗e(u)`′e(x

∗
e(u))]x∗e(u)≤

∑
e

(1+γ)`e(x
∗
e(u))x∗e(u)≤ (γ+1)C(x∗(u), tM),

proving the result. �

The following result is a direct corollary of Theorem 7.

Corollary 2. For polynomial latency functions of degree at most d and nonnegative coefficients,

C(x∗(u), tB)≤ (d+ 1)C(x∗(u), tM).

For Theorem 8, we will need Lemma 4, but first we define programs BMT and MPT that

compute tolls tB and tM , respectively. Both programs are in variables (t,ν) and define a potential

νk for each commodity k, in such a way that any flow-carrying path is indeed a shortest path. The

following LP encodes all possible great set of tolls upper bounded by marginals

(BMT)



max
∑

k∈K U
k(rkx∗) −

∑
e∈E[`e(x

∗
e(u)) + te]x

∗
e(u)

νku − νkv + te = −`e(x∗e(u)) ∀k, e= (u, v) : x∗ke > 0
νku − νkv + te ≥ −`e(x∗e(u)) ∀k, e= (u, v) : x∗ke = 0
νk
dk
− νk

ok
= uk(rkx∗(u)) ∀k : 0< rkx∗ < r

k

νk
dk
− νk

ok
≤ uk(rk) ∀k : rkx∗ = rk

νk
dk
− νk

ok
≥ uk(0) ∀k : rkx∗ = 0

te ≤ t̂e ∀e∈E
te ≥ 0 ∀e∈E.
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The first two set of constraints ensure that the flow is routed on shortest paths for the respective

commodity. The third, fourth and fifth sets of constraints ensure that the utilities of the users

traveling (or not) have the correct relation with the cost of the flow carrying paths of the respective

commodity.

With a similar linear program, by dropping the constraints that upper bound the tolls, we encode

all possible optimal tolls (MPT stands for Minimum Payment Tolls):

(MPT)



max
∑

k∈K U
k(rkx∗) −

∑
e∈E[`e(x

∗
e(u)) + te]x

∗
e(u)

νku − νkv + te = −`e(x∗e(u)) ∀k, e= (u, v) : x∗ke > 0
νku − νkv + te ≥ −`e(x∗e(u)) ∀k, e= (u, v) : x∗ke = 0
νk
dk
− νk

ok
= uk(rkx∗(u)) ∀k : 0< rkx∗ < r

k

νk
dk
− νk

ok
≤ uk(rk) ∀k : rkx∗ = rk

νk
dk
− νk

ok
≥ uk(0) ∀k : rkx∗ = 0

te ≥ 0 ∀e∈E.

Since Theorem 8 considers single-commodity instances and great tolls other than the marginal

tolls exist only when all the demand is routed, we may simplify BMT to BMT’, which considers

a single commodity of unit demand (this assumption is w.l.o.g. as latency functions can always

be adjusted appropriately) in which all the flow is routed (so we omit the dependence on u) and

minimizes the users’ cost (since the aggregate utility of the optimal flow is still fixed):

(BMT’)


min

∑
e∈E[`e(x

∗
e) + te]x

∗
e

νu− νv + te = −`e(x∗e) ∀e= (u, v) : x∗e > 0
νu− νv + te ≥ −`e(x∗e) ∀e= (u, v) : x∗e = 0

te ≤ t̂e ∀e∈E
te ≥ 0 ∀e∈E.

Lemma 4 is a structural lemma which allows us to upper bound the value of (BMT’). This is

naturally important in order to derive an approximation bound. We will first need some definitions.

Consider a directed network G and the undirected network Gu that comes from G if we drop the

directions of its links. Any path in Gu is called an undirected path in G. For an undirected path P ,

the links that are traversed in their actual direction are called forward links, denoted by P+, and

the ones traversed in their reversed direction are called backward links, denoted by P−. Finally,

an undirected path has J alternations if, when traversing it, there are exactly J times where a

forward link is followed by a backward link. For more on such alternating paths, see, e.g., Lin et al.

(2011), Nikolova and Stier-Moses (2015), Kleer and Schäfer (2016).

Lemma 4. There exists an undirected o−d path P such that the first and the last link of P belong

in P+, all e∈ P+ are flow carrying, and

C(x∗, tB) =
∑
e∈P+

`e(x
∗
e)−

∑
e∈P−

[`e(x
∗
e) + t̂e].
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Proof. We start by taking the dual of (BMT’), where variables y′ are associated with shortest

path constraints, and variables z with the upper bounds on tolls.

(DBMT′)


max

∑
e∈E[−y′e`e(x∗e)− zet̂e + `e(x

∗
e)x
∗
e]∑

e∈δ+(u) y
′
e−
∑

e∈δ−(u) y
′
e = 0 ∀u∈ V

y′e− ze ≤ x∗e ∀e∈E
y′e ≥ 0 ∀e : x∗e = 0
ze ≥ 0 ∀e∈E.

Let now ye , y′e − x∗e, and notice that the nonnegativity constraints for y′e where x∗e = 0 can be

re-written as ye ≥ 0. Let us observe that −y is a unit demand undirected flow (i.e., a flow without

sign constraints): By our unit demand assumption,

∑
e∈δ+(o)

(−ye)−
∑

e∈δ−(o)

(−ye) =
∑

e∈δ+(o)

x∗e −
∑

e∈δ−(o)

x∗e = 1

∑
e∈δ+(d)

(−ye)−
∑

e∈δ−(d)

(−ye) =
∑

e∈δ+(d)

x∗e −
∑

e∈δ−(d)

x∗e =−1

∑
e∈δ+(u)

(−ye)−
∑

e∈δ−(u)

(−ye) =
∑

e∈δ+(u)

x∗e −
∑

e∈δ−(u)

x∗e = 0,

where in the last equation u 6= o, d. This way, we can re-formulate (DBMT′) as

(DBMT)


−min

∑
e∈E[ye`e(x

∗
e) + zet̂e]

−y undirected unit flow
ze− ye ≥ 0 ∀e∈E
ye ≥ 0 ∀e : x∗e = 0
ze ≥ 0 ∀e∈E.

Now we make the following observation: Given any y satisfying the constraints above, there is a

unique best choice of z = z(y); namely, if ye ≥ 0 then ze = ye, and if ye < 0 then ze = 0. Furthermore,

observe that z(y) is piece-wise affine: As long as no y nonnegativity constraint becomes active,

z changes linearly as a function of y. Now let (y,z(y)) be an optimal solution for (DBMT): We

show that we can choose this optimal solution in such a way that it does not support any cycles.

Suppose there exists an undirected cycle C =C+ ∪C− (where C+ and C− are defined so that the

links in C+ traverse the cycle in the opposite direction than the links in C−), with variables ye 6= 0

for all e ∈ C. Given ε ∈ R, consider the perturbation yε such that for all e ∈ C+, yεe = ye + ε and

for all e ∈C−, yεe = ye− ε; notice that up to the point where, for the first time, some ye becomes

zero, the perturbations (yε,z(yε)) are feasible for (DBMT), and the objective function changes

linearly with ε. Since neither of these perturbations can improve the objective, the objective has

to be constant for these perturbations. This way, we choose either a positive or negative ε until

one of the y variables reaches zero. The resulting perturbation (yε,z(yε)) is thus optimal and it

does not contain C in its support. We can continue this procedure until all cycles are eliminated.
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As a conclusion, there exists an optimal solution (y,z(y)) whose support is an undirected simple

o− d path, that we will call P . By following this path and using the conservation constraints we

have that each e ∈ P satisfies that either ye = −1 (and thus ze = 0) or ye = 1 (and thus ze = 1).

Letting P+ = {e ∈ P : ye = −1} and P− = {e ∈ P : ye = 1} we have that the optimal value of

(DBMT) equals ∑
e∈P+

`e(x
∗
e)−

∑
e∈P−

[`e(x
∗
e) + t̂e];

furthermore, due to the nonnegativity constraints for y, all links e ∈ P+ are necessarily flow car-

rying.

Finally, we prove that the first and last links of P are forward, which, additionally, by flow

conservation, implies that links in P+ are forward and links in P− are backward. We just prove

it for the first link, as the argument for the last is analogous. Let e1 be the first link of P : By

flow conservation, ye1 =−1 and thus x∗e1 > 0. Since x∗ is optimal then it is acyclic, so e1 has to be

forward. This completes the proof. �

We make the following assumption on the instance: there exists a J ≥ 0 such that any simple o−d

undirected path has at most J alternations. The smallest constant J satisfying this condition will

be called the alternation number, and our approximation bound will only depend on this number.

Theorem 8. Consider a single-commodity and unit demand instance of the network pricing game

whose underlying network has alternation number J . We have, C(x∗, tB)≤ (J + 1) ·C(x∗, tM).

Proof. By Lemma 4, we have C(x∗, tB) =
∑

e∈P+
`e(x

∗
e)−

∑
e∈P− [`e(x

∗
e) + t̂e]. Since the alterna-

tion number of G is J , we can decompose P in at most J segments of consecutive forward and back-

ward links, P =A1−B1−A2−B2− . . .−BJ −AJ+1, from which C(x∗, tB)≤
∑J+1

j=1

[∑
e∈Aj

`e(x
∗
e)
]
.

Let now (t∗,ν∗) be an optimal solution for (MPT); since all links e ∈Aj, j = 1, . . . , J + 1 are flow

carrying, for each j = 1, . . . , J + 1, we have
∑

e∈Aj
`e(x

∗
e)≤ ν∗d − ν∗o . Combining the inequalities, we

obtain C(x∗, tB)≤
∑J+1

j=1

[∑
e∈Aj

`e(x
∗
e)
]
≤ (J + 1)[ν∗d − ν∗o ] = (J + 1) ·C(x∗, tM). �

Appendix B: Missing proofs of Section 5

B.1. Missing proofs from Section 5.1

In order to prove Theorem 3 we first restate the profit maximization property that yields the main

result for the model with operating costs.

Lemma 5. Let t≥ 0 be a toll vector and e∈E with xe(t)> 0. If te is a local optimum for the profit

maximization problem (i.e., for objective πe(·, t−e)) then xe(t) · `′e(xe(t)) + c′e(xe(t))≤ te.

Proof. In order to use the first-order optimality conditions, we need to ensure that the flow on

e neither suddenly drops to zero nor it remains constant. By continuity, there exists an interval
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[te, te+δ′] where xe(·)> 0, with δ′ > 0; furthermore, by local optimality, we may choose 0< δ < δ′ so

that te is a profit maximizing toll on the interval. This in particular implies that 0<xe(se)<xe(t)

for any se ∈ (te, te + δ).

Now, since te is a local maximizer, we can use the first-order optimality conditions, D+[πe(te)]≤ 0.

Using the linearity of Dini derivatives, we get

xe(t) + teD
+[xe(t)]− c′e(xe(t)) ·D+[xe(t)] =D+[πe(te)]≤ 0. (6)

On the other hand, since xe(se)< xe(t) for any se ∈ (te, te + δ), by Lemma 1 (ii), we have that

[`e(xe(se)) + se− `e(xe(t))− te]/[xe(se)−xe(t)]≤ 0. After re-arranging terms, we get

`e(xe(se))− `e(xe(t))
xe(se)−xe(t)

≤− se− te
xe(se)−xe(t)

.

Taking lim supse→t+e in the expression above, we get that the left hand side converges to `′e(xe(t)),

whereas the right hand side converges to − (D+[xe(t)])
−1

. Since D+[xe(t)]< 0, we conclude that

`′e(xe(t))≤− 1
D+[xe(t)]

. This, in combination with (6), gives

xe(t)`
′
e(xe(t)) + c′e(xe(t))≤−

xe(t)

D+[xe(t)]
+ c′e(xe(t))≤ te,

which proves the result. �

Proof of Theorem 3. First, we prove that t̄ is a Nash equilibrium. By way of contradiction,

suppose that te < t̄e maximizes profit given tf = t̄f for all f 6= e. Since t̄e > 0, we must have xe(t)> 0,

and thus by Lemma 1 (i), xe(te, t̄−e) > 0. By Lemma 5, we have te ≥ xe(te, t̄−e)`′e(xe(te, t̄−e)) +

c′e(te, t̄−e), implying

xe(te, t̄−e)`
′
e(xe(te, t̄−e)) + c′e(te, t̄−e) ≤ te < t̄e ≤ t̂e = x∗e`

′
e(x
∗
e) + c′e(x

∗
e),

and thus xe(te, t̄−e)<x
∗
e, contradicting Lemma 1 (i).

Now that we have proved existence, we show that there is a unique Nash equilibrium. By way of

contradiction, suppose there exists another Nash equilibrium t 6= t̄ for the profit maximization game

with caps t̄ and let E< = {e∈E : te < t̄e}. Observe that for a deviation to be possible t̂e ≥ t̄e > 0 for

all e∈E<, and also there is at least one player with te < t̄e and xe(t)> 0. If not, then for all players

e∈E<, we have xe(t) = 0, but this contradicts Lemma 1 (i) as there should exist an e1 ∈E< such

that xe1(t)≥ xe1(t̄) and xe1(t̂) = xe1(t̄)> 0 since t̂e1 > 0.

So we can assume that there are some players with te < t̄e and xe(t)> 0. Since all players are

playing their best response we can use Lemma 5, concluding that xe(t)`
′
e(xe(t)) + c′e(xe(t))≤ te for

all e∈E< with xe(t)> 0, which in turn gives

xe(t)`
′
e(xe(t)) + c′e(xe(t)) ≤ te < t̄e ≤ t̂e = x∗e`

′
e(x
∗
e) + c′e(x

∗
e)

concluding that xe(t)<x
∗
e = xe(t̄) for all e∈E< with xe(t)> 0. But from Lemma 1 (i) there exists

e1 ∈E< such that xe1(t)≥ xe1(t̄) and by t̂e1 > 0, xe1(t̄) = xe1(t̂)> 0, a contradiction. �
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Proof of Theorem 4. By Theorem 3, it is sufficient to prove that t̄ is a strong Nash equilibrium.

By way of contradiction, let E∆ be a set of links and t≤ t̄ with {e ∈E : te 6= t̄e} ⊆ E∆ such that

πe(t)≥ πe(t̄) for all e ∈E∆ with at least one strict inequality. Then for all e ∈E< ⊆E∆, we have

(te − ae) · xe(t)− be ≥ (t̄e − ae) · xe(t̄)− be ≥ 0, where the second inequality holds by assumption,

which implies xe(t)>xe(t̄) and

te− ae ≥
(t̄e− ae) ·xe(t̄)

xe(t)
. (7)

By Lemma 1 (ii), there exists e∈E< such that [xe(t̄)−xe(t)][`e(xe(t̄)) + t̄e− `e(xe(t))− te]≤ 0,

which in combination with xe(t)>xe(t̄) gives

`e(xe(t̄)) + t̄e ≥ `e(xe(t)) + te. (8)

Let e∈E< be a link satisfying (8). We have the following inequalities

`′e(xe(t̄))(xe(t)−xe(t̄))≤ `e(xe(t))− `e(xe(t̄))≤ t̄e− te ≤ (t̄e− ae) ·
(

1− xe(t̄)
xe(t)

)
, (9)

where the first inequality follows from convexity of `e, the second from (8), and the third from (7).

Since t̄e ≤ t̂e = `′e(xe(t̄))xe(t̄) + ae as t̄ is optimal, we obtain from (9) that

`′e(xe(t̄))(xe(t)−xe(t̄))≤ `′e(xe(t̄))xe(t̄)
(
xe(t)−xe(t̄)

xe(t)

)
.

Since `′e(xe(t̄))> 0 and xe(t)>xe(t̄), we conclude that xe(t)≤ xe(t̄), a contradiction.

B.2. Missing proofs from Section 5.2

Proof of Proposition 1. We will first show that for series-parallel graphs under any fixed demand

r and for any link e, setting t′e > te only increases the common travel cost at equilibrium. The proof

is by induction on the decomposition of the series-parallel graph. In the base case of a single link,

this is true by Lemma 1.

Let G be a series composition of series-parallel graphs G1 and G2, and w.l.o.g. let e belong to

G1. Under toll te and demand r let the travel costs through G1 and G2 be L1 and L2 respectively.

By induction, under toll t′e, the travel cost through G1 only increases to L′1 ≥L1 while the travel

cost through G2 remains the same. Thus the common cost at equilibrium only increases.

For the other case, let now G be a parallel composition of series-parallel graphs G1 and G2, and

w.l.o.g. let e belong in G1. Under toll te and demand r let the common travel cost through G1

and G2 be L and let the traffic routed through G1 and G2 be r1 and r2 respectively. By induction,

under toll t′e if we let r1 units go through G1, the travel cost through G1 only increases to some

L′ ≥ L. Thus at equilibrium r′1 ≤ r1 are routed through G1 and r′2 ≥ r2 units are routed through

G2 in order to equalize the travel costs through G1 and G2, which implies that the common cost

at equilibrium only increases.
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Given the above we go on to prove that for elastic demand for any link e, setting t′e > te only

increases the common travel cost at equilibrium and only decreases the demand being routed. Let

r be the demand routed at equilibrium under toll te and L be the common cost at equilibrium. If

r units are routed when t′e is set, then, by above, the travel cost only increases to some L′ ≥L. Yet

this may not be the equilibrium since some users may incur travel cost greater than their utility.

By removing flow (while in equilibrium) we reduce the travel cost and increase the minimum utility

among the users that travel, until these two get equal at which point we have an equilibrium with

the traffic demand routed equal to some r′ ≤ r and the travel cost equal to some L′′ :L≤L′′ ≤L′,

proving the claim.

Now we go back to prove the proposition. Let E′ be a set of links such that for all e, e′ ∈E′ and

all paths P : e∈ P , we have e′ /∈ P . We will prove that E′ is complementary. Consider an arbitrary

edge e ∈ E′. In order for e not to be in the same path with some other arbitrary edge e′ ∈ E′ it

should be that in the decomposition of G, e lies in some graph G1, e′ lies in some graph G2 and G1

and G2 are connected in parallel. To prove that xe′(te, t−e)≤ xe′(t′e, t−e) it suffices to show that G1

gets at most the same flow and G2 gets at least the same flow at equilibrium under t′e compared

to under te, since, if this is the case, all of G2’s edges may only gain flow.

We prove this by induction on the decomposition of the series-parallel graph starting from the

full graph. For the base case, let G1 and G2’s composition happen the first time that a parallel

composition between a graph containing e1 and some other graph occurs (some series compositions

may have occurred earlier). By what we have proved earlier we know that under t′e only less flow

may go through G1 and G2, yet their common travel cost will only increase. This implies that the

flow through G2 only increases, since its tolls remained unchanged, implying at the same time that

the flow through G1 only decreases.

For the induction, consider all compositions of a graph containing e1 and some other graph that

happens before the composition of G1 and G2, and let the induction hypothesis hold for them.

Using the induction hypothesis for the last time that such a composition occurrs, we get that the

graph that contains e1 gets at most the same flow under t′e and has at least the same cost. This

further implies the flow through G1 and G2 only decreases and the cost only increases under t′e.

Similar to above, the latter implies the flow through G2 only increases, since its tolls remained

unchanged, implying at the same time that the flow through G1 only decreases, completing the

induction and the proof. �

Proof of Theorem 5. First, we prove that if G admits a Nash equilibrium then it must be t̄. To

reach a contradiction, assume there exists a Nash equilibrium t 6= t̄. Since t̄ are set as caps, t 6= t̄

implies that t≤ t̄ and the set E< = {e ∈E : te < t̄e} is nonempty. By Lemma 1 (i) there exists an
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e1 ∈E< such that xe1(t)≥ xe1(t̄). Let player k be the player operating e1. We will show that t is

not a Nash equilibrium, by showing that player k is not on her best response.

It is xe1(t̄)> 0 or else 0≤ te1 ≤ t̄e1 ≤ t̂e1 = xe1(t̄)`′e1(xe1(t̄)) = 0 implying te1 = t̄e1 contradicting

e1 ∈ E<. This further implies that te1 > 0, otherwise player k is not on her best response since

by continuity she can increase the toll to te1 = δ for some small enough δ > 0 so that e1 still gets

positive flow and thus she gains strictly more profit: positive profit from e1 (instead of zero) and

at least the same profit from her other links since they don’t lose flow, by the complementarity

condition.

Consider the profit function πe1(·) of link e1 when all other tolls are kept fixed. Toll te1 cannot

be a local optimum of πe1(·) since by Lemma 2 (recall te1 > 0) and x`′(x) being increasing, it would

be te1 ≥ xe1(t) · `′e1(xe1(t))≥ xe1(t̄) · `′e1(xe1(t̄)) = t̂e1 ≥ t̄e1 , contradicting e1 ∈E<. Additionally, any

local optimum πe1(·) must be above te1 as otherwise, if there was a local optimum t′e1 < te1 , then,

by Lemma 1(i) it would be xe1(t′e1) ≥ xe1(te1) and by a similar reasoning as above it would be

t′e1 ≥ t̄e1 , a contradiction.

By the above, any local optimum of πe1(·) is strictly above te1 and consequently there exists a

sufficiently small δ > 0 such that increasing the toll of link e1 from te1 to te1 + δ, strictly increases

the profit made by link e1. Now consider the deviation for player k in which she increases the toll

of e1 by δ. By the previous discussion, she strictly gains more profit from e1 but also she does not

lose profit from the other links she operates, since by the complementarity condition each of her

links may only gain flow. Thus, player k is not choosing a best response.

It remains to prove that t̄ is a Nash equilibrium. To reach a contradiction, assume t̄ is not a

Nash equilibrium and let k be a player that by deviating from t̄ in some of her links, strictly gains

more profit, i.e., for the profit of player k it is πk(t̄)<πk(t
1), where t1 is the resulting vector after

player k’s deviation. W.l.o.g., we may assume that for all links for which we have deviation from t̄,

i.e., t1e < t̄e, it is t1e > 0, since if a link has t1e = 0 and xe(t
1) = 0 then setting t1e > 0 does not change

the flow or the profits and thus we still have an improving deviation for player k, while if a link

has t1e = 0 and xe(t
1)> 0 then player k will still be on an improving deviation if she sets t1e = δ for

some small enough δ > 0. She will still be at an improving deviation since by that small increase

on the toll, e1 still has positive flow and thus she gains strictly more profit: positive profit from e1

(instead of zero) and at least the same profit from her other links since they don’t lose flow, by the

complementarity condition.

The underlying idea for the proof is the following. Under t1, because of Lemmas 1 (i) and 2,

there exists a link for which player k can increase its toll and gain more profit from it and at the

same time not lose profit from other links. The resulting toll vector gets closer to the cap vector t̄

and has strictly more profit, and as long as it does not get equal to t̄ we may repeat the procedure
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and get even closer to t̄ with even bigger profits. Formally, though, we will do it a bit different.

Starting from the deviation t1, we will create a sequence of toll vectors ti that will all correspond

to deviations of player k and are such that for any i≥ 2 player k’s profit under ti is only higher

than her profit under ti−1 (and t1 and t̄). Then we will show that this sequence converges to t̄

getting a contradiction since the above will imply πk(t̄)<πk(t
1)≤ . . .≤ πk(ti)≤ . . .≤ πk(t̄) .

Let Ek be the set of links that player k operates and consider any arbitrary cyclic order of the

links of Ek. Also, let e1 be an arbitrary link of Ek. To inductively create ti from ti−1, for i≥ 2, let

ei be the link that follows ei−1 in the cyclic order of Ek. Consider the profit function πei(·) of link

ei when the tolls on other links are fixed according to ti−1. Let ti∗
ei

be the smallest local optimum of

πei(·) and set ti
ei

= min
{

max{ti−1
ei
, ti∗
ei
}, t̄ei

}
. For any other link e of Ek (e 6= ei) set tie := ti−1

e . Note

first that by construction, πk(t
i)≥ πk(ti−1), since the only toll that possibly changes is that of ei

and it only increases towards the first maximizer of πei(·), implying that the profit from ei only

increases and, by the complementarity condition, the flow and profit on any other link of Ek only

increases. Additionally, note that for all i it is ti ≤ t̄ and for all i≥ 2 it is ti−1 ≤ ti, since, at every

step, the only link getting its toll changed is ei, and it gets a toll in between ti−1
ei

and t̄ei . Thus, ti is

an increasing sequence of toll vectors which additionally is upper bounded by t̄ and consequently

it must converge to a toll vector, say t0, i.e., ti→ t0. Last, note that for all i, ti ≤ t0.

We will prove that t0 = t̄. To reach a contradiction, assume otherwise and let E<
k = {e∈Ek : t0e <

t̄e} be nonempty. By Lemma 1(i) there exists a link f ∈E<
k such that xf (t0)≥ xf (t̄). Consider the

profit function πf (·) of link f when all other tolls are kept fixed (according to t0). Toll t0f cannot

be a local optimum of πf (·) since in that case by Lemma 2 (we can apply Lemma 2 since t0f ≥ t1f
and for all e with t1e < t̄e it is t1e > 0, implying t0f > 0) it would be t0f ≥ xf (t0f ) · `′f (xf (t0f )) = xf (t0) ·

`′f (xf (t0))≥ xf (t̄) · `′f (xf (t̄)) = t̂f ≥ t̄f , contradicting f ∈E<
k . Additionally, any local optimum πf (·)

must be above tf as otherwise, if there was a local optimum t′f < t
0
f , then, by Lemma 1(i) it would

be xf (t′f )≥ xf (t0f ) and by a similar reasoning as above it would be t′f ≥ t̄f , a contradiction. Thus

any local optimum for πf (·) is strictly above t0f , say at t0∗f = t0f + δ, for δ > 0.

On the other hand, consider all those times when while creating the sequence ti, link f was

candidate for getting its toll changed (recall the cyclic order when choosing which tolls to update).

Intuitively, since ti→ t0, there is some high enough j such that the toll vectors t0 and tj are so close

to each other so that the corresponding profit functions of link f almost coincide. More formally,

for the δ defined above, since ti→ t0, there must be some j for which link f was candidate for

getting its toll changed and is such that the smallest local optimum of the profit function of f

under toll vector tj, say tj∗f , is such that |t0∗f − t
j∗
f | ≤ δ/2. The latter implies that tj∗f > t0f , since by

above t0∗f = t0f + δ. But this readily gives a contradiction as for that j, based on the construction
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of the sequence (namely tjf = min
{

max{tj−1
f , tj∗f }, t̄f

}
), link f would get either tj∗f or t̄f as its toll

which are both strictly greater than t0f (recall, tj−1
f ≤ t0f by construction).

Thus, indeed t0 = t̄ and so ti→ t̄. Recall that the profit function πk(·) of player k is a continuous

function of tolls. This yields πk(t
i)→ πk(t̄), which combined to that for all i, πk(t

i)≥ πk(t1)>πk(t̄),

gives the desired contradiction: πk(t̄)> πk(t̄). Consequently, every player is on her best response

when playing according to t̄. �

Proof of Theorem 6. We need only prove that t̄ is a strong Nash equilibrium. The proof is

similar to that of Theorem 5. Assume there is a coalition of players that deviates form t̄ on some

of their links, so that no player loses profit and some player, say player k, strictly gains profit.

Since all links are complementary we may intuitively think that all deviated links belong to player

k. We may get a contradiction similar to the proof of Theorem 5, since we may get a sequence of

deviations ti→ t̄ such that, for every i≥ 2, no deviating player gets worse profit in ti compared to

ti−1 and for player k it is πk(t
i)≥ πk(ti−1)≥ πk(t1)>πk(t̄), yielding πk(t̄)>πk(t̄). �
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Bonifaci V, Salek M, Schäfer G (2011) Efficiency of restricted tolls in non-atomic network routing games.

Proceedings of the 4th International Symposium on Algorithmic Game Theory (SAGT 2011), Amalfi,

Italy, October 17-19, 2011, 302–313.

Briest P, Hoefer M, Krysta P (2012) Stackelberg network pricing games. Algorithmica 62(3-4).

Caragiannis I, Chatzigeorgiou X, Kanellopoulos P, Krimpas G, Protopapas N, Voudouris A (2017) Efficiency

and complexity of price competition among single-product vendors. Artificial Intelligence 248:9–25.

Castelli L, Labb M, Violin A (2017) Network pricing problem with unit toll. Networks 69(1):83–93.

Chawla S, Niu F (2009) The price of anarchy in bertrand games. Proceedings of the 10th ACM Conference on

Electronic Commerce (EC ’09), Stanford, CA, USA, July 6-10, 2009, 305–314 (New York, NY, USA:

ACM), ISBN 978-1-60558-458-4.

Chawla S, Niu F, Roughgarden T (2008) Bertrand competition in networks. Proceedings of the 1th Inter-

national Symposium on Algorithmic Game Theory (SAGT 2008), Paderborn, Germany, April/May,

2008, 70–82.

Cole R, Dodis Y, Roughgarden T (2003) Pricing network edges for heterogeneous selfish users. Proceedings

of the 35th ACM Symposium on Theory of Computing (STOC ’03), San Diego, CA, USA, June 9-11,

2003, volume 3, 444–467.

Correa J, Stier-Moses N (2011) Wardrop equilibria. Wiley encyclopedia of op. research and man. science .

Dial R (1999) Minimal-revenue congestion pricing part i: A fast algorithm for the single-origin case. Trans-

portation Research Part B: Methodological 33(3):189 – 202.



Correa et al.: Network Pricing: How to Induce Optimal Flows Under Strategic Link Operators
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 39

Dixon H (2001) Surfing Economics : Essays for the Inquiring Economist (Palgrave Macmillan).

Fleischer L (2005) Linear tolls suffice: New bounds and algorithms for tolls in single source networks. Theo-

retical Computer Science 348:217–225.

Fotakis D, Kalimeris D, Lianeas T (2015) Improving selfish routing for risk-averse players. Proceedings of

the 11th International Conference on Web and Internet Economics (WINE 2015), Amsterdam, The

Netherlands, December 9-12, 2015, 328–342.

Gonzalez A (2016) Controversias por reducciones en la demanda en las concesiones de carreteras en chile.

Revista de Derecho Económico (76).
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