
Multi-Modal Journey Planning in the Presence of Uncertainty

Adi Botea
IBM Research
Dublin, Ireland

Evdokia Nikolova
Dept. of Computer Science and Engineering

Texas A&M University

Michele Berlingerio
IBM Research
Dublin, Ireland

Abstract

Multi-modal journey planning, which allows multiple types
of transport within a single trip, is becoming increasingly
popular, due to a strong practical interest and an increasing
availability of data. In real life, transport networks feature
uncertainty. Yet, most approaches assume a deterministic en-
vironment, making plans more prone to failures such as ma-
jor delays in the arrival. We model the scenario as a non-
deterministic planning problem with continuous time and
time-dependent probabilities of non-deterministic effects. We
present new hardness results. We introduce a heuristic search
planner, based on Weighted AO* (WAO*). The planner in-
cludes search enhancements such as sound pruning, based on
state dominance, and an admissible heuristic. Focusing on
plans that are robust to uncertainty, we demonstrate our ideas
on data compiled from real historical data from Dublin, Ire-
land. Repeated calls to WAO*, with decreasing weights, have
a good any-time performance. Our search enhancements play
an important role in the planner’s performance.

Introduction
Journey planning systems have become increasingly popu-
lar. Factors that favour the progress include the practical
need among users for reliable journey plans, the ubiquity
of mobile devices, and the increasing availability of rele-
vant sensor data, such as bus GPS records. In its simplest
form, journey planning is a shortest path problem: given
a graph representation of a transportation network, find a
shortest route between a start location and a destination. A
more realistic modelling, however, such as considering un-
certainty, can lead to problem variants that are computation-
ally hard (Nikolova et al. 2006a; Nonner 2012).

Multi-modal journey planning allows combining multiple
transportation means, such as bus riding and cycling, into
one single trip. Most existing approaches to multi-modal
journey planning operate under deterministic assumptions
(Zografos and Androutsopoulos 2008; Liu and Meng 2009).
However, in real life, key information needed in journey
planning, such as bus arrival times, is characterised by un-
certainty. Even small variations of bus arrival times can re-
sult in a missed connection, with a great negative impact
on the actual arrival time at the destination. Journey plans

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

should be able to handle such unexpected situations without
compromising the plan quality (e.g., arrival time) beyond
some acceptable level.

This paper investigates multi-modal journey planning in
the presence of uncertainty. Our contributions are in the
modelling of the problem, the hardness results, the solver,
with an admissible heuristic and formal pruning rules based
on state dominance, and the empirical evaluation.

The presented approach is probabilistic planning in an
and/or state space with continuous time, stochastic action
durations, and probabilistic action effects. Uncertainty
is modelled in the estimated times of arrival (ETAs) of
scheduled-transport vehicles (e.g., buses) at stops, and the
duration of actions such as walking and cycling. This
leads to non-determinism in the outcomes of actions such
as boarding a scheduled-transport vehicle, which can either
succeed or fail. The structure of the discrete and/or search
space is directly impacted by the time-related probability
distributions defined in the model. For example, the likeli-
hood that a user can catch a bus depends on the user’s ETA,
and the bus ETA at a given bus stop.

We present an NP-hardness result, with the hardness
stemming from the dynamically changing distributions of
the travel time random variables. This complements pre-
vious results for related problems with static distribu-
tions (Nikolova et al. 2006a).

In multi-modal journey planning, there can be multiple
quality criteria, including the travel time, the number of in-
terchanges, and the monetary cost. In this work, we choose
to optimize measures that quantify the robustness of a plan to
uncertainy. To our knowledge, this is one of the first works
in multi-modal journey planning addressing plan robustness.

We implemented a planner that performs heuristic search
in an and/or tree, computing probabilistic plans (i.e., contin-
gent plans where branches have probabilities). We evaluate
an any-time search strategy that iteratively runs Weighted
AO*, with decreasing weights. The planner uses an admissi-
ble heuristic, stored as a fast look-up table. We introduce and
prove formal properties of a pruning strategy based on state
dominance. Our experiments use data built from real his-
torical GPS traces of buses across Dublin, Ireland. The re-
sults demonstrate that our approach is viable. In many cases,
plans of good quality are provided fast, with our search en-
hancements playing an important role in the planner’s speed.

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

20

Defining the Input

A multi-modal journey planing task is determined by a user
query (i.e., a request to compute a journey plan), and the
status of a multi-modal transport network. This section con-
tains formal definitions of these. The transportation modes
(means) that we focus on are scheduled-transport modes
(with buses as a running example), bicycles available in
a city’s bike sharing network, and walking. Car parkings
could be handled similarly to bike stations.

A user query is a tuple 〈o, d, t0,m, q〉, where: o and d are
the origin and the destination locations; t0 is the start time;
m specifies a subset of transportation means that should be
considered; and q states maximal values (quotas) to parame-
ters such as the expected walking time, the expected cycling
time, and the number of vehicles (i.e., the max number of
buses and bicycles that could be used in a trip).

A multi-modal network snapshot is a structure
〈L,R, I,W, C〉 that encodes (possibly uncertain) knowl-
edge about the current status and the predicted evolution of
a transport network. L is a set of locations on the map, such
as the stops for scheduled transport (e.g., bus stops) and the
bike stations. In addition, given a user query, the origin and
the destination are added to L, unless already present. R
is a set of routes. A route r is an ordered sequence of n(r)
locations, corresponding to the stops along the route. For
a given route label in real life, such as “Route 39”, there
can be multiple route objects in set R. For example, there
is one distinct route object for each direction of travel (e.g.,
eastbound and westbound). Also, variations across different
times of the day, if any, result in different route objects.
I is a collection of trips. Informally, each trip is one

individual scheduled-transport vehicle (e.g., a bus) going
along a route (e.g., the bus that starts on route 39 at
4:30pm, going westbound). Formally, a trip i is a structure
〈r, fi,1, . . . fi,n(r)〉, where r is the id of its route, and each
fi,k is a probability distribution representing the estimated
arrival time at the k-th stop along the route.
W and C provide walking times and cycling times, for

pairs of locations, as probability distributions.
Part of the snapshot structure, such as the notions of routes

and trips, resembles the GTFS format1. GTFS, however,
handles no stochastic data and no bike-specific data.

The way the network snapshot is defined is partly justified
by practical reasons. It encodes available knowledge about
the current status and about the predicted evolution over a
given time horizon (e.g., estimated bus arrival times). At
one extreme, the snapshot can use static knowledge, such as
static bus schedules, or static knowledge based on histori-
cal data. At the other extreme, increasingly available sen-
sor data can allow to adjust the predicted bus arrival times
frequently, in real time (Bouillet et al. 2011). Our network
snapshot definition is suitable for both types of scenarios, al-
lowing to adjust the approach to the level of accuracy avail-
able in the input data.

1https://developers.google.com/transit/gtfs/reference

And/Or State Space
The search space is an and/or state space with continuous
time, stochastic action durations, and probabilistic action ef-
fects. States and transitions between states are discrete, just
as in a typical and/or space. The probabilities associated
with the non-deterministic effects of an action depend on
stochastic time parameters, such as the estimated time of ar-
rival (ETA) of a trip (e.g., a bus) and a user’s ETA at a (bus)
stop. In this section we describe the and/or state space, with
a focus on how the continuous, stochastic modelling of time-
related parameters affects the structure of the state space.

The core components of a state s include a position ps, a
density function ts,2 and a vector of numeric variables qs.
Some auxiliary state components are used for correctness
(e.g., to define what types of actions apply in which states)
and for pruning. In this section, we focus on the core com-
ponents, and particularly the time distribution ts.

The position ps ∈ L ∪ I can be either a location or a
trip id, in which case the user is aboard a trip. The time ts
is a probability distribution representing the uncertain time
when the user has reached position ps. Quotas left in this
state (e.g., for walking time, cycling time, number of vehi-
cles) are available in qs. In the initial state, the quotas are
taken from the user query. They get updated correspond-
ingly as the search progresses along an exploration path.

Actions considered are TakeTrip, GetOffTrip,
Cycle, and Walk. TakeTrip actions can have up to
two non-deterministic outcomes (success or failure), as dis-
cussed below. Other actions always succeed. The probabil-
ities associated with non-deterministic branches (effects of
an action) are determined dynamically, when the transition
is generated, based on one or two time-related probability
distributions, as shown later. Waiting for a trip to arrive is
implicitly considered, being the time between the user’s ar-
rival at a stop and the time of boarding a trip.

We start by describing the transitions, their probabilities
and the successors generated with a TakeTrip action ap-
plied in a state s with the location ps being a bus stop. Let i
be a trip that stops at ps, the k-th stop along the route. The
ability to catch trip i depends on the arrival time of the user
at ps, and the arrival time of the trip. Recall that ts, available
from s, models the user’s arrival time at location ps, whereas
fi,k, available as input data from the network model, repre-
sents the arrival time of the trip. Let U be a random variable
corresponding to ts, andB a random variable corresponding
to fi,k.
Proposition 1. Under the assumption that U and B are in-
dependent, the probability of being able to catch the trip is
P (U < B) =

∫∞
−∞ fi,k(y)

∫ y

−∞ ts(x)dxdy.

Proof Sketch: Fix a value y for the trip arrival time. The
probability that the user makes it before y is P (U < y) =∫ y

−∞ ts(x)dx. Generalizing to all values y across the range,
we obtain the desired formula. 2

In the general case of arbitrary probability distributions,
the previous formula could be difficult to solve analytically.

2For clarity, we stick with the case of continuous random vari-
ables. Discrete distributions are handled very similarly.

21

Fortunately, Monte-Carlo simulation provides an easy solu-
tion for estimating the probability P (U < B): draw a sam-
ple from U and one from B, repeat the process n times, and
count how often the former is smaller.

In state s, P (U < B) > 0 is a precondition for the action
of boarding trip i. When 0 < P (U < B) < 1, there are
two non-deterministic effects, corresponding to success and
failure, each outcome having probability P (U < B) and
1 − P (U < B) respectively. When P (U < B) = 1, only
the successful branch is defined.

In the successor state s′ along the successful branch, the
time of boarding the trip is a random variable corresponding
to the estimated arrival time of the trip, conditioned by the
fact that the user makes it to the stop before the trip. Using a
conditional probability in this case, as opposed to simply the
trip’s estimated arrival time, is preferable to avoid negative
waiting times.

Proposition 2. The density function ts′ , corresponding to
the time of boarding the trip, is

ts′(y) =
fi,k(y)

∫ y

−∞ ts(x)dx∫∞
−∞ fi,k(y)

∫ y

−∞ ts(x)dxdy
.

Proof. The boarding time is a random variable Z corre-
sponding to B, conditioned by U < B. Applying the
Bayes rule to the continuous variable B and the discrete
binary variable U < B, we obtain: ts′(y) = fZ(y) =
P (U<B|B=y)fi,k(y)

P (U<B) =
fi,k(y)

∫ y
−∞ ts(x)dx∫∞

−∞ fi,k(y)
∫ y
−∞ ts(x)dxdy

Corollary 1. If P (U < B) = 1, then ts′ = fi,k.

That is, when the user certainly makes it to the stop before
the trip (bus), then the distribution of the boarding time is the
same as the distribution of the trip arrival time.

On the failed branch, the time of reaching the child state
s′′ is a random variable with the same distribution as ts, cor-
responding to the user’s time of arrival at ps.

Obviously, the locations in the two successor states are
ps′ = i (i.e., the user is aboard the trip) and ps′′ = ps
(the user is still at the stop). Auxiliary state variables are
used to forbid multiple (failed) attempts to board the same
trip3 at location ps, either in a sequence or interleaved with
failed attempts to board other trips. This is implemented in a
straightforward way, in the style of a STRIPS encoding, and
the exact details are beyond the scope of this paper.

When aboard a trip i, GetOffTrip actions are defined
for all stops along the route subsequent to the boarding stop.
When applying a GetOffTrip action, to get off at the k-
th stop along the route of trip i, the time associated with the
successor state s′ is the same as the estimated arrival time of
the trip: ts′ = fi,k.

In the case of Cycle and Walk actions applied in a state
s, the time of reaching the destination depends on both the
starting time ts, and the duration of the action (with a given
density function g), both of which can be stochastic. Cy-
cling (or walking) time is assumed to be independent of
the starting time. Thus, the density function of reaching

3Of course, taking a later trip on the same route is allowed.

the destination (i.e., the time distribution of the successor
state s′) is the convolution of the two densities ts and g:
ts′(x) = (ts ∗ g)(x) =

∫∞
−∞ ts(y)g(x− y)dy.

As hinted earlier, distributions and probabilities derived
in this section could be difficult to solve analytically. In
practice, Monte Carlo simulation offers an alternative. The
only requirement is the ability to sample from original dis-
tributions in the data (e.g., fi,k, walking time distribution,
cycling time distribution), which in turn leads to the ability
to sample from all relevant distributions. For example, in
the summation X+Y of two independent variables, sample
from X , sample from Y and take their sum. In a conditional
distribution (X|X < Y), sample from X , sample from Y ,
and reject those instances where the condition is invalidated.

In summary, a continuous, stochastic time modelling has
a direct impact on the discrete structure of the and/or space,
influencing the applicability of actions, the number of (non-
deterministic) branches of an action, and their probabilities.
In addition, plan quality metrics are impacted, such as the
arrival time. Plan quality is discussed in the next section.

Plan Robustness to Uncertainty
As mentioned in the introduction, our optimality metrics
quantify the robustness of a plan to uncertainty. Consider
a contingent plan π where branches have associated proba-
bilities, and the times associated with states are stochastic,
being given as a probability distribution. Branch probabili-
ties induce a discrete probability distribution across the path-
ways in the plan (i.e., each pathway πi in the contingent plan
occurs with probability pi, where

∑
pi = 1).

Pathway πi has an arrival time given by ts, the probability
distribution of its goal leaf state s. From this, we extract ci,
the maximum arrival time for a given confidence threshold.
The main criterion is minimizing cmax = maxi ci. Ties
are broken by preferring plans with a better expected arrival
time, cexp =

∑
i pici. Given two plans with costs c and c′,

we say that c < c′ iff (cmax < c′max) ∨ (cmax = c′max ∧
cexp < c′exp) (lexicographic ordering).

Hardness Results
In this section, we develop a theoretical foundation for un-
derstanding the complexity of the multi-modal journey plan-
ning problem. To pin down causes of difficulty, we identify
simplified problems that turn out to be computationally diffi-
cult. We contrast our worst-case cost objective with the more
standard expected cost objective in terms of problem hard-
ness. The main conclusion from this section is that when
looking for a robust routing policy that minimizes the worst-
case travel time, the computational hardness stems from the
dynamically varying distributions.

Consider a graph G = (V,E) with |V | = n nodes,
|E| = m edges and a given source-destination pair of nodes
S, T . The edge costs are independent random variables com-
ing from given distributions. A routing policy specifies, for
each node in the graph and for each set of random variable
observations, the best successor to continue the route on. We
consider two variations of the problem under the following
assumptions on random variable observations:

22

Assumption 1. The actual edge cost is observed once an
edge is traversed.

Assumption 2. The actual edge cost is observed once an
endpoint of the edge is reached.

The second assumption is associated with the Canadian
Traveller problem (Papadimitriou and Yannakakis 1991;
Nikolova and Karger 2008), in which the goal is to find an
optimal policy for reaching from the source to the destina-
tion in minimum expected time.

In multimodal journey planning both assumptions can
arise. For example, whether a bridge is traversable or not de-
pends on its status (open or closed), which can be observed
when a user arrives at the bridge. On the other hand, riding a
bus has an associated stochastic cost whose actual value can
only be observed once the end-point is reached.

For a more general picture, we consider multiple combi-
nations of Assumptions 1 and 2. In the standard setting,
Assumption 1 holds, whereas Assumption 2 holds in the
look-ahead setting. The mixed setting considers both as-
sumptions. We now examine the computational complexity
for the associated problems with the two objective functions
in the different settings.

Expected cost objective
Standard setting When our goal is to reach the destina-
tion with minimum expected cost, by linearity of expecta-
tion, it suffices to replace each edge random variable cost
with its expectation and run a deterministic shortest path al-
gorithm for finding the optimal route. The expected value of
the edges that have not yet been traversed does not depend
on the edges traversed so far. Therefore, the offline optimal
solution (optimal plan) is also an optimal policy.

Proposition 3. The standard setting under the expected cost
objective can be solved in polynomial time via a determinis-
tic shortest path algorithm.

Look-ahead and mixed setting The look-ahead setting
with expected cost objective is also known as the Canadian
traveller problem, which is known to be #P-hard (Papadim-
itriou and Yannakakis 1991). Since the mixed setting in-
cludes the look-ahead setting as a special case, it is at least
as hard.

Worst-case cost objective
The worst-case cost objective is well-defined only if there
exists a path from the source to the destination along which
all edges costs have finite upper bounds. We have this as-
sumption when talking about the worst-case cost objective.
On the other hand, the expected cost can be finite even if a
distribution includes infinite values, as in the case of a Nor-
mal distribution, for example.

Standard setting In the standard setting, edges traversed
so far have no effect on the values of edge costs that have
not yet been traversed. Therefore, we can simply replace all
edge costs by their maximal values and run a deterministic
shortest path algorithm with respect to these values.

S
A

C

T

B

1
2 2

0,3 0,3

Figure 1: Worst-case cost routing changes depending on ob-
served edge costs in the look-ahead setting, while it does not
change in the standard setting.

Proposition 4. The standard setting under the worst-case
cost objective can be solved in polynomial time via a deter-
ministic shortest path algorithm.

Note, in particular, that just as in the standard setting un-
der the expected cost objective, the optimal plan and the op-
timal policy here coincide, namely the shortest path that is
computed should always be followed regardless of traversed
edges and their observed values along the way.

Look-ahead and mixed setting In the worst case, we will
observe the worst case edge values and will go along the
shortest path with respect to these worst-case edge values.
Proposition 5. The look-ahead setting under the worst-case
cost objective can be solved in polynomial time via a deter-
ministic shortest path algorithm with respect to edge weights
equal to the maximal edge costs.

The difference from the standard setting above is that
while routing, the shortest path from the current node to
the destination may change depending on the (look-ahead)
observations so far. Consider the example in Figure 1. At
the source node S, the path minimizing the worst-case cost
is through B. However, upon reaching A and seeing that
AC = 0, the optimal path becomes the one through C.

Finally, since a shortest path algorithm with respect to
edge weights equal to the maximum edge costs yields the
optimal routing strategy in both the standard and look-ahead
setting, it will do so in the mixed setting, as well.
Proposition 6. The mixed setting under the worst-case cost
objective can be solved in polynomial time via a determin-
istic shortest path algorithm with respect to edge weights
equal to the maximal edge costs.

Time-varying distributions
In the previous sections, we assumed that the edge distri-
butions do not change with time. We showed that in that
case, worst-case cost routing can be performed in polyno-
mial time (in contrast to expected cost routing). In practice,
the distributions change with time. For example, peak and
off-peak traffic distributions often differ. This changes the
problem complexity considerably. In this section, we show
that even in the simplest case with only two phases, the prob-
lem of just computing the maximum cost along a given path
is computationally hard, and consequently the problem will
be hard under all settings discussed above.
Theorem 1. Given a graph with stochastic edge costs that
come from static distributions before or at time t and from

23

different static distributions after time t, it is NP-hard to
compute the worst-case cost along a given path.

Proof. We reduce from the subset sum problem (for a given
set of integers a1, ..., an and a target t, decide if there exists a
subset which sums to t), which is NP-hard (Garey and John-
son 1979). Without loss of generality, we assume that ai 6= 0
for all i = 1, ..., n, since removing the zero elements has no
effect on the problem. Consider a single path consisting of
n edges e1, e2, ..., en in that order. Suppose that before time
t, the edge costs come from two-valued distributions: edge
ei takes on values {0, ai}. After time t, all edge costs are 0.
Denote the realized edge costs by di, i = 1, ..., n.

Without loss of generality, suppose that we start our jour-
ney along the path at time 0. The question is, where are we
going to be at time t so as to know which distribution to use
for each edge? We use the convention that if time t occurs at
the start or during traversal of edge ei, its value comes from
the second distribution (namely, its value is 0) and otherwise
its value comes from the first distribution.

If ek is the last edge that follows distribution 1, namely
time t occurs at the beginning or inside edge ek+1, then
the cost along the path can be expressed as

∑k
i=1 di =∑k

i=1 aixi ≤ t, where xi ∈ {0, 1} is an indicator variable
of whether di = 0 or di = ai. Therefore, the worst-case
path cost is given by the program:

max
k,x
{

k∑
i=1

aixi |
k∑

i=1

aixi ≤ t ;
k∑

i=1

aixi + ak+1 > t ; (1)

xi ∈ {0, 1} ∀i = 1, ..., k.}
The two constraint inequalities represent the fact that time
t occurs at the beginning or inside of edge ek+1. The max-
imum is taken over k = 1, 2, ..., n. (To be precise, when
k = n, the second inequality is eliminated.)

Next, we will show that the value of program (1) is t if
and only if there is a subset of {a1, ..., an} that sums to t.

We first show that the maximum in program (1) is attained
at k = n, namely, it is equivalent to the following program:

max
x
{

n∑
i=1

aixi |
n∑

i=1

aixi ≤ t; xi ∈ {0, 1} ∀i = 1, ..., n.} (2)

Claim 1. Programs (1) and (2) have the same optimal value.

Proof. First, we note that the maximum value of pro-
gram (1) can only increase if we remove the second con-
straint. On the other hand, with the second constraint re-
moved, the maximum (x1, ..., xk) of

max
x
{

k∑
i=1

aixi |
k∑

i=1

aixi ≤ t; xi ∈ {0, 1} ∀i = 1, ..., k.} (3)

extended by xj = 0 for j > k is a feasible solution to pro-
gram (2), and thus its value is no more than the value of
program (2), for all k. So, the value of program (1) is less
than or equal to the value of program (2). On the other hand,
the value of program (2) is less than or equal to that of pro-
gram (1), since the latter is a maximum over program (2) (for
k = n) and other programs (for k < n). Thus, the values of
the two programs are equal.

Claim 2. The value of program (2) is t if and only if there is
a subset of {a1, ..., an} that sums to t.

Proof. Suppose the value of program (2) is t. Then, the ob-
jective of program (2) specifies a subset of {a1, ..., an} that
sums to t. Conversely, suppose there is a subset that sums to
t. Taking xi = 1 if ai is in the subset and xi = 0 otherwise
gives a feasible solution to the program of value t. There-
fore, the maximum of the program is at least t. On the other
hand, the maximum is at most t by the inequality constraint.
Therefore, it is exactly t, as desired.

To conclude, for any given set of integers a1, ..., an,
we have provided a polynomial-time transformation to the
worst-case cost problem, whereby a subset of the integers
sums to t if and only if the worst-case cost is t. Therefore,
the worst-cost problem is NP-hard.

Searching for a Plan
Being interested in optimizing plan robustness to uncer-
tainty, as defined earlier, we focus on methods that even-
tually output optimal plans, possibly in an any-time manner.
Repeated calls to Weighted AO*, with decreasing weights,
provide an any-time behavior, computing increasingly bet-
ter solutions. In deterministic search, a similar strategy has
been used in the Lama planner (Richter and Westphal 2010)
using Weighted A* (Pohl 1970) as a baseline algorithm.

In the evaluation, the and/or space is explored as a tree,
since pruning rules described later in this paper work in a
setting where the path to a state is relevant.

Admissible Heuristic
Given a destination location, an admissible heuristic is pre-
computed in low-polynomial time and stored as a look-up
table. For every location (stops, bike stations, origin), the
table stores an admissible estimation of the travel time from
that location to the destination. The relaxation considered
in the computation of the heuristic ignores waiting times,
slow-downs along a route segment, any actual quotas left in
a state, and the possibility that boarding a trip could fail.

The heuristic look-up table is built with a regression run of
the Dijkstra algorithm, in a graph obtained as follows. Each
location is a node. There are multiple kinds of edges, each
corresponding to one transport mode (taking a trip, cycling,
walking). Two consecutive stops along a route are connected
with an edge whose cost is a lower bound for the travel time
of a trip along that segment. If the shortest walking time
between two given locations is smaller than a threshold TW
given as a parameter, an edge is added between the two lo-
cations. The cost is a lower bound on the walking time be-
tween the two locations. Edges corresponding to cycling are
created similarly, with a different threshold parameter TC .

Let qw and qc be the maximal walking time, and the max-
imal cycling time set in a given user query. If TW ≥ qw and
TC ≥ qc, then the heuristic computed as above is admissible
for the instance at hand.

The computation outlined in this section is simple. Un-
der the assumption of a deterministic environment, which is
the norm with existing multi-modal journey planners, such

24

a computation, or variations of it, could be used to pro-
vide rough deterministic journey plans, which ignore, for
instance, the waiting time. In contrast, we use such infor-
mation as heuristic guidance to obtain more detailed plans,
with risk hedging capabilities.

Relaxing uncertainty by optimistically assuming that the
best outcome will be available is relatively common. In the
Canadian Traveler’s Problem, optimistic roadmaps assume
that all roads will always be accessible (Eyerich et al. 2010).

Pruning with State Dominance
State dominance (Horowitz and Sahni 1978) can help prun-
ing a search space. In our domain, we define dominance
as s ≺ s′ iif ps = ps′ , qs ≥ qs′ component-wise, and
P (Ts ≤ Ts′) = 1.4 In other words, a state dominates an-
other if they have the same location, and the former state is
better with respect to both time and relevant quotas.

State dominance is generally slower than duplicate detec-
tion, as the latter can be implemented efficiently with hash
codes, such as Zobrist hashing (Zobrist 1970), and trans-
position tables. Thus, an efficient (i.e., fast) implementa-
tion of a full-scale dominance check, comparing every new
state against previously visited states, is not trivial. Here we
present an effective approach to partial dominance checking.

Given a state s, let its subtree cost sc(s) be the optimal
cost of a plan rooted at s (i.e., plan to an instance where the
starting time, starting location and quotas are taken from s).
Lemma 1. Given two states, if s ≺ s′, then sc(s) ≤ sc(s′).

Let d→ denote a deterministic transition. Similarly, s→ de-

notes a transition on a successful branch, and
f→ a transition

on an action failed branch. In particular, successful branches

include deterministic branches. Symbols d
;, s

;, and
f
; de-

note sequences of one or more transitions of a given type.
Observation 1. Let a be an action with two non-
deterministic outcomes in a valid plan π. Removing action a
from π, together with the entire subtree along the successful
branch, results in a valid plan.

Lemma 2. Let s s→ s′ and s
f→ s′′ be two branches of an

action a in an optimal plan. Then sc(s′) ≤ sc(s′′).

The intuition for the proof is that, if sc(s′) > sc(s′′),
then removing action a and its subtree under the successful
branch will result in a strictly better plan.

Theorem 2. Let s1, s2 and s3 be three states such that s1
d→

s2 and s1
s
; s3. If s2 ≺ s3, then assigning an∞ score to

s3 does not impact the correctness, the completeness and the
optimality of a tree search.

Proof Sketch: It can be shown that a best solution π3 con-
taining s1

s
; s3 cannot possibly beat a best solution π2 that

contains s1
d→ s2. The sequence s1

s
; s3 contains zero

or more successful, but not deterministic branches, which
leads to zero or more failed transitions branching out from
pathway s1

s
; s3. Applying Lemma 2 recursively, for each

4Ts is the random variable with the density function ts.

such failed branch, starting with the branch closest to s3,
we obtain that sc(s3) ≤ c13, where c13 is the cost of a best
plan rooted at s1 that contains s1

s
; s3. From Lemma 1,

sc(s2) ≤ sc(s3). Thus, sc(s2) ≤ sc(s3) ≤ c13, which leads
to cost(π2) ≤ cost(π3).

2

Theorem 2 allows defining the following pruning strate-
gies. First, consider a sequence s1 → s2 → s3, where the
first action is boarding a trip i at the k-th stop, and the next
action is getting off at the m-th stop. Let L be the set of
intermediate stops from index k+1 tom−1. On any subse-
quent path from s3 that contains only successful transitions,
states with ps = l ∈ L should be considered deadends.

Secondly, consider a pathway in the search tree s1
s
; s3.

Assume that boarding a trip i from state s1 (action a) is pos-
sible with a deterministic transition. Assume that boarding
trip i from state s3 (action b) is possible (with a given prob-
ability of success P > 0). Furthermore, assume that ps1
is an earlier stop than ps3 along i’s route. Then, there is no
need to consider action b. Both rules are instantiations of the
more generic claim described in Theorem 2.

Finally, consider a sequence s1
s
; s3 such that ps1 = ps3 .

Then, s3 can be pruned away, thus forbidding to revisit a lo-
cation on a sequence of successful transitions. This rule falls
slightly outside the context of Theorem 2, but its correctness
can be proven in a similar manner.

Notice the importance of the conditions that the path
s1

s
; s3 should contain only successful branches, and that

s1
d→ s2 should be deterministic. We illustrate this with a

counter-example, showing that it can make sense to re-visit a
given location s, if the path s;s contains at least one failed
branch. Consider that s is a stop and there is ample time to
wait for the next trip b. An optimal policy could be to walk
to a nearby stop and attempt to take a faster, express con-
nection. If unable to catch the express line (failed branch),
return to s and catch trip b.

Experiments
We implemented our planner in C++, and ran experiments
on a machine with Intel Xeon CPUs at 3.47 GHz, running
Red Hat Enterprise 5.8. The input data were created starting
from real “static” data (location coordinates, bus routes) and
real historical data (bus GPS records) from Dublin, Ireland.
A total of 3617 locations considered include 3559 bus stops,
44 bike stations, and 14 points of interest. Buses in Dublin
report their GPS location every 20 seconds. Based on one
month of historical GPS data collected during working days,
we have computed the estimated time of arrival (i.e., mean
and standard deviation) for 3707 bus trips, corresponding
to 202 bus routes. We have assumed a normal noise in the
ETAs, bounded to a 99.7% coverage area. A similar type of
noise is used for walking and cycling times, with a standard
deviation of 20 seconds. When Monte Carlo simulations are
used for manipulating random variables, we generate 500
samples from each distribution. There are cases when no
simulation is needed. For example, given two Normal distri-
butions Vi ∼ N(µi, σ

2
i), i = 1, 2, if µ1 + 3σ1 < µ2 − 3σ2,

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

16 8 4 2 1

S
ub

op
tim

al
ity

 ra
tio

 (p
 =

 o
n)

Weight value

 0

 0.2

 0.4

 0.6

 0.8

 1

16 8 4 2 1

Ti
m

e
ra

tio
 (p

 =
 o

n)

Weight value

Figure 2: Any-time performance: solution quality and
search effort normalised to the case w = 1.

the probability P (V1 > V2) is virtually negligeable.
Six hundred user queries were created as follows. Set A,

with 300 instances, is created using 100 tuples with random
start and destination locations (among the 3617 locations
considered), and a random starting time. The total num-
ber of vehicles (buses/bikes) planned in a trip, an important
itinerary feature in travellers’ perception, is varied from 2 to
4, to a total of 300 instances. Walking is set to a max of 10
minutes, and cycling to one hour. Set B, of 300 instances,
is generated similarly, except that we explicitly encourage
non-determinism in catching connections. The start, the tar-
get, and the starting time are chosen (randomly) under the
additional conditions that catching a bus on both a first and
a second leg towards the destination are uncertain. In par-
ticular, we found bus stops seeing two buses, belonging to
crossing routes, whose arrival time windows overlap, lead-
ing to an uncertain connection between the two buses. Of
course, this doesn’t necessarily mean that a returned plan
would include those particular legs.

We evaluated our planner based on WAO* with and with-
out prunning (p = on/off), across a range of weights w. All
versions include the admissible heuristic presented earlier.
The heuristic is precomputed in less than 4 seconds. Most of
this time is used to build the heuristic’s graph, given that our
implementation naively iterates through all pairs of nodes
when building the walk edges. Time and memory are lim-
ited to 10 minutes and 4 GB RAM per instance.

Figure 2 summarizes the any-time performance of
IWAO*, when w ∈ {16, 8, 4, 2, 1}. These charts are for set
A with pruning on. Results for other combinations (set of
instances and pruning activation) are qualitatively very sim-
ilar, being omitted to save space. Plotted data correspond to
the subset of instances solved with every weight value in use.
To be able to aggregate the results over multiple instances,
data are normalised to the case w = 1. In other words, given
an instance ι and a weight w, the cmax cost of a correspond-
ing plan is divided by the optimal cmax cost, obtained with
w = 1. Similarly, timing data (right) are normalised rela-
tive to the running time of AO* on a given instance. Both
mean and standard deviation values are shown. The results
show a good any-time performance. Higher weight values
(e.g., 4 or 8) under a given threshold (e.g., 8) allow find-
ing good solutions quickly. If sufficient time and memory
are available, an optimal solution is eventually returned with
AO*. The observed any-time performance also points out

 1

 10

 100

 1000

 10000

 1 2 3 4 5

N
um

be
r o

f p
la

ns

Number of branches

 10

 100

 1000

 10000

 1 2 3 4 5

N
um

be
r o

f p
la

ns

Number of branches

Figure 4: Nr. of branches per plan. Left: set A; right: set B.

the usefulness of the admissible heuristic. Indeed, one can-
not perform weighted search unless a heuristic is available.
Performing weighted search results not only in computing
solutions faster, but also in more instances solved. The per-
centage of solved instances is 94.4 (w = 16), 95.5 (w = 8),
88.75 (w = 4), 51.75, (w = 2) and 38.5 (w = 1).

Figure 3 evaluates the impact of state dominance prun-
ing. A chart shows data for the subset of instances solved by
both program variants evaluated in that chart (i.e., pruning
on/off). Each such instance results in a data point. Points un-
der the diagonal line indicate a speed-up due to the pruning.
As shown in the any-time performance analysis, weights
such as 1 and 2 produce the high-quality plans, but they
correspond to more difficult searches. Figure 3 shows that
our pruning helps speeding up such difficult searches, ca-
pable of providing plans of optimal or near-optimal quality.
Dominance-based pruning confirms the expectation to work
in optimal searches (w = 1). Also, it has a consistently good
behavior in a weighted, sub-optimal search, using a weight
such as 2. For larger weights, pruning shows a mixed be-
havior which, at a closer analysis, is not entirely surprising.
The concept of state dominance is closely related to solution
quality, since a dominated state cannot lead to a better solu-
tion than a dominating one. On the other hand, with a large
weight in use, the search aggresively prefers states evalu-
ated as closer to the goal, and it returns a solution without
proving its optimality. Thus, it is possible in principle that
expanding a dominated state might lead more quickly to a
more suboptimal solution.

Figure 4 shows the distribution of contingent plans ac-
cording to how many pathways they contain. The data show
that uncertainty in a transport network can lead to a need
for more flexible, contingent plans, as opposed to sequential
plans. A sample plan is illustrated in Figure 5.

Related Work
In a problem related to uni-modal transport, such as driv-
ing in a road network, Nikolova et al. (2006a) consider
stochastic costs for edges, modelled with random variables.
More such related models that integrate risk-aversion have
been considered by (Loui 1983; Nikolova et al. 2006b;
Nikolova 2010; Fan et al. 2005; Nikolova and Karger 2008).
Our notion of robust plans is somewhat related to robust
optimization (cf. Bertsimas et al. 2011) and percentile op-
timization in Markov Decision Processes (cf. Delage and
Mannor 2010). Wellman et al. (1995) investigate route plan-

26

10-1

100

101

102

103

10-1 100 101 102 103

Ti
m

e
in

 s
ec

on
ds

 (p
 =

 o
n)

Time in seconds (p = off)

10-4

10-3

10-2

10-1

100

101

102

103

10-4 10-310-2 10-1 100 101 102 103

Ti
m

e
in

 s
ec

on
ds

 (p
 =

 o
n)

Time in seconds (p = off)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

Ti
m

e
in

 s
ec

on
ds

 (p
 =

 o
n)

Time in seconds (p = off)

10-4

10-3

10-2

10-1

100

101

102

103

10-4 10-310-2 10-1 100 101 102 103

Ti
m

e
in

 s
ec

on
ds

 (p
 =

 o
n)

Time in seconds (p = off)

a b c d

Figure 3: Impact of pruning on a logarithmic scale: a) w = 1, set A; b) w = 1, set B; c) w = 2, set A; d) w = 2, set B.

ning under time-dependent edge traversal costs. They take a
dynamic programming approach, using a notion of stochas-
tic dominance to prune away dominated partial paths.

Contingent planning (Peot and Smith 1992) is planning
under uncertainty with some sensing capabilities. Uncer-
tainty stems from a partially known initial state and/or non-
deterministic action effects. Approaches to contingent plan-
ning include searching in a space of belief states (Bonet and
Geffner 2000; Cimatti and Roveri 2000; Hoffmann and Braf-
man 2005), and compilation from a belief state space to fully
observable states (Albore et al. 2009). Our planner searches
in an and/or space of explicit states.

Restarting WA*, or RWA* (Richter et al. 2010), is a strat-
egy that invokes WA* (Pohl 1970) repeatedly. RWA* re-

Start

Probability 0.508
 TAKE BUS ON ROUTE

 32

Probability 0.492
 MISSED BUS

Walking time 00:00:00
Waiting time 00:00:05

Vehicles 1
Time of arrival 22:27:45

GET OFF BUS AT
 Talbot Street

 Junction Gardiner Street

Probability 0.134
 TAKE BUS ON ROUTE

 32B

Probability 0.866
 MISSED BUS

Walking time 00:00:00
Waiting time 00:00:21

Vehicles 1
Time of arrival 22:34:51

GET OFF BUS AT
 Talbot Street

 Junction Gardiner Street

WALK TO
 Wendell Avenue

 Junction Strand Road

TAKE BUS ON ROUTE
 102

GET OFF BUS AT
 Station Road

 Sutton Train Station

WALK TO
 Dublin Road

 Opposite St. Fintan's School

TAKE BUS ON ROUTE
 31

Walking time 00:09:44
Waiting time 00:16:56

Vehicles 2
Time of arrival 22:57:05

GET OFF BUS AT
 Talbot Street

 Junction Gardiner Street

Figure 5: Sample contingent plan.

uses information across invocations of WA*, such as heuris-
tic state evaluations, and shortest known paths to states. In
our program, the heuristic is readily available in a look-up
table. Furthermore, we search in a tree, where a node has a
unique path from the root. Thus, in our application, it makes
sense to keep the invocations of WAO* independent.

Pruning based on state dominance has been applied to
problems such as robot navigation (Mills-Tettey et al. 2006),
pallet loading (Bhattacharya et al. 1998) and test-pattern
generation for combinational circuits (Fujino and Fujiwara
1993). For example, in robot navigation (Mills-Tettey et al.
2006), both a robot’s position and its battery level are part
of a state. This bears some similarity with our definition of
dominance. The difference is in the “resources” considered,
such as the battery level versus the (stochastic) time, and the
quotas for walking, cycling and vehicle inter-changes.

A few recent works deal with problems in multidimen-
sional networks, such as measuring structural properties
(Berlingerio et al. 2011a; 2012) or analysing multidimen-
sional hubs (Berlingerio et al. 2011b).

Summary and Future Work
We address multi-modal journey planning in the presence
of uncertainty. We present a new hardness result, show-
ing that, when the distributions of stochastic edge costs
vary with time, minimising the maximal travel time is NP-
hard. We model the problem as non-deterministic, prob-
abilistic planning, and use a notion of plan robustness to
uncertainty as a solution optimality criterion. We develop
a solver using Weighted AO* as a baseline search method.
Speed-up enhancements include an admissible heuristic and
state-dominance pruning rules, whose soundness is formally
proven. Our empirical evaluation uses Dublin’s bus and
shared-bicycle networks, with buses’ estimated times of ar-
rival (ETAs) compiled from actual, historical GPS traces.
The results show that the approach is viable. The system
has a good any-time behavior, and our enhancements play
an important role in the planner’s performance.

Future work includes speeding up the solver further, and
adding more transport modes, such as trains and trams. We
plan to connect the system to a platform that computes ETAs
in real time (Bouillet et al. 2011). A simplified version of
our domain could be used in the IPC probabilistic track.

27

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In
Boutilier, C., ed., IJCAI, 1623–1628.
Berlingerio, M.; Coscia, M.; Giannotti, F.; Monreale, A.;
and Pedreschi, D. 2011a. Foundations of multidimensional
network analysis. In ASONAM, 485–489.
Berlingerio, M.; Coscia, M.; Giannotti, F.; Monreale, A.;
and Pedreschi, D. 2011b. The pursuit of hubbiness: Analy-
sis of hubs in large multidimensional networks. J. Comput.
Science 2(3):223–237.
Berlingerio, M.; Coscia, M.; Giannotti, F.; Monreale, A.;
and Pedreschi, D. 2012. Multidimensional networks: foun-
dations of structural analysis. World Wide Web 1–27.
Bertsimas, D.; Brown, D. B.; and Caramanis, C. 2011.
Theory and applications of robust optimization. SIAM Rev.
53(3):464–501.
Bhattacharya, S.; Roy, R.; and Bhattacharya, S. 1998. An
exact depth-first algorithm for the pallet loading problem.
European Journal of Operational Research 110(3):610–
625.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In AIPS-00,
52–61. AAAI Press.
Bouillet, E.; Gasparini, L.; and Verscheure, O. 2011. To-
wards a real time public transport awareness system: case
study in dublin. In Candan, K. S.; Panchanathan, S.; Prab-
hakaran, B.; Sundaram, H.; chi Feng, W.; and Sebe, N., eds.,
ACM Multimedia, 797–798. ACM.
Cimatti, A., and Roveri, M. 2000. Conformant planning
via symbolic model checking. J. Artif. Intell. Res. (JAIR)
13:305–338.
Delage, E., and Mannor, S. 2010. Percentile optimization
for markov decision processes with parameter uncertainty.
Oper. Res. 58(1):203–213.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-quality
policies for the canadian traveler’s problem. In AAAI.
Fan, Y.; Kalaba, R.; and J.E. Moore, I. 2005. Arriving
on time. Journal of Optimization Theory and Applications
127(3):497–513.
Fujino, T., and Fujiwara, H. 1993. A search space prun-
ing method for test pattern generation using search state
dominance. Journal of Circuits, Systems and Computers
03(04):859–875.
Garey, M., and Johnson, D. 1979. Computers and In-
tractability. New York: Freeman Press.
Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Biundo, S.; Myers, K.; and Rajan, K., eds., ICAPS, 71–80.
Monterey, CA, USA: AAAI.
Horowitz, E., and Sahni, S. 1978. Fundamentals of Com-
puter Algorithms. Computer Science Press.
Liu, L., and Meng, L. 2009. Algorithms of multi-
modal route planning based on the concept of switch point.

PFG Photogrammetrie, Fernerkundung, Geoinformation
2009(5):431–444.
Loui, R. P. 1983. Optimal paths in graphs with stochastic or
multidimensional weights. Commun. ACM 26(9):670–676.
Mills-Tettey, G. A.; Stentz, A.; and Dias, M. B. 2006. Dd*
lite: Efficient incremental search with state dominance. In
Proceedings of AAAI, 1032–1038. AAAI Press.
Nikolova, E., and Karger, D. 2008. Route planning un-
der uncertainty: The Canadian Traveller problem. In Pro-
ceedings of the Twenty-Third Conference on Artificial Intel-
ligence (AAAI).
Nikolova, E.; Brand, M.; and Karger, D. R. 2006a. Opti-
mal route planning under uncertainty. In Long, D.; Smith,
S. F.; Borrajo, D.; and McCluskey, L., eds., ICAPS, 131–
141. AAAI.
Nikolova, E.; Kelner, J. A.; Brand, M.; and Mitzenmacher,
M. 2006b. Stochastic shortest paths via quasi-convex maxi-
mization. In Lecture Notes in Computer Science 4168 (ESA
2006), 552–563.
Nikolova, E. 2010. Approximation algorithms for re-
liable stochastic combinatorial optimization. In Proceed-
ings of Approx/Random’10, 338–351. Berlin, Heidelberg:
Springer-Verlag.
Nonner, T. 2012. Polynomial-time approximation schemes
for shortest path with alternatives. In Epstein, L., and Fer-
ragina, P., eds., ESA, volume 7501 of Lecture Notes in Com-
puter Science, 755–765. Springer.
Papadimitriou, C., and Yannakakis, M. 1991. Shortest paths
without a map. Theoretical Computer Science 84:127–150.
Peot, M. A., and Smith, D. E. 1992. Conditional non-
linear planning. In Proceedings of the first international
conference on Artificial intelligence planning systems, 189–
197. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1(3):193–204.
Richter, S., and Westphal, M. 2010. The lama planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127–177.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In Brafman,
R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A., eds.,
ICAPS, 137–144. AAAI.
Wellman, M. P.; Larson, K.; Ford, M.; and Wurman, P. R.
1995. Path planning under time-dependent uncertainty. In
In Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence, 532–539. Morgan Kaufmann.
Zobrist, A. L. 1970. A new hashing method with ap-
plications for game playing. Technical report, Depart-
ment of Computer Science, University of Wisconsin, Madi-
son. Reprinted in International Computer Chess Association
Journal, 13(2):169-173, 1990.
Zografos, K. G., and Androutsopoulos, K. N. 2008. Al-
gorithms for itinerary planning in multimodal transportation
networks. IEEE Transactions on Intelligent Transportation
Systems 9(1):175–184.

28

