
Route Planning under Uncertainty: The Canadian Traveller Problem

Evdokia Nikolova and David R. Karger ∗

Abstract

The Canadian Traveller problem is a stochastic shortest
paths problem in which one learns the cost of an edge
only when arriving at one of its endpoints. The goal is to
find an optimal policy that minimizes the expected cost
of travel. The problem is known to be #P-hard. Since
there has been no significant progress on approximation
algorithms for several decades, we have chosen to seek
out special cases for which exact solutions exist, in the
hope of demonstrating techniques that could lead to fur-
ther progress. Applying a mix of techniques from algo-
rithm analysis and the theory of Markov Decision Pro-
cesses, we provide efficient exact algorithms for directed
acyclic graphs and (undirected) graphs of disjoint paths
from source to destination with random two-valued edge
costs. We also give worst-case performance analysis and
experimental data for two natural heuristics.

Introduction
The Canadian traveller problem was first defined (Pa-
padimitriou & Yannakakis 1991) to describe a situation
commonly encountered by travellers in Canada: once a
driver reaches an intersection, he sees whether the in-
cident roads are snowed out or not and consequently
decides which road to take. In a graph instance, we are
given distributions for the costs of the edges, and upon
arriving at a node we see the actual cost values of in-
cident edges. The goal is to find an optimal policy for
reaching from source S to destination T that minimizes
expected cost.

The Canadian Traveller problem is exemplar of sev-
eral interesting and important issues in optimization. It
is a stochastic optimization problem, in which some de-
tails of the input (the edge lengths) are unknown when
the problem is being solved. It is adaptive—decisions
are made as the algorithm is running, based on new in-
formation that arrives during that time. There is a cost

∗MIT CSAIL, Cambridge MA 02139, USA, {enikolova,
karger}@csail.mit.edu
Copyright c© 2008, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

to gather information—one must travel to a vertex to
discover its incident edge costs. It therefore involves
the classic problem of exploration versus exploitation,
in which one must decide whether to exploit the (pos-
sibly suboptimal) information acquired so far, or invest
further cost in exploration in the hope of acquiring bet-
ter information.

The Canadian traveller problem and similar formula-
tions find application in transportation, planning, robot
navigation and other areas. Its importance is convinc-
ingly demonstrated by the diversity of fields of re-
search that have considered it, eg. (Papadimitriou &
Yannakakis 1991; Ferguson, Stentz, & Thrun 2004;
Blei & Kaelbling 1999; Bar-Noy & Schieber 1991;
Polychronopoulos & Tsitsiklis 1996). Despite its im-
portance, very little progress has been made in for-
mal approaches to the problem. Canadian Traveller
was shown to be #P-hard (Papadimitriou & Yannakakis
1991). Because of this negative result, the focus falls
naturally on approximation algorithms. But to date,
none have been developed. Indeed, even simpler ques-
tions such as whether there exists a polynomial size de-
scription of an optimal or approximately optimal pol-
icy, regardless of whether it can be constructed, remain
unanswered.
Our results. In light of the lack of progress on ap-
proximation algorithms, we have chosen to explore ex-
act solutions on special classes of graphs. Our aim is
to begin to understand the structure of good solutions,
and the barriers to finding them, as a first step toward
more general instances. We explain the connection of
our problem to Markov Decision Processes (MDPs).
MDPs can be solved in time polynomial in the size of
the state space. The problem is that for Canadian Trav-
eller, the obvious state space is exponential in the size
of the graph: there is one state for each possible set of
observations of values (so far) for any reachable subset
of the edges.

We begin with the (well understood) result that if in-
cident edge costs are resampled each time we visit a
vertex, the problem becomes a standard MDP solvable

in polynomial time. Similarly, in the case of a directed
acyclic graph (DAG), the problem is easily solved by
dynamic programming. In both cases, the state space
is small because we need not remember edge costs—in
the case of resampling, the edges will be different each
time we look, and in the case of DAGs, we will never
return to an edge. But as soon as one can return to edges
of fixed value, this approach fails.

It became clear that a core question in Canadian trav-
eller is when to turn back and seek a different route. To
separate this question from the more general problem
of which way to go forward, we considered the special
case of a graph made of parallel paths (which are node
disjoint except at the source and destination). We give
an exact polynomial-time algorithm for the case where
the edges take on two distinct values at random. When
one of the values is 0 the optimum policy has a simple
closed form description; when both values are nonzero
we show how to capture the problem in a small MDP.
Finally, we analyze and provide experimental results for
two natural heuristics. A number of the proofs appear in
the full version of this paper (Karger & Nikolova 2008).
Additional related work. Since each field has used a
different term for the same problem such as the bridge
problem (Blei & Kaelbling 1999) and others, related
work is sometimes difficult to recognize. Among the
work most closely related to ours after Papadimitriou &
Yannakakis (Papadimitriou & Yannakakis 1991), is that
of Bar-Noy and Schieber (Bar-Noy & Schieber 1991)
who analyze an adversarial version of the problem from
a worst-case perspective. The authors also consider a
stochastic version, though overall their assumptions al-
ter the nature of the problem significantly and allow for
an efficient solution. We assume that once an edge cost
is observed, it remains fixed for all time and remark in
the next section on the much easier version in which a
new value for the edge is resampled from its distribution
at each new visit. Blei and Kaelbing (Blei & Kaelbling
1999) consider the same version of the Canadian trav-
eller problem discussed here and offer solutions based
on Markov Decision Processes, though they note that
their solutions are exponential in the worst case.

A different perspective of adaptive routing prob-
lems is offered by the framework of competitive anal-
ysis (Kalai & Vempala 2005). Other work on adap-
tive routing includes (Fan, Kalaba, & J. E. Moore ;
Gao & Chabini 2002; Boyan & Mitzenmacher 2001;
Hajiaghayi et al. 2006; McDonald ; Peshkin & Savova
2002).

Problem formulation and preliminaries
Consider a graph G(V, E) with a specified source S
and destination T . The edges in the graph have un-
certain costs, coming from known probability distri-
butions. For edge e, we shall denote its random vari-
able cost by Xe and its realized value by xe or simply

cost(e).1 Upon reaching a node, an agent observes the
realized values of all edges adjacent to that node. The
objective is to find the optimal policy for routing from
the source to the destination, which minimizes the ex-
pected cost of the route.

A Markov Decision Process formulation
It is known that the optimal policy of Markov Decision
Processes (MDPs) can be found in polynomial time in
the size of the MDP (the number of states and actions),
for example via linear programming (Puterman 1994).
However, most often, the size of the MDP blows up
and such exact solutions are typically exponential, un-
less there is a clever way of defining the MDP which
reduces its size.

The Canadian traveller problem can be reduced to a
finite belief-state MDP in which a state is a node to-
gether with values of observed edges so far. Note how-
ever that due to the unfolding history this would lead to
exponentially many states even on a simple graph with
only two possible values for the edge costs and thus it
would give an inefficient solution for the optimal policy.

Comparison with an easier version: Canadian
Traveller with resampling
Consider the Canadian Traveller problem as defined
above with the additional assumption that every time we
come back to a node, we observe newly resampled val-
ues for the incident edges. In this case, there a natural
choice for an MDP that solves the problem in polyno-
mial time.

Define an MDP in which is a state is simply the node
of current position. An action is the choice of which
next node to visit. Then the number of states is equal to
the number of vertices |V | and the MDP can be solved
in polynomial time: in particular, we can find in polyno-
mial time the expected cost w(v) of the optimal policy
for getting from each node v to the destination (prior to
having seen the costs of edges incident to v). The opti-
mal action once we arrive at a node v is then to choose
its next neighbor v′ minimizing the cost of edge (v, v′)
plus the optimal cost w(v′) to the destination.

Optimal policy for DAGs
For the rest of the paper, we consider the standard ver-
sion of the Canadian Traveller problem, in which once
observed, an edge cost remains fixed. In this section
we show that the special case of directed acyclic graphs
(DAGs) can be solved in polynomial time.

In general the Canadian Traveller problem with fixed
observations is much harder than the version with re-
sampling: perhaps surprisingly, since in essence we are

1We distinguish between the cost of a path, which is the
sum of the costs of its edges, and its length, which is the num-
ber of edges on the path.

now better informed of the costs of all previously ob-
served edges. From the point of view of MDPs, a corre-
sponding MDP modeling this version requires a much
bigger state space since a state needs to reflect all past
observations. An exact solution would therefore require
exponential time.

In a DAG on the other hand, we can never return to
an edge that has been previously visited, so the versions
with and without resampling are essentially identical
problems. Thus we can solve DAGs in polynomial time
with the same MDP as in the case of resampling. We
now give a direct faster polynomial-time solution for
general DAGs based on dynamic programming.

Theorem 1. The Canadian traveller problem on a di-
rected acyclic graph with |E| edges can be solved ex-
actly in time O(|E|).

Proof. Denote by w(v) the expected cost of follow-
ing the optimal policy from node v to the destination.
Upon arrival at node v, one sees the actual costs of
all outgoing edges, hence the optimal policy would
choose the edge (v, v′) minimizing {cost(v, v′) +
E[cost(v′, destination)]}. The second term is w(v′)
by definition. Thus, the expected cost at v is the expec-
tation of this minimum:

w(v) = E[min
v′

{Xvv′ + w(v′)}], (1)

where Xvv′ is the random cost of edge (v, v′).
From Eq. (1), the optimal policy costs w(v) can

be computed efficiently by traversing the nodes of the
graph v in reverse topological order. The calculation of
a minimum of several random variables is standard in
statistics. In the graph, we can compute the expected
minimum as p1c1 + (1 − p1)[p2c2 + (1 − p2)[p3c3 +
...]], where c1 < c2 < ... are the possible values of
the random variables [Xvv′ + w(v′)] (for all v′) and
p1, p2, ... their corresponding probabilities. Thus com-
puting w(v) for a single node from Eq. (1) is done in
time linear in the number of outgoing edges of v. Con-
sequently, the total running time of the algorithm is lin-
ear in the total number of edges O(|E|).

The optimality of this algorithm critically follows
from the fact that the graph is directed and acyclic, thus
the optimal policy cost w(v) at every node v only de-
pends on the children of v and hence it is computed
correctly (proof by induction, starting from the last
node).

Properties of disjoint-path graphs
In this section, we derive a key monotonicity prop-
erty of the optimal policy on undirected disjoint-path
graphs (consisting of disjoint ST -paths), with indepen-
dent identically distributed (iid) edges.

Consider an undirected graph consisting of k node-
disjoint paths between the source S and destination T .

Any algorithm would follow one path up to a point, then
possibly return to the source to explore a part of a sec-
ond path, etc. until it reaches the destination. In the
worst case, it may turn at every node, reaching the next
unexplored node on another path, then turning back to
reach the next unexplored node on a different path, etc.
At every step of the algorithm we arrive at a config-
uration where we know the explored distance ai and
the number of unexplored edges ni on the i-th path for
i = 1, ..., k, as shown in Figure 1. In this configuration,
we denote the expected cost to the destination under the
optimal policy by w({ai, ni}

k
i=1). With a slight abuse

of notation, we will use the same notation for a config-
uration with current position inside a path. Then for a
different path i, ai will stand for the sum of distances
from the current location back to the source and from
the source to the first unexplored edge on path i.

A

a1

TS’ a i

k

n1

n i

A1j

A ij

a
nk

kj

Figure 1: w({ai, ni}
k
i=1) is the optimal expected cost

to get from S′ to T .

Lemma 2. [Monotonicity] The following properties
hold for the optimal algorithm and its expected cost
w({ai, ni}

k
i=1):

1. The optimal expected cost is symmetric with
respect to the paths, w(ai, ni, aj , nj , ...) =
w(aj , nj , ai, ni, ...).

2. The optimal expected cost is monotone nondecreas-
ing in ai and ni, for all i = 1, ..., k.

Proof. Part (1) follows from the isomorphism of
the graphs with the ith and jth paths exchanged.
For part (2), we first show that the optimal ex-
pected cost is monotone nondecreasing in ni. By
symmetry, it suffices to show this for n1. We
need to show w(a1, n1, {aj , nj}j 6=1) ≤ w(a1, n1 +
n, {aj , nj}j 6=1) for n > 0. Denote the configura-
tions Cn1

= (a1, n1, {aj , nj}j 6=1), Cn1+n = (a1, n1 +

n, {aj , nj}j 6=1) and C̃n1+n = (a1, n1+n, {aj, nj}j 6=1)
where the last n edges on the first path have cost 0.

Suppose the optimal algorithm on Cn1+n is A. Con-
sider algorithm A∗ on configuration C̃n1+n defined as
follows:
(i) Run A until it reaches the destination T or the node
T ′ on the first path, which immediately precedes the n

zero edges;
(ii) If reach T before T ′, terminate;
(iii) Else, proceed from T ′ to T along the bottom edges
at cost 0.

On every realization of the edge random variables in
configuration Cn1+n, Algorithm A∗ incurs the same or
smaller cost C̃n1+n than Algorithm A on Cn1+n. On
the other hand, the cost of running A∗ on configuration
C̃n1+n is precisely the same as the cost of running A on
configuration Cn1

. Therefore,

w(a1, n1, {aj , nj}j 6=1) ≤ wA(a1, n1, {aj , nj}j 6=1)

= wA∗(C̃n1+n)

≤ w(a1, n1 + n, {aj , nj}j 6=1).

A similar argument shows that the optimal expected
cost is monotone non-decreasing in ai for all i =
1, ..., k, QED.

We can now prove the following theorem (Karger &
Nikolova 2008).

Theorem 3. Suppose a1 = min ai and n1 = min ni.
Suppose also that the cost of every edge is a non-
negative random variable. Then it is optimal to proceed
along the first path up to the first unseen edge on the
path.

Optimal policy for disjoint-path graphs
In this section, we give a polynomial-time algorithm for
computing the optimal policy on a disjoint-paths graph
with iid random two-valued edge costs. To build intu-
ition, it is instructive to consider first the case in which
one of the values is zero (without loss of generality the
other value is 1). In this case, Theorem 3 and Lemma 2
immediately establish that the optimal strategy explores
all paths until it reaches edges of cost 1 on each path,
at which point it comes back to the path with fewest
unexplored edges and follows it until the end.

Theorem 4. The optimal policy on a disjoint-path
graph with random (0, 1)-edge costs can be found in
polynomial time.

Furthermore we can compute closed-form expressions
for the expected cost of the optimal route (Karger &
Nikolova 2008).

Next we compute an optimal policy based on MDPs
for the case of positive edge costs. Without loss of gen-
erality let the edge cost be 1 with probability p and K
otherwise. Defining MDPs in the natural way yields ex-
ponentially large state space as explained above; com-
bining it with the special structure of the optimal policy
here lets us define a more parsimonious MDP that is
efficiently solvable.

A property of the optimal policy here is that once we
have crossed a K-edge, we will never cross it again.
This follows from a distribution-dominance argument

as in our Monotonicity Lemma 2. Similarly, once we
have chosen to follow a path, the optimal policy would
keep following it until the first K-edge.

These properties allow for a simple description of the
optimal policy: explore one or more of the paths up to
the first cost-K edge along them, then pick one and fol-
low it until the end. The policy just has to decide in
what order to explore the paths, and how many, before
committing to a path. This allows us to capture it as the
solution of an MDP with concise representation.

Two paths In order to solve the general case, the opti-
mal policy needs a subroutine for comparing two paths.

Lemma 5. The optimal policy on a graph with two
node-disjoint paths and positive two-valued edge costs
can be found in polynomial time.

Proof. At each instant prior to committing to a path,
our knowledge on the graph can be described concisely
as the tuple (a1, x1, n1; a2, x2, n2; i), where ai is the
number of cost-1 edges we have observed along path i;
xi = 1 or K is the last observation on that path; ni is the
number of unobserved edges remaining on the path and
i = 1, 2 is the index of the current path. Clearly these
are polynomially many O(|E|4) states and in each state
there are only two actions: to continue along the current
path or turn back to the other path. (|E| is the number of
edges in the graph, as usual.) Thus, the optimal policy
can be obtained as the solution to that MDP in polyno-
mial time.

As a corollary from the two paths case, we have an ef-
ficient subroutine for comparing two paths with config-
urations (ai, xi, ni) using the notation above, in terms
of which one would yield a lower expected policy cost.

Arbitrary many paths We can now derive the opti-
mal policy for the general case of more than two paths.

Theorem 6. The optimal policy on a disjoint-path
graph with positive two-valued edge costs can be found
in polynomial time.

Series-parallel graphs
In this section we show that we may sometimes turn
back along a high-cost edge in a series-parallel graph,
so the optimal policy for disjoint-path graphs no longer
applies here.2

Consider the series-parallel graph in Figure 2, in
which an agent starting at S has a choice of two direc-
tions, to A or B. The graph from A to T consists of n
paths with log n edges each, and there is a single edge
from B to T . Further suppose that each edge is 0 or 1
with probability 1

2
each.

2A series-parallel graph is defined by the following pro-
cedure: starting from a single edge, replace an edge by two
edges in parallel or two edges in series and repeat as desired.

S T1

...

1

11

1 A

B

Figure 2: The optimal policy may return along a tra-
versed edge of cost 1.

Lemma 7. The optimal routing strategy on the given
graph first goes to A, and upon observing all cost 1
edges at A, goes back to S, then towards B and T .

Heuristic algorithms
In the absence of an efficient algorithm for the Cana-
dian Traveller problem on general graphs, we exam-
ine two natural heuristics for the optimal routing pol-
icy. In the following, we use cost and distance inter-
changeably. The minimum expected distance heuris-
tic replaces unknown edge costs by their expectation
and chooses to go to the next node along the shortest
path to the destination with respect to these expected
edge costs. The expected minimum distance heuristic
goes to the next node, which minimizes the sum of the
corresponding (observed) edge cost and the expected
minimum distance from the next node to the destina-
tion. In other words, for every given realization of edge
costs we pick the minimum-cost route; then we calcu-
late the expectation of the minimum-cost route with re-
spect to the distributions of all unknown edge costs in
the graph. Note that for different edge cost realizations
the minimum route may be different, thus it is mean-
ingful to speak of the expected value of the minimum
route, but not of an “expected minimum route” per se.
The difference between these two heuristics can be il-
lustrated on the graph in Figure 3. At the source, the
first heuristic would replace all Xi by their expectations
and take the top single-edge route since its expected
cost mini E[Xi] − ε is smaller than that of any of the
bottom routes. On the other hand, the second heuristic
would calculate E[mini Xi] as the expected minimum
cost of the n parallel edges on the bottom, compare this
to the expected minimum cost mini E[Xi]−ε on the top
and choose to traverse the 0 edge on the bottom. Then,
upon reaching the n parallel edges, it will see their ac-
tual costs and pick the edge of minimum cost.
Minimum expected distance heuristic. We will show
that this heuristic has an exponential gap from the op-
timal routing algorithm, that is it may result in a route
with an exponentially higher cost than that of the opti-
mal route, and should therefore be avoided.

Lemma 8. The minimum expected distance heuristic

mini E[Xi] − ε

0

X1

X2

Xn

Figure 3: Counterexample showing suboptimality of
the minimum expected distance heuristic.

has exponential gap from the optimal policy.

Proof. Consider the graph in Figure 3. Any route from
the source to the destination consists of the direct link
on the top or of the 0-cost link on the bottom and one of
the subsequent n parallel links, whose costs are given
by the random variables X1, ..., Xn. Suppose the direct
link on the top has cost mini E[Xi] − ε.

Suppose Xi are random variables, which are 1 with
probability p > 0 and 0 otherwise. If at least one of
the n links on the bottom is 0, the bottom route would
have cost 0, otherwise it would have cost 1. Thus,
E[min Xi] = pn. On the other hand, if we follow
a partially adaptive algorithm which replaces the un-
seen edges with their expectation, we would take the
top route and the expected cost of the trip would be
minE[Xi] − ε = p − ε. With ε → 0, we see that
this gap is exponential:

min E[Xi] − ε

E[min Xi]
=

p

pn
=

1

pn−1
.

Expected minimum distance heuristic. We show that
this heuristic may yield (log n)-suboptimal routes, al-
though it is significantly better and coincides with the
optimal policy on disjoint-path graphs. Note that the
expected minimum distance can be approximated arbi-
trarily well in polynomial time via sampling, and our
experimental results demonstrate that even poorer ap-
proximations from very few samples can yield an un-
expectedly good practical performance. The proofs for
the following two lemmas are in the appendix.

Lemma 9. The expected minimum distance rule is op-
timal on disjoint-path graphs with {0, 1} edge costs.

Lemma 10. The expected minimum distance heuristic
has Ω(log |V |) gap from the optimal policy.

Experimental evaluation. We implemented the two
heuristics and the optimal policy for n × n directed
grid graphs in which all edges are directed either up
or to the right, and the goal is to reach from the bot-
tom left to the top right corner of the grid. We chose

10 20 30 40 50
0

5

10

15

20

25

30

35

num. nodes on grid side

pa
th

 c
os

t
Opt. policy
Exp. Min. Dist
Approx. Min. Dist
Min. Exp. Dist

Figure 4: The cost of paths found via the optimal policy
and our heuristic algorithms on grid graphs.

these graphs since we could compute the optimal policy
efficiently with our algorithm from Theorem 1. This
enabled us to compare the heuristics to the optimal so-
lution. These graphs are also fairly realistic, resembling
the Manhattan grid of streets. The results for grids of
sides 5, 6, ..., 50 are presented in Figure 4. For the pur-
pose of the simulation, we considered iid random (0, 1)
edge costs with different probabilities. The plots rep-
resent the average cost of 1000 actual routes following
the optimal policy and the two heuristics. (The plots in
the figure have probability 1/2 of 0 edge cost, differ-
ent probabilities yielded similar relative performance of
the algorithms). As expected, the minimum expected
distance heuristic performed poorly. Despite the nega-
tive theoretical worst-case results above, however, the
expected minimum distance heuristic had performance
comparable to the optimal policy. Even a crude approx-
imation of the expected minimum distances based on
only 10 samples of the graph edge costs (represented
by the “Approx. Min. Dist.” line) yielded surprisingly
good routes that were only slightly longer than those of
the optimal policy.

Conclusion
The current status of the general Canadian traveller
problem is still widely open with respect to approxima-
bility. In light of our experimental results, it would be
intriguing to provide a theoretic justification for the ex-
cellent performance of the expected minimum distance
heuristic. This heuristic may also be a fruitful source of
approximation algorithms.

It also remains open to see if the graphs we consider
can be extended to a more general class that admits ex-
act polynomial-time solutions, or otherwise to provide
hardness results for generalizations of these classes, for

example for series-parallel graphs. Given the impor-
tance of the problem in practice, it is also key to further
understand the effectiveness and limitations of ours and
other heuristics, in theory and practice.

Acknowledgement
We thank Shuchi Chawla, Nick Harvey, David Kempe,
Vahab Mirrokni, Christos Papadimitriou, John Tsitsiklis
and Mihalis Yannakakis for valuable discussions.

References
Bar-Noy, A., and Schieber, B. 1991. The canadian traveller
problem. In Proceedings of the second annual ACM-SIAM
symposium on Discrete algorithms, 261–270.

Blei, D., and Kaelbling, L. 1999. Shortest paths in a dynamic
uncertain domain. In IJCAI Workshop on Adaptive Spatial
Representations of Dynamic Environments.

Boyan, J., and Mitzenmacher, M. 2001. Improved results for
route planning in stochastic transportation networks. Sympo-
sium of Discrete Algorithms.

Fan, Y.; Kalaba, R.; and J. E. Moore, I. Arriving on time.
Journal of Optimization Theory and Applications forthcom.

Ferguson, D.; Stentz, A.; and Thrun, S. 2004. PAO* for
planning with hidden state. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

Gao, S., and Chabini, I. 2002. Optimal routing policy prob-
lems in stochastic time-dependent networks. In Proceed-
ings of the IEEE 5th International Conference on Intelligent,
Transportation Systems, 549–559.

Hajiaghayi, M. T.; Kleinberg, R. D.; Leighton, F. T.; and
Raecke, H. 2006. New lower bounds for oblivious routing in
undirected graphs. In Proceedings of Symposium on Discrete
Algorithms.

Kalai, A., and Vempala, S. 2005. Efficient algorithms for on-
line optimization. Journal of Computer and System Sciences
71:291–307.

Karger, D. R., and Nikolova, E. 2008. Exact algorithms for
the canadian traveller problem on paths and trees. Technical
Report MIT-CSAIL-TR-2008-004, MIT.

McDonald, A. B. Survey of adaptive shortest-path
routing in dynamic packet-switched networks. cite-
seer.ist.psu.edu/mcdonald97survey.html.

Papadimitriou, C., and Yannakakis, M. 1991. Shortest paths
without a map. Theoretical Computer Science 84:127–150.

Peshkin, L., and Savova, V. 2002. Reinforcement learning
for adaptive routing. In Proceedings of Intnl. Joint Conf. on
Neural Networks, IJCNN.

Polychronopoulos, G., and Tsitsiklis, J. 1996. Stochastic
shortest path problems with recourse. Networks 27(2):133–
143.

Puterman, M. L. 1994. Markov Decision Processes. John
Wiley and Sons.

