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Abstract

We study markets in which an auctioneer wishes to assemble a team of agents to
accomplish some task. These agents offer fixed services that incur some privately known
cost. The auctioneer must select a team, or feasible set of agents, that is capable of
performing the task. To this end, he designs a procurement auction in which he solicits bids
from the agents and then selects some feasible set of agents (the winners) to perform the
task at hand and pays them according to the rules of the auction. One possible mechanism
for procurement auctions is the Vickrey-Clark-Groves (VCG) mechanism. However, a
drawback of this mechanism is the potentially large overpayment: the payment of the
auctioneer may greatly exceed the true cost of even the second-cheapest feasible set.

We thus propose and analyze variants on first-price auctions, or auctions in which the
team with the lowest bid is selected and pays their bid. These auctions are not truthful;
instead, we motivate analyzing their properties in a strong ε-Nash equilibrium. We show
that in general procurement settings, strong ε-Nash exist, and the feasible set of agents
selected in any strong ε-Nash equilibrium is approximately efficient. For path and flow
auctions, we bound the total payment to the winning agents by relating it to the true cost
of routing one additional unit of demand (assuming all edges have unit capacity). Finally,
we study the setting in which the demand of the auctioneer is not known, but rather the
auctioneer and bidders share a common prior belief regarding the amount of demand. For
this model, we design a first-price mechanism involving two-parameter bids and derive a
bound on the payments of this mechanism similar to that of the known demand case.

Keywords: First-price auctions, procurement auctions, VCG, path auctions, flow auc-
tions

1 Introduction

In this paper, we study markets in which an auctioneer wishes to assemble a team of agents
to accomplish some task. These agents offer fixed services that incur some privately known
cost. The auctioneer must select a team, or feasible set of agents, the combination of which
is capable of performing the task. To this end, he designs a procurement auction in which
he solicits bids from the agents and then selects some feasible set of agents (the winners) to
perform the task at hand and pays them according to the rules of the auction.

Path and flow auctions are important special cases of procurement auctions. In path
auctions, the auctioneer seeks to buy a path of edges of lowest price between a specified
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source and destination in a network. Sellers (network edges) have a privately known cost
for transmitting traffic, and bid to attract traffic. Path auctions arise naturally in network
routing—for example, an Internet Service Provider (ISP) might use a procurement auction to
select autonomous systems (ASs) to route his demand. Flow auctions are a generalization of
path auctions in which the demand of the auctioneer might exceed the capacity of any single
source-destination path. In this case, the auctioneer must buy a set of edges capable of routing
his demand.

One plausible mechanism for procurement auctions, proposed for use in path auctions by
Nisan and Ronen [32], Hershberger and Suri [18], and Feigenbaum et al. [14], is the Vickrey-
Clark-Groves (VCG) mechanism [7, 17, 35]. Roughly speaking, the VCG mechanism pays
each winning agent the highest bid with which it could still have won, all other bids being
unchanged. The utility of an agent is quasi-linear, and so the VCG mechanism is truthful
(agents bid their true cost) and efficient (a feasible set of minimum total true cost is selected).
However, as observed by Archer and Tardos [1, 2], even in the special case of path auctions,
the VCG mechanism (and, in fact, all min function mechanisms) can lead to the auctioneer
paying far more than the true cost of completing the task at hand. In fact, the payment
of the auctioneer may even greatly exceed the true cost of the second-cheapest feasible set.
Elkind, Sahai, and Steiglitz [12] generalized the result of Archer and Tardos [1] to prove that
all truthful mechanisms have high overpayments in general.

We are interested in reining in the cost to the auctioneer. There are two general approaches
to this problem. One approach tries to characterize procurement settings in which truthful
mechanisms have small overpayments. Talwar [34] and Garg et al. [16] consider restricting
the setting by imposing a structure on the collection of feasible sets of agents. Mihail, Pa-
padimitriou, and Saberi [30] show that in a random graph, the expected payment of a VCG
mechanism for a shortest path is small. Karger and Nikolova [25] give a tighter VCG overpay-
ment bound for Erdos-Renyi random graphs and provide empirical results of small overpay-
ment for random graphs with power-law degree distributions. Feigenbaum et al. [14] measure
the average overpayment of the VCG mechanism for shortest path auctions in the Internet’s
autonomous systems (ASs) graph and conclude that it is relatively small. Beyond VCG, one
could look for truthful path mechanisms that are more frugal, namely that have smaller pay-
ments than the corresponding VCG payments [2, 12, 38]. Frugal mechanisms have also been
proposed and analyzed for different set systems other than paths, e.g., [34, 26, 11, 4, 27, 13].
The truthful concept could be further refined to be false-name-proof, namely when agents own
more than one edge, they have no incentive to misrepresent which edges they own. For path
auctions, this direction has been pursued by Du et al. [10] and Iwasaki et al. [20].

A second approach is to consider alternative solution concepts. Garg et al. [16] propose an
ascending price auction format for procurement auctions that can perform well in settings of
incomplete information. For the special case of path auctions, Elkind, Sahai, and Steiglitz [12]
present and analyze an optimal Bayesian-Nash mechanism. Czumaj and Ronen [9] propose
a mechanism that combines dominant and non-dominant strategy mechanisms and has small
overpayments under certain assumptions. However they show that it has an arbitrary ra-
tio between the payment of different equilibria and say that overall, “finding a natural and
tractable measure of [non-dominant strategy] protocols seems challenging and important.”
Huang et al. [19] propose a Nash Implementation mechanism for path auctions, based on the
randomized first-price mechanisms in this paper. They show small overpayments under this
mechanism similarly to our analysis here. Small overpayments under certain dominant [29]
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or non-dominant strategy mechanisms are also shown to result in specific settings of wireless
routing (e.g., [36, 37]). A different line of research focuses on bounding the cost of the cheapest
Nash equilibria in general procurement settings [6, 5].

In this paper, we follow the second of these approaches. We propose and analyze variants
on first-price auctions, or auctions in which the team with the lowest bid is selected and
paid their bid. First-price auctions are a natural class of auctions often implemented in
practice. Therefore, it is interesting to ask if first-price auctions or their variants can reduce
the payment of the auctioneer. These auctions are not truthful; instead, we motivate analyzing
their properties in a strong ε-Nash equilibrium (see Definition 2). We show that in general
procurement settings, strong ε-Nash exist, and the feasible set of agents selected in any strong
ε-Nash equilibrium is approximately efficient. For path and flow auctions, we then bound the
total payment to the winning agents by relating it to the true cost of routing one additional
unit of demand (assuming all edges have unit capacity). Finally, we study the setting in
which the demand of the auctioneer is not known, but rather the auctioneer and bidders share
a common prior belief regarding the amount of demand. In other words, there is a publicly
known distribution of possible demands. For this model, we design a first-price mechanism
involving two-parameter bids and derive a bound on the payments of this mechanism similar
to that of the known demand case.

Our work is also related to the literature on strong Nash and strong ε-Nash implementation
of the core. In particular, the deterministic first-price procurement auction we consider is
similar to the game introduced by Young [39] in the context of cost-sharing. For the random
demand path auction introduced in section 5.2.3, we use techniques based on Curiel [8] to
show the existence of the core. We also note that Kalai et al. [24] presented a strong Nash
implementation of the core of any cooperative game. We could have used this implementation
in place of the 2-parameter auction in Section 5.2.3; however, the method in [24] is more
complex and communication-intensive, and in our case it would essentially require each bidder
to report an entire flow.

We structure the presentation of our results as follows: In Section 2, we formalize the
setting of procurement auctions and define the path and flow settings which we study later.
In Section 3, we motivate the selection of strong ε-Nash equilibria as a solution concept for
first-price auctions. In Section 4, we show that first-price auctions are approximately efficient
in the general procurement setting. Finally, in Section 5, we show how to bound the payment
of first-price auctions and their variants in the special case of path and flow settings.

2 Setting

Consider a procurement setting in which an auctioneer wishes to hire a team of agents to
accomplish a particular task. There is a set U of n agents. Each agent is capable of performing
a fixed service. In performing this service, an agent incurs a privately known cost ci ∈ R+∪{0}.
Some subsets of services can be combined to accomplish the auctioneer’s task. We call a subset
S ⊆ U of agents a feasible set if their combined services can accomplish the task. The collection
of feasible sets is denoted by S. The collection S could be publicly known to the auctioneer and
all agents, or, more generally, they could share a common prior (a publicly known probability
distribution over the collection of subsets of U) about S.

A special case of the procurement setting is the path or flow setting. In this setting, there
is a graph G. Each edge (u, v) is an agent capable of sending one unit of flow from u to v
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at a privately known cost ci ∈ R+ ∪ {0}. The auctioneer wants to route k units of demand
between a known source node s and destination node t (in a path setting k = 1). Hence the
collection S of feasible sets is the collection of all subgraphs in G that contain a k-flow from s
to t. We assume that the structure of the graph G is public knowledge. The demand k could
be publicly known to the auctioneer and all edges (the known demand case), or it might be
drawn from a publicly known probability distribution (the unknown demand case).

The unknown demand case is modeled as follows: The demand can take any integral value
in the range [1, r], where r is a positive integer. Further, there is a known prior distribution
on the demand values; say that the demand is k with probability pk, for k = 1, 2 . . . , r. We
assume for simplicity that pk > 0 for all k; our results easily extend to a situation in which
pk = 0 for some values of k ∈ {1, . . . , r}.

In a procurement auction (similarly a path auction or flow auction), the auctioneer selects
a feasible set by running an auction. He solicits from each agent a bid bi ∈ R+ ∪ {0} which is
supposed to represent the agent’s true cost ci. He then selects some feasible set S of agents
and pays each agent i ∈ S an amount paymenti ∈ R+ ∪ {0} and all other agents 0. The set
S is called the winning set. Each agent i ∈ S is a winner, and all other agents are losers. An
agent’s utility for the outcome is paymenti − cixi, where x is the characteristic vector of S
(that is, xi = 1 if i ∈ S and 0 otherwise).

We will focus on first-price auctions. In a first-price auction, the payment of every winner
equals his bid. The auctioneer is restricted to select a minimum price feasible set S, or
one which minimizes

∑
i∈S bi. His only flexibility is in the definition of a tie-breaking rule, or

method to select from among the collection of minimum price feasible sets. Thus, in specifying
a first-price auction, we only need to specify a tie-breaking rule. We also consider variants of
first-price auctions in which the minimum price feasible set is almost always selected and the
winners are paid a quantity close to their bid.

To avoid confusion between the true costs and the prices of sets, we will adopt the following
terminology: the cost of a set S is

∑
i∈S ci, sometimes written c(S). Similarly, the price of a

set S is
∑

i∈S bi, sometimes written b(S). Additional notation will be introduced for the path
and flow settings in Section 5.

3 Solution Concepts

First-price auctions are clearly not truthful. This raises the question of how we expect agents
to bid. We want to retain the property that agents can see each others’ bids, so that the
bidding could be performed through posted prices. Thus, mixed-strategy equilibria are not
very meaningful in our setting. Instead, we look for a pure strategy equilibrium solution
concept which always exists and is arguably reasonable in that agents can be expected to
reach that equilibrium. This section motivates the selection of strong ε-Nash equilibria (see
Definition 2) as that solution concept through a series of examples. First we note that not
every first-price procurement auction has a Nash equilibrium (Example 3.1), and those that
do are impractical (Example 3.2). Both of these examples heavily rely on the continuity of
the bid and payment space. In reality, bids and payments are restricted to a discrete space
as they should be some multiple of a unit of money, like cents, for example. Thus it is simply
not possible for agents to arbitrarily improve their payoffs, and so we suggest studying ε-Nash
equilibrium (see Definition 1) where an agent deviates only if it improves his payoff by at
least ε. Unfortunately, Example 3.3 shows that the overpayments in such an equilibrium can
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be quite high. In this example, however, if certain subsets of agents could arrange to jointly
reduce their bids, all of them would benefit. This leads us to study strong ε-Nash equilibria
(see Definition 2), or ε-Nash equilibria that are robust to such manipulations. As proven in
Theorem 3.1, strong ε-Nash equilibria exist in all deterministic first-price procurement auctions
(but may fail to exist in randomized ones as evidenced by Example 3.4). It remains to be seen
if one can devise a bidding protocol that helps agents converge to a strong ε-Nash equilibrium.

3.1 Nash Equilibria

The most natural solution concept is that of a Nash equilibrium. Unfortunately, as the follow-
ing example shows, not every first-price auction has a Nash equilibrium. A similar observation
in a more general setting was made by Jackson et al. [22].

Example 3.1. Suppose there are two agents A and B, either of whom forms a feasible set
(that is, S = {{A}, {B}}). Consider any auction in which ties are broken by selecting agent
B with probability p, 0 < p ≤ 1, independent of the bid values. Now suppose the costs of the
agents are cA = 1 and cB = 2, and so in case of a tie the auction selects the higher-cost agent
with positive probability.

Suppose agent A bids x and B bids y. If x ≥ y, then the expected payment of agent A is
at most (1 − p)y. As B has positive probability of winning, y ≥ cB = 2, and so the bid y − ε
for ε < min(yp, 12) is a better bid than x for agent A. If x < y, then the payment to A is x
and so x+ (y − x)/2 is a better strategy than x for A.

This example relies on the assumption that the tie-breaking rule is not a function of the
bid values (otherwise we would have been unable to assume that the auction selects the higher-
cost agent with positive probability). In fact, for a carefully chosen tie-breaking rule which
is a function of the bid values, we can design first price auctions with pure strategy Nash
equilibria, as the following example shows.

Example 3.2. For ease of exposition, suppose all subsets 2U of the set of agents U are feasible
and index the subsets so 2U = {B1, . . . , B2n}. Partition the real numbers into 2n subsets
S1, . . . , S2n such that each subset is dense in the reals. Let p be the price of the minimum price
set and suppose p ∈ Sk. If Bk has price p, choose Bk. Otherwise, choose randomly among the
collection of minimum price sets.

We can construct a pure strategy Nash equilibrium for this tie-breaking rule as follows. If
the minimum cost set is not unique, then it is a Nash equilibrium for all agents to bid bi = ci,
their true cost. Otherwise, let B1 be the minimum cost set and B2 be the next cheapest set
(in terms of true costs). Find a p ∈ S1 ∩ [c(B1), c(B2)) (thus B1 wins in the case of a tie at
price p). Consider a set of bids b such that b(B1) = b(B2) = p, bi ≥ ci for i ∈ B1, bi ≤ ci for
i ∈ B2, and bi = ci for i 6∈ B1 ∪B2. Then b is a Nash equilibrium.

However, this auction is arguably impractical as are the deviations discussed in the last
example because they both assume that the bids and payments can be any real number. Yet,
in many problems, payments are discrete, so it is simply not possible for agents to improve
their utilities by arbitrarily small amounts. This motivates us to use the solution concept of
ε-Nash equilibrium.

Remark 3.1. The results in this paper can be proved using tie-breaking rules such as that in
Example 3.2 or using ε-equilibria concepts presented below. However, for clarity of presenta-
tion, we present our results in terms of ε-equilibria.
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3.2 ε-Nash Equilibria

In an ε-Nash equilibrium, we assume agents are indifferent to deviations that improve their
payoff by a small amount.

Definition 1. An ε-Nash equilibrium is a set of strategies, one for each agent, such that no
agent can unilaterally deviate in a way that improves his payoff by at least ε.

Unfortunately, there is a drawback to the ε-Nash solution concept as well. As the following
example shows, when the winning set contains many agents, it may have a price higher than
the cost of the best competing set.

Example 3.3. Consider any first-price auction. Suppose there are four agents, A, B, C, and
D with costs 1, 2, 2, and 6 respectively, and the collection S of feasible sets is {{A}, {B,C}, {D}}.
Then it is an ε-Nash equilibrium for agent A to bid 6− ε, and the rest to bid 6. In this case,
the price to the auctioneer for the winning set {A} is 6 − ε which is higher than the cost, 2,
of the best competing set {B,C}.

This defeats our goal of reducing customer overpayment. We might argue that this solution
would not be sustained in practice, since the agents in the second lowest-cost set are likely to
each reduce their price. This leads us to explore the concept of strong ε-Nash equilibria.

3.3 Strong ε-Nash Equilibria

Strong ε-Nash equilibria, first introduced by Aumann [3] and used by Young [39], require that
there is no group of agents who can deviate in a way that improves the payoff of each member
by at least ε.

Definition 2. A strong ε-Nash equilibrium is a set of strategies, one for each agent, such
that no group of agents (called a coalition) can deviate in a way that improves the payoff of
each member by at least ε.

This definition captures the notion that agents might collude to win the auction if it is
beneficial for each of them. For example, the bid vector in Example 3.3 is not a strong ε-Nash
equilibrium as agents B and C could collude and bid 3−ε, thus improving each of their payoffs
by at least ε (assuming ε < 1

2).
Strong ε-Nash equilibria have several advantages over Nash and ε-Nash equilibria. First,

although randomized first-price auctions may fail to have strong ε-Nash equilibria (see Exam-
ple 3.4), Theorem 3.1 shows that every deterministic first-price auction has a strong ε-Nash
equilibrium. Second, as demonstrated by Lemma 3.1, in a strong ε-Nash equilibrium of a de-
terministic first-price auction, we can bound the bids of the winning agents by the true costs
of the losing agents, furthering our goal of reducing payments and allowing us to prove that
the winning set is approximately efficient (see Section 4). The rest of this section contains
proofs of Theorem 3.1 and Lemma 3.1 and Example 3.4.

First, we show that any first-price auction with a deterministic tie-breaking rule has a
strong ε-Nash equilibrium. Our proof is constructive. We consider the minimum cost feasible
set and fix the bids of all items outside this set to be equal to their true cost. For the items
in this set, we adjust their bids so that the price of the set is just less than the cost of the
second-lowest cost feasible set.
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Theorem 3.1. Any first price auction with a deterministic tie-breaking rule has a strong
ε-Nash equilibrium.

Proof. Our proof is constructive. Let ci be the cost of agent i, S be the collection of feasible
sets, and S∗ be the minimum cost feasible set selected by the auction under bid vector c.
Define a variable xi for each i ∈ S∗ and consider the following linear program (LP for short):

maximize
∑
i∈S∗

xi

subject to ∀ S ∈ S :
∑

i∈S∗−S
xi ≤

∑
i∈S−S∗

ci

∀ i ∈ S∗ : xi ≥ ci

The strong ε-Nash equilibrium that we construct will be a slightly modified optimal solution to
this LP. The first constraint guarantees that S∗ will be a minimum price set in this equilibrium,
and the second that every agent has non-negative utility in this equilibrium. By setting xi = ci
for all i, we see that the LP is feasible.

Let x∗i be an optimum solution of the LP, and define bid vector b where bi = max{ci, x∗i −
ε/(2n)} for i ∈ S∗ and bi = ci for all other i. Notice that our minimum cost set S∗ is also a
minimum price set with respect to bids b.

We prove that b is a strong ε-Nash equilibrium. Note that only agents who are guaranteed
winners (that is, agents in every minimum price set) are submitting a bid other than their
true cost. For agents outside S∗, this is evident from the definition of b. Consider an agent i
in S∗ that is not in every minimum price set, and let S be a minimum price set that does not
contain i. Corresponding to this S is an inequality of type 1. This inequality together with
those of type 2 for all j ∈ S∗ − S imply that xi = ci and so bi = ci. Thus the bidders in a
successful coalition can only increase their bids.

Let T be a successful coalition and b′ be the bid vector when T deviates (so b′i = bi for all
i 6∈ T ). Recall the notation b(S) =

∑
i∈S bi. Then

b′(S∗) = b(S∗) +
∑

i∈T∩S∗
(b′i − bi). (1)

In order for each member of the coalition to benefit by at least ε, he must increase his bid by
at least ε, so

∀ i ∈ T, b′i − bi ≥ ε, (2)

and T must be a subset of the selected minimum price set S′. Therefore,

b′(S′) = b(S′) +
∑
i∈T

(b′i − bi). (3)

Furthermore, as S∗ is a minimum price set according to b and S′ is a minimum price set
according to b′,

b(S∗) ≤ b(S′), (4)

and
b′(S′) ≤ b′(S∗). (5)
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Inequalities 1, 3, 4, and 5 imply ∑
i∈T∩S∗

(b′i − bi) ≥
∑
i∈T

(b′i − bi). (6)

Together with inequality 2, inequality 6 implies T ⊆ S∗. As T ⊆ S′ as well, inequalities 4
and 5 imply

b′(S∗) = b′(S′). (7)

Now consider the solution to the LP which sets each variable xi to agent i’s bid in bid vector
b′. By inequality 2,

∑
i∈S∗

xi =
∑
i∈S∗

b′i

≥
∑

i∈S∗−T
bi +

∑
i∈T∩S∗

(bi + ε)

≥
∑

i∈S∗−T
(x∗i −

ε

2n
) +

∑
i∈T∩S∗

(x∗i −
ε

2n
+ ε)

≥
∑
i∈S∗

x∗i +
ε

2
.

By maximality of x∗, this implies that x is not feasible. Since each b′i ≥ ci by construction,
x must violate an inequality of type 1. Letting S be the set in the violating constraint, we
see b′(S) < b′(S∗) which, by equality 7, implies b′(S) < b′(S′), contradicting the optimality of
S′.

Next, we show that in a strong ε-Nash equilibrium, the price of the winning set can be
bounded by the cost of losing feasible sets. The intuition for this proof is that if the winning
agents are bidding significantly more than the losing agents, the losing agents can undercut
the bidding agents and win at a profitable price. One powerful consequence of this definition
is that, from the point of view of the total price, it lets us assume without loss of generality
that items who are not winning in a strong ε-Nash equilibrium are bidding within ε of their
cost. This notion is formalized in the following lemma.

Lemma 3.1. Fix a strong ε-Nash equilibrium b and let S be the feasible set that wins with
bids b. Let T be any set (not necessarily feasible) such that T ∩ S = ∅ and for all i ∈ T ,
bi > ci + ε, where ci is the true cost of item i. Consider the altered bid vector b′ in which

b′i =

{
ci + ε for i ∈ T,
bi otherwise.

Let S′ be a minimum price feasible set with respect to bids b′. Then b′(S′) = b(S).

Proof. Since T ∩S = ∅, b(S) = b′(S), and so b′(S′) ≤ b(S). Suppose b′(S′) < b(S). This means
for all minimum price sets with respect to bids b′, there are items in the set T . Let R′ be a
minimum price set with respect to bids b′ which minimizes |R′∩T | (by the previous statement,
this minimum is at least one). We will show that the agents in R′ ∩ T form a coalition when
the bids are b, contradicting the assumption that b was a strong ε-Nash equilibrium.
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Consider the bid vector b′′ constructed from b in which just the agents in R′ ∩ T lower
their bids to ci + ε:

b′′i =

{
ci + ε for i ∈ R′ ∩ T,
bi otherwise.

We will argue that the agents in R′ ∩ T benefit by at least ε in this deviation. As T ∩ S = ∅,
all agents in R′ ∩ T were losing agents with bid vector b and so their utility with bids b was
zero. We argue that in bid vector b′′ the agents in R′∩T all win the auction and, therefore, as
b′′i = ci + ε for i ∈ R′ ∩ T , increase their utility by ε. As first-price auctions choose a winning
set from among the minimum price feasible sets, we must show that the agents in R′ ∩ T are
contained in any minimum price feasible set R′′ with respect to bids b′′. As b′i ≤ b′′i for all
agents i,

b′′(R′′) ≥ b′(R′′) ≥ b′(R′) = b′′(R′) ≥ b′′(R′′),

and so all statements hold with equality. Since items in T − R′ increased in price from b′ to
b′′, b′′(R′′) = b′(R′′) implies R′′ does not contain any element of T −R′. Since b′(R′′) = b′(R′),
R′′ is also a minimum price set with respect to bids b′. As R′ was chosen to minimize
the intersection with T among all minimum price sets, this means R′′ must contain R′ ∩ T .
Therefore, the agents in R′ ∩ T are winners in bid vector b′′ and so increase their utility by
at least ε. Furthermore, as bi = b′′i for all agents outside of R′ ∩ T , the agents in R′ ∩ T can
form a successful coalition in b, contradicting the assumption that b was a strong ε-Nash
equilibrium.

Remark 3.2. In the proof of Theorem 3.1, we used the determinism of the mechanism in
assuming that there was a unique winner for every bid vector. As the following example
shows, this assumption was necessary. Strong ε-Nash equilibria do not necessarily exist for
randomized first-price auctions. Randomized tie-breaking rules pose a problem for the solution
concept as a minor adjustment in bid value can drastically affect a bidder’s expected utility.

Example 3.4. Suppose there are two agents, A and B, either of whom forms a feasible set for
the auctioneer (that is, S = {{A}, {B}}). In the case of a tie, assume the auctioneer chooses
uniformly at random between the two items. Suppose the cost of each agent is 0. Note for any
set of bids {bA, bB}, the agents can form a coalition and each bid 2 max(bA, bB) + 2ε. In this
way they both profit by at least ε in expectation. Therefore no pure strategy bid vector forms a
strong ε-Nash equilibrium.

3.4 Bayesian Nash equilibria

In this paper, we consider full information equilibrium concepts: Nash equilibria and strong
Nash equilibria. For the procurement settings we study, an alternative model with Bayesian
partial information may be appealing. Here, we observe that the well-known result of My-
erson and Satterthwaite [31] immediately limit the possible results in the Bayesian setting.
The following example demonstrates that, in the Bayesian setting, it is impossible for any
individually rational mechanism to implement the efficient outcome while bounding the total
payments by the cost of the best alternative team that has no agents in the winning team.

Example 3.5. Consider four agents {A,B,C,D} with three feasible sets {A,B}, {C} and
{D}. Assume that the costs cA, cB, cC , and cD are drawn independently from the following
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prior distributions: cA and cB drawn uniformly at random from the interval [0, 1], while cC
has a certain value of 1, and cD has a certain value of 1 + δ, for an arbitrarily small positive
δ.

We identify this scenario with the model of bilateral bargaining with a broker [31]: Let A be
a buyer with value vA = cA and B be a seller with value vB = 1− cB. Then, trade is efficient
iff vA ≤ vB ⇔ cA + cB ≤ 1. This is the same condition under which it is efficient to pick the
team {A,B}.

Next, we identify the ex-post surplus of A and B in the procurement setting with the ex-
post surpluses xA, xB in the bargaining model; the broker in the bargaining model receives a
surplus of xbroker = vB − vA − xA − xB = 1 − (cA + xA) − (cB + xB) when trade takes
place, and −xA−xB when trade does not take place. When trade does not take place, C is the
efficient outcome in the procurement problem. In this case, the individual rationality condition
and the requirement that total payment is less than the cost of the best alternative imply that
xA + xB ≤ δ.

For any procurement mechanism that always pays less than the best available alternative,
the right hand side of the equation above must be always greater than −δ. This would yield a
bargaining mechanism in which the broker had expected profit greater than −δ. However, the
results of Myerson and Satterthwaite [31] imply that for any efficient and individually rational
mechanism, the expected value of xbroker is bounded above by a strictly negative value (in other
words, there is a minimum subsidy required). For a suitably small δ, this is a contradiction.

4 Approximate Efficiency of First-Price Combinatorial Auc-
tions

It is often desirable to design auctions that choose efficient allocations. A procurement auction
is efficient if it always select the minimum cost feasible set. The VCG mechanism guarantees
that the set it selects is efficient. The strong ε-Nash equilibria of first-price procurement
auctions are not necessarily efficient. For example, if the minimum cost and second-minimum
cost feasible sets have costs within ε of one another, then it is a strong ε-Nash for the second-
minimum cost set to bid truthfully and for the minimum cost set to overbid by ε. In such a
scenario, the first price procurement auction will select the second-minimum cost set. Still, the
winning set is approximately efficient as its cost is within ε of the minimum cost set. In this
section, we prove that this holds in general, that is the strong ε-Nash equilibria of first-price
procurement auctions are approximately efficient.

Theorem 4.1. Let b be a strong ε-Nash equilibrium of a deterministic first-price procurement
auction. Then the cost c(S) of the winning set S in a first-price procurement auction is at
most the cost c(S∗) of the minimum cost feasible set S∗ plus an additive factor of εn:

c(S) ≤ c(S∗) + εn.

Proof. The proof is by contradiction. Assume the winning set S is not approximately efficient,
that is, c(S) > c(S∗)+εn. Define a new bid vector b′ in which the agents who are not winning
but are in a minimum cost feasible set lower their bids to just above their cost:

b′i =

{
min{bi, ci + ε} for i ∈ S∗ − S,
bi otherwise.
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In this bid vector, S∗ is cheaper than S:

b′(S)− b′(S∗) = b(S − S∗)− b′(S∗ − S)
≥ c(S − S∗)− (c(S∗ − S) + εn)
= c(S)− c(S∗)− εn
> 0.

This contradicts Lemma 3.1 with T = {i ∈ S∗ − S : bi > ci + ε}.

5 Payment Bounds for Flow Auctions

In this section, we bound the overpayments of first-price flow auctions. We assume that
we have a deterministic tie-breaking rule so that if there is more than one cheapest feasible
flow, we take the lexicographically first integral one. We consider two settings. In the known
demand path auction studied in Section 5.1, the total demand of the auctioneer is known to
the auctioneer and all the bidders at the time of the auction. It is easy to imagine that the
assumptions of this model might be unrealistic in practice. Can the total demand really be
known before it is realized? What if the auctioneer wishes to buy flow in advance? In our
second model, the unknown demand path auction studied in Section 5.2, the auctioneer and
bidders instead know a probability distribution over possible demand values.

Notation For a graph G, let c be the vector of edge costs, b be the vector of edge bids,
and Fw(k,G) be the set of edges in the winning k-flow1 in G with respect to edge weights w
(as we only consider deterministic first-price auctions, this is well-defined). We will refer to
Fc(k,G) as the minimum cost k-flow and Fb(k,G) as the minimum price k-flow with respect
to bid vector b. When the bids, costs, or graph is clear from the context, we will sometimes
drop them from the notation. As a shorthand, we sometimes write c(k) for the (cost of the)
lowest cost k-flow. Finally, to be consistent with the previous notation, we denote the number
of agents, or edges in G, by n.

5.1 Known Demand Path Auction

In the known demand setting, we assume that the auctioneer has a publicly-known demand k.
We will show that in such settings, the payments in a strong ε-Nash equilibrium of deterministic
first-price auctions is bounded. In particular, we show that the overpayment to each unit of
flow is (approximately) at most the true marginal cost of sending an additional unit of flow
(see Theorem 5.1). Together with the observation that the VCG mechanism pays each edge
a bonus at least as large as this marginal (see Theorem 5.2), this shows that the payments in
first-price auctions are (approximately) bounded by the payments in the VCG auction. We
saw in Section 4 that the winning set in the first-price auction is also (approximately) efficient.
These statements regarding the payments and efficiency of first-price auctions suggest that
first-price auctions perform better than VCG auctions. However, first-price auctions have a
significant drawback; it is not clear how agents might converge to a strong ε-Nash equilibrium.
We partially address this concern by proposing another auction whose ε-Nash equilibria have
the same properties as the strong ε-Nash equilibria of a first-price auction.

1The weight of this flow is equal to the weight of the minimum weight k-flow, that is requiring integrality
does not change the value of the optimal solution.
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5.1.1 Payment Bound

We first bound the payments in a strong ε-Nash equilibrium (see Definition 2) of a deterministic
first-price auction. The edges announce bids and the auctioneer runs a first-price auction to
select a cheapest k-flow according to the bid vector, paying each edge on the flow an amount
equal to his bid. By Theorem 3.1, strong ε-Nash equilibria exist for such auctions. Given the
existence of strong ε-Nash equilibria, we can bound the payments in any such equilibrium. In
order to develop some intuition for the proof, it is useful to first consider sending 1 unit of
flow in a graph consisting of just two parallel edges from the source s to the sink t of costs a
and b, a > b+ ε. The lower-true-cost edge must be allocated the flow in equilibrium since he
can bid just under the true cost of the higher cost edge and be guaranteed a profit of at least
ε. Therefore, by the conditions of a strong ε-Nash equilibrium, we can assume that the bid
of the higher cost edge is at most ε more than his true cost, and so the overpayment of any
equilibrium will be at most a+ ε− b. The crux of this argument was to bound the bid of the
winning path by the bid of an augmenting path. Since the augmenting path does not receive
flow, Lemma 3.1 permitted us to assume, for the purposes of bounding the price, that the bid
of this path was close to its true cost. This proof idea easily extends to auctions for k-flows
in general graphs as can be seen below.

Theorem 5.1. The total payment of the deterministic first price k-flow auction in a strong
ε-Nash equilibrium is at most

k
[
c(Fc(k + 1))− c(Fc(k))

]
+ knε,

where c is the vector of true edge costs.

Proof. Fix a strong ε-Nash equilibrium vector of bids b and define bid vector b′ such that

b′i =

{
bi for i ∈ Fb(k),
min{bi, ci + ε} otherwise.

By Lemma 3.1, Fb(k) is a minimum price k-flow with respect to b′. Consider the (non-
integral) flow (k/(k + 1))Fc(k + 1), that is the flow which sends k/(k + 1) units of flow along
the flow paths determined by Fc(k + 1). Since Fb(k) is a lowest-price k-flow with respect to
b′ and using the integrality of optimal network flows [33], we have(

k

k + 1

)
b′(Fc(k + 1))− b′(Fb(k)) ≥ 0. (8)

Define edge sets

E+ = {e ∈ Fc(k + 1)− Fb(k)}
Eo = {e ∈ Fc(k + 1) ∩ Fb(k)}
E− = {e ∈ Fb(k)− Fc(k + 1)}

Then equation 8 reduces to(
k

k + 1

)
b′(E+)−

(
1

k + 1

)
b′(Eo)− b′(E−) ≥ 0
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which, solving for b′(Eo) + b′(E−), gives

b(Fb(k)) = b′(Eo) + b′(E−)

≤ k(b′(E+)− b′(E−))

≤ k(c(E+) + nε− c(E−)) (9)

≤ k(c(Fc(k + 1))− c(Fb(k)) + nε)

≤ k(c(Fc(k + 1))− c(Fc(k)) + nε) (10)

where 9 follows from the fact that for any edge b′i ≥ ci and for all i ∈ E+, b′i ≤ ci + ε; and 10
follows from the optimality of Fc(k) with respect to c.

In addition, it is easy to see that this bound is tight. Consider a graph with (k+1) parallel
edges where the cost of the bottom k edges is c and the cost of the remaining top edge is c′ > c.
Let all k lower cost edges bid c′ − ε for a small ε > 0, so their bid is less than the bid of the
remaining higher cost edge (whose bid is at least c′). The minimum price k-flow with respect
to this bid vector will use the bottom k edges for a total price of k(c′ − ε) which approaches
k(c(Fc(k + 1))− c(Fc(k))).

Finally, we emphasize that the total payment of our first price mechanism in a strong
ε-Nash equilibrium is at most knε more than the VCG payment for the same graph in a Nash
equilibrium.

Theorem 5.2. Given a graph G with source s and sink t, the VCG payment for k units of
flow from s to t is at least k(c(Fc(k + 1))− c(Fc(k))).

Proof. Let P1, . . . , Pk be the k disjoint paths in the selected minimum cost k flow. Fix one
path Pi with, say, l edges. We will prove that the sum of payments to edges on this path is
at least c(Fc(k + 1))− c(Fc(k)). Recall that the VCG payment for an edge e on a minimum
cost k-flow is

ce + c(Fc(k,G− {e}))− c(Fc(k,G)). (11)

We construct a new directed multi-graph on the same vertex set as G as follows. We use the
term forward to mean an edge directed from s to t along the flow path and backward to mean
an edge directed from t to s. For each edge e on path Pi, add a backward copy of each edge in
Fc(k,G) and a forward copy of each edge in Fc(k,G−{e}), retaining multiplicities. Now add
a forward copy of the path Pi to the graph. Label each forward edge e with the cost ce of the
corresponding edge in G and each backward edge with the cost −ce. Then, by equation 11, the
sum of edge weights in this graph equals the VCG sum of payments to edges on path Pi. Note
that this graph is a union of l s− t flows, l t−s flows, and one s-t path. Thus, the in-degree of
every vertex except s and t is equal to its out-degree, and for s (t), the out-degree is one more
(less) than its in-degree. For every pair of vertices, cancel the 2-edge cycles connecting them.
That is, if the vertices are connected by k1 forward edges and k2 backward edges, replace the
edges by k1−k2 forward edges if k1 > k2, k2−k1 backward edges if k1 < k2, or simply remove
the edges if k1 = k2 (this does not change the degree or edge weight properties of the graph
discussed above). Call the resulting graph G′. As the sum of edge weights in G′ equals the
sum of VCG payments to edges on path Pi, we can bound the sum of VCG payments to edges
on path Pi by bounding the sum of edge weights in G′.

First note every edge of Fc(k,G) is either non-existent or directed backward in G′: for
edges e ∈ Fc(k,G)− Pi, e is added exactly once in the backward direction and at most once
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in the forward direction by each of the l edges in Pi; for edges e ∈ Pi, e is added exactly once
in the backward direction and at most once in the forward direction by each of the l− 1 edges
e′ in Pi, e

′ 6= e. Furthermore, edge e is added once in the backward direction by itself and
once in the forward direction in the last step of the construction of G′.

Select a path P from s to t in G′ (such a path exists by the degree properties discussed
above). As edges of Fc(k,G) exist only in the backward direction, our path P is a valid
augmenting path in the original graphG, and so its weight is at least c(Fc(k+1, G)−c(Fc(k,G))
by minimality of Fc(k+ 1, G). We claim the weight of P is at most the sum of edge weights in
G′ (which equals the VCG payment), proving the result. This follows from the fact that, due
to its degree properties, G′ can be written as a union of P and a set of disjoint cycles, and,
since Fc(k,G) is a minimum cost k-flow in G, the sum of edge weights on any cycle must be
non-negative. Otherwise we could construct a cheaper k-flow in G by replacing the backward
edges of a negative cycle with the forward edges in Fc(k,G): specifically, if C is a negative
cycle in G′ with backward edges A and forward edges B, then Fc(k,G)−A+B is a cheaper
k-flow in G.

5.1.2 Implementation in ε-Nash

The simple first-price auction may have costly ε-Nash equilibria, as shown in Example 3.3. In
Section 5.1 we used the strong ε-Nash solution concept to get around this problem. However,
assuming that the bidders will reach an strong ε-Nash equilibrium is perhaps too strong an
assumption: it requires extensive coordination between agents. In this section, we present a
variant of a first-price auction in which every ε-Nash equilibrium results in a low price.

One idea to achieve this is to pay edges a bonus that increases as their bid decreases.
This encourages edges to submit low bids. However, this has the side-effect of giving edges
incentives to bid even below their true cost, as long as they remain off the winning flow. This
would make the bargaining problem that edges must solve much more complex, as it would
include bargains between winning and losing edges. Alternatively, we could instead send flow
on each edge with some probability that increases as the bid decreases. Thus an edge will not
bid below its true cost, but it might have an incentive to bid very high. Using a combination
of these two ideas, we can construct a payoff function such that an edge will bid close to its
true cost if it is not on the lowest true cost flow. This is known as virtual implementation in
the economics literature (see, for example, Jackson [21]). If the bonuses and probabilities are
small enough, then the extra payment will not be very large in expectation, and we can prove
a bound on the total payment of the mechanism similar to that in Theorem 5.1.

We describe the techniques in this section in the setting of path auctions, although they
extend to more general settings as noted. Assume that there is a value B such that no edge
bids more than B. (Alternatively, B can be the maximum amount that the buyer is willing to
pay.) Further, we assume that the edges are risk-neutral. The mechanism starts by computing
a collection of (not necessarily simple) paths {Pe}. The mechanism then solicits a bid be from
each edge e. The lowest-price path is almost always picked; however, with a small probability,
one of the paths from the collection is picked instead. In addition, each edge is paid a small
bonus that depends on the bids. The selection probability and bonus are chosen to ensure
that it is optimal for every edge that is not on the lowest-price path to bid its true cost. For
simplicity, we present the mechanism and analysis for a single unit of flow; the results can
easily be extended to any constant k > 1 units of flow.
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Mechanism RandomPath: The parameters α and τ are selected to be small positive con-
stants such that α < min{n−2B−1, 2

1+2n} and τ < αn−1B−1.

1. For each edge e, find Pe, a (not necessarily simple) path from s to t through e. Let
P = {Pe}e∈G. Note that an edge e may appear in multiple paths in P.

2. Solicit bids b = (b1, . . . , be, . . . , bn) from the edges.

3. For each path P ∈ P, compute

σP = α− τ
∑
e∈P

be

4. Select each path P ∈ P with probability σP ; with probability (1 −
∑

P∈P σP ), select
the lexicographically first lowest price path. Call the selected path P ∗. Pay each edge
e ∈ P ∗ its bid be.

5. In addition to any payment edge e may get in step 4, pay each edge e ∈ G the sum
fe(b) =

∑
P∈P,P3e f

P
e (b), where

fPe (b) = α(B − be) + τbe
∑
j∈P

bj − τ
b2e
2

Our payment rule is constructed in a way that encourages bidders not receiving flow
to bid their true cost. Note that the bonus increases as the bid decreases, but the expected
selection payment decreases as the bid decreases. Intuitively, we design the bonus and selection
probabilities so that the total payoff function is maximized when bi = ci. Note that if an
edge is selected, it incurs its true cost. In this way, the true cost automatically enters his
expected payoff function—the mechanism does not need to know the cost in order to achieve
the maximum at bi = ci.

Lemma 5.1. For any edge e not on the lowest-price path with bids b, if be 6∈ [ce−
√

2ε/τ , ce+√
2ε/τ ], then be = ce will increase the expected payoff to e by at least ε.

Proof. With the bid vector b, e’s expected payoff is

fe(b) +
∑
P3e

σP (be − ce) =
∑
P3e

[fPe (b) + σP (be − ce)]

=
∑
P3e

[αB − τ b
2
e

2
+ τce

∑
j∈P

bj − αce]

Let g(be) = [α(B − ce) − τ b
2
e
2 + τce

∑
j∈P bj ]. Then, g(be) is a quadratic function of be.

Observe that ∂g(be)
∂be

= −τbe + τce = 0 when be = ce; at this point, ∂2g(be)
∂2be

= −τ < 0. This is
true for all paths P containing e. Further, for ∆ > 0,

g(ce)− g(ce + ∆) = τce∆ + τ∆2/2− τce∆ = τ∆2/2

Similarly, g(ce)− g(ce −∆) = τ∆2/2. Thus, if be < ce −
√

2ε/τ , then edge e has incentive to
raise his bid to be = ce. Similarly, if be > ce +

√
2ε/τ , then edge e has incentive to decrease

his bid to be = ce (even if this puts him on the lowest-price path, then his payoff is still g(ce)
per path so the above calculation still holds).
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Lemma 5.1 implies that if ε-Nash equilibria exist in mechanism RandomPath, then any
edge not on the lowest-price flow must bid close to its true cost. This will help us bound
the total expected payment in an ε-Nash, but first we must prove that ε-Nash equilibria
exist in this mechanism. Indeed the same construction as in Theorem 3.1 yields an ε-Nash
equilibrium.2

Lemma 5.2. For any cost vector c and any ε > 0, an ε-Nash equilibrium always exists in the
mechanism RandomPath.

Proof. Construct a bid vector b as in Theorem 3.1. By this construction, the lowest-cost path
equals the lowest-price path. We have be = ce for any edge e that is not on the lowest-price
path. Edges on the lowest-price path bid close to the maximum they can while still remaining
on the lowest-price path (see the proof of Theorem 3.1 for the precise construction).

Following the analysis of g(be), the expected payoff in Lemma 5.1, be maximizes e’s payoff.
(Note that e can only get onto the lowest-price path by bidding below its cost, which would
result in a loss.) It remains to show that every edge i on the lowest-price path would not
significantly benefit by changing it’s bid. Note that, by construction of the bid vector, if i
increased its bid by more than ε/2, it would no longer be on the lowest-price path. Further,
because of the shape of the bonus payoff function, i’s expected gain g(be) from the bonus and
probability of off-path selection would also drop. Thus, i cannot possibly gain more than ε by
raising its bid. Consider the possibility that i lowers its bid by x. Then, i would still be on
the lowest-price path. It would lose at least (1−nα)x in profit from being on the lowest-price
path, and gain at most (ge(be) − ge(be − x)) = τ(12x

2 + (ce − be)x) in ge(be) per path. As
be ≥ ce in b, its total gain is at most nτ

2 x
2. As x ≤ B, the loss is more than the gain for any

choice of τ less than 2(1− nα)/(nB) or, rewriting in terms of α, α < 2
1+2n . These conditions

can be guaranteed by the choice of α and τ .

Now, we observe that the values α and τ can be chosen small enough to make the proba-
bilities {σP } and bonuses fPe (b) arbitrarily small. Thus, the total payment to edges not on
the shortest path is very small. The bound on the payment of the mechanism RandomPath
is more sensitive to the value of ε because edges not on the lowest-price path get very small
payments in expectation. However, we can show that, in the limit as ε→ 0, the maximum ex-
pected payment in any ε-Nash equilibrium is bounded. The following proof can be generalized
to the flow setting to derive a bound similar to that in Theorem 5.1.

Theorem 5.3. Choose any α < n−2B−1, τ < αn−1B−1. For these values of α and τ ,

lim
ε→0

max
ε-NE b

{Total payments with bids b} → c(2)− c(1) + 3αn2B.

Proof. Let b be an ε-Nash equilibrium bid vector, for sufficiently small ε. The total probability
that the mechanism picks a path other than the lowest-price path is bounded by nα. Any
such path can have at most n edges on it, each with price at most B. Thus, the expected
payment for using one of these paths is at most αn2B. Similarly, we can bound the bonus
fe(b) paid to any edge e: fe(b) ≤ n[αB + τnB2]. This is always less than 2αnB.

2Mechanism RandomPath can be extended to the general procurement setting. The proof of the following
theorem can be generalized to prove existence of ε-Nash equilibria in this setting as well.
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Finally, using Lemma 5.1, we know that any edge not on the lowest-price path bids at
most ce +

√
2ε/τ . Combining this with a similar argument to Theorem 5.1, we can bound the

total payment to edges on the lowest-price path by

b(F (1)) ≤ c(2)− c(1) + n
√

2ε/τ

In the limit as ε→ 0, the last term is negligible. Adding up all three sources of payment, we
get the required result.

Recall that mechanism RandomPath needs to compute a set of paths {Pe}, where Pe is
a path from s to t that uses e. If e is to be relevant to the path auction, such a path must
exist, however, it is not always straightforward to compute. In particular, if the network is
a general directed graph, it is NP-hard to compute such a path, since it reduces to the two
disjoint paths problem, which is NP-complete [15].

However, there are many interesting classes of graphs for which it is possible to compute
such a path Pe in polynomial time, including undirected graphs and directed acyclic or planar
graphs [15]. We can also modify the mechanism to ask each bidder to exhibit such a path,
thus transferring the computational burden on to the bidders. Also, these paths may be
precomputed and used in many executions of the mechanism—they do not depend on the
costs or bids.

Another possibility is to use a set of covering paths that do not all terminate at t—this
can be easily computed, even for general directed graphs. Then, if the path is picked, some
arbitrary traffic is sent along this path. After this ”audit” traffic has been delivered, the
lowest-price path is used for the intended traffic from s to t. As long as the mechanism can
verify that the traffic is correctly delivered, the edges would still have an incentive to bid
as specified. Similarly, if we could verify the exact path that the traffic used, we could use
non-simple paths to cover the edges; again, a set of non-simple covering paths can easily be
found.

5.2 Unknown Demand Path Auction

In the previous sections, we studied first-price auctions to meet a known demand, argued that
they had stable Nash equilibria, and showed how to adjust this auction so that the equilibria
chosen by the auctioneer had relatively small overpayments. In practice, however, it may not
be possible to defer the setting of prices until the demand is known. In this section, we examine
the problem of achieving stable prices without advance knowledge of the demand. Instead,
the bidders and auctioneer share knowledge of a common prior or probability distribution over
the possible demands.

Ideally, we would like our results for first-price auctions with known demand to carry
over. For example, we proved in Section 5.1 that a first price auction for k units of demand
led to a payment of Pk = k[c(Fc(k + 1)) − c(Fc(k))] in any strong ε-Nash equilibrium. It is
thus natural to hope that the same auction operating over random k also has strong ε-Nash
equilibria with expected payment Ek[Pk]. This turns out to be false—in fact, as we will show,
a first-price auction might not even have ε-Nash equilibria (recall that strong ε-Nash equilibria
are a subset of ε-Nash equilibria). As ε-Nash equilibria do not exist in first-price auctions,
we turn to more complex auctions. We will exhibit an auction involving two parameter bids
that, unlike the single-parameter first-price auction, does have ε-Nash equilibria. Furthermore,
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using an indifference-breaking technique similar to that of the mechanism RandomPath, we
can restrict the set of equilibria in a variant of this auction to ones with bounded payments.
The bound is not quite the Ek[Pk] we hoped to achieve, but does bear a clear resemblance to
it. Unfortunately, we are unable to prove that this auction is implementable in polynomial
time as it involves solving an integer program. It remains to be seen if further modifications
of this auction can result in a polynomial-time auction with bounded payments.

5.2.1 Definitions and Notation

The unknown demand case is modeled as follows: The demand can take any integral value
in the range [1, r], where r is a positive integer. Further, there is a known prior distribution
on the demand values; say that the demand is k with probability pk, for k = 1, 2 . . . , r. We
assume for simplicity that pk > 0 for all k; our results easily extend to a situation in which
pk = 0 for some values of k ∈ {1, . . . , r}.

An auction for the unknown demand case receives bids, and announces flows F1, F2, . . . , Fr
for each possible demand value. For a first-price auction in this setting, each Fk ∈ F must be
a minimum price k-flow. We call the collection F = {F1, F2 . . . , Fr} a candidate solution. We
also identify a solution F with the set of edges in the union F1 ∪ F2 ∪ · · · ∪ Fr, and say that
i ∈ F if i ∈ Fk for some k.

As before, we use c(F) to denote the total expected cost of a solution F = (F1, . . . , Fr)
when the individual edge costs are c, and ã(F) to denote the price of the flow F when the
bids are ã. When the auction is clear from the context, we will denote the auction output by
F̂(ã).

5.2.2 Impossibility of ε-Nash Equilibria in First-Price Auctions

In this section, we show that a first-price auction may have no ε-Nash in the unknown demand
case. Intuitively, this is because edges must tradeoff the probability of receiving flow with the
profit of receiving flow. With a high bid, the profit is large, but the probability of winning
the auction is low. If the other bids are also high, an edge will prefer to lower its bid to win
with a higher probability. This will lead other edges to lower their bids so as to restore their
high winning probability. Now, however, the first edge will increase its bid so as to increase
its profit at the expense of its winning probability, and so a cycle emerges in the bidding
strategies, as the following example shows.

Consider a graph with four parallel edges W,X, Y, and Z between the source and the sink,
with true costs w, x, y, and z respectively. The demand is either 1, 2 or 3; for simplicity, let
the probability of each demand value be 1

3 . Assign the costs such that w + 50ε < x + 42ε =
y + 12ε = z. Suppose there W,X, Y, Z bid a, b, c, d respectively. The proof repeatedly uses
the ε-Nash conditions to show that one of the following must hold: (1) There is an agent
who would gain by raising its bid, or, (2) There is an agent who would gain by undercutting
another agent to win with a higher probability.

Theorem 5.4. There is no pure-strategy ε-Nash equilibrium in the unknown demand first-
price auction.

Proof. First we prove a series of inequalities that the bids must satisfy in an ε-Nash equilibrium:

Claim 1: a, b, c ≤ d.
Proof: First, suppose d > y + 3ε, and c > d. Then, by changing its bid to d − δ, for small
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enough δ, Y would be selected with probability 1/3 and so get utility greater than ε; thus, any
solution in which Y had 0 expected payoff would not be an ε-Nash equilibrium. As the same
is true for w and x, we must have a, b, c ≤ d. Now, suppose d ≤ y+ 3ε. Then, d < z− 3ε, and
as Z is selected with probability 1/3, its payoff is less than −ε, which cannot be true in the
equilibrium. Thus, in this case too, we have d ≥ a, b, c.

Claim 2: d > y − 3ε.
Proof: If d ≤ y−3ε, then Y could not underbid Z without having expected utility less than −ε.
Hence, Z would be chosen with probability at least 1

3 (if the demand was 3). But d < z − 3ε,
and hence Z’s expected utility would be less than −ε, and hence this cannot be true in an
ε-Nash equilibrium.

Claim 3: a, b, c > x+ 21ε.
Proof: Suppose the order of the bids is a < b < c. Then, by Claim 1, W wins with probability
1, X with probability 2/3, and Y with probability 1/3. Thus, we must have (b − a) ≤ ε,
(c− b) ≤ 2ε, and (d− c) ≤ 3ε, or else one of W,X, Y could increase her profit by ε. A similar
argument holds if the bids are in a different order. Thus a, b, c > d − 6ε. By Claim 2, this
implies a, b, c > y − 9ε which equals x+ 21ε.

Claim 4: b < c.
Proof: By Claim 3, c > x+ 21ε. If we had b ≥ c, then X could deviate by bidding c− δ. This
would involve a bid reduction of at most 6ε, but would enable X to win with a 1

3 additional
probability, leading to a net gain of at least ε.

Claim 5: a < b.
Proof: If a ≥ b, W could deviate to b− ε, resulting in a gain of at least ε, as above.

These claims imply that (a, b, c, d) is not an ε-Nash equilibrium: We have shown that
a < b < c ≤ d. It also must be true that (c − b) < 2ε, and c > y − 3ε. Thus, b > x + 25ε.
Further, (b− a) < ε. Hence, X could deviate to a− δ, resulting in a net gain of greater than
ε.

5.2.3 Implementation in ε-Nash Using a 2-Parameter Bidding Scheme

In this section, we show that by allowing 2-parameter bids, we can define an auction with
ε-Nash equilibria. Intuitively, a two-parameter auction gets around the problem of a single-
parameter auction by letting the edges express their preferences over the entire price-probability
space. It allows to an edge to bid a “price” such that the expected payment of any edge with
a non-zero probability of winning is equal to its price. In particular, we will allow edges to
report their cost along with a demanded profit and then guarantee that the expected payment
of a winning edge is exactly its reported cost plus its demanded profit.

Auction 2-Parameter:

In the following auction, each edge i submits a pair ãi = (c̃i, ũi) as its bid, where c̃i is
interpreted as the reported cost of edge i, and ũi is interpreted as the profit that edge i
demands.

1. Define an indicator variable xik for the event that edge i is on the selected flow Fk,
and yi for the event that edge i is selected to be on some flow. Also, for any node α
in the network, let In(α) denote the set of incoming edges, and Out(α) denote the set
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of outgoing edges. Find an optimal solution to the following integer program (IP for
short).

minimize
r∑

k=1

[
pk
∑
i∈E

c̃ixik

]
+
∑
i∈E

yiũi (12)

subject to ∀α 6= s, t, ∀ 1 ≤ k ≤ r :
∑

i∈Out(α)

xik −
∑

i∈In(α)

xik = 0 (13)

∀ 1 ≤ k ≤ r :
∑

i∈Out(s)

xik −
∑
i∈In(s)

xik = k (14)

∀ 1 ≤ i ≤ n, ∀ 1 ≤ k ≤ r : yi − xik ≥ 0 (15)

∀ 1 ≤ i ≤ n, ∀ 1 ≤ k ≤ r : xik ∈ {0, 1}
∀ 1 ≤ i ≤ n, ∀ 1 ≤ k ≤ r : yi ∈ {0, 1}

2. Set Fk = {i : xik = 1} and F = {F1, . . . , Fr}. For each i ∈ F , calculate the probability
ρi =

∑
{k|i∈Fk} pk that i wins. If the actual demand turns out to be r, use the edges in

Fk to route the flow, and pay each edge i ∈ Fk a sum c̃i + ũi
ρi

.

Remark 5.1. Notice with these payments, IP 12 chooses a flow solution which minimizes
the total expected payment for a fixed bid vector: constraints 13 and 14 guarantee that the set
Fk = {i : xik = 1} form a feasible k-flow and constraint 15 guarantees that edges selected to
be on a flow are paid their reported cost.

We now prove that this auction has ε-Nash equilibria. To develop some intuition for
the proof, recall that in the known demand case, only bidders on the cheapest flow had the
flexibility to submit a bid significantly more than their cost and still win the auction. A
similar statement holds here when the first parameter of all bids are restricted to be equal to
the cost. In particular, the following bid vector should intuitively be an ε-Nash equilibrium:
for edges i 6∈ F̂(ã), set ãi = (ci, 0); for edges i ∈ F̂(ã), set ãi = (ci, ũi) where the ũi divide
up the available profit (the difference between the price of the cheapest and second cheapest
flow). Edges i 6∈ F̂(ã) can not afford to decrease their bids and have no chance of winning by
increasing their bids, so they have no profitable deviation. As the expected payment of any
edge i ∈ F̂(ã) is the same regardless of their winning probability, these edges also have no
incentive to decrease their bid. By an appropriate choice of {ũi}, we can arrange that if they
increase their bid then they will drop out of the solution.

We formalize this argument by using a linear-programming technique similar to the proof
of Theorem 3.1. The variables of the linear program (LP) are the profits demanded by the
bidders (that is, the second parameter of the bid). The LP constrains the total profit demanded
by a set of bidders to be at most the cost-savings induced by this set. Let F∗ be the minimum
cost solution and ui be a variable corresponding to the profit demanded by bidder i. Consider
the following linear program.
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maximize

n∑
i=1

ui (16)

subject to ∀ feasible solutions F :
∑
i 6∈F

ui ≤ c(F)− c(F∗) (17)

∀ 1 ≤ i ≤ n : ui ≥ 0

This LP is clearly feasible as ui = 0 for all i satisfies all constraints. We will show that for an
optimal solution {u∗i }, the set of bids {(ci,max{0, u∗i − ε/(2n)})} form an ε-Nash equilibrium.

Theorem 5.5. For any ε > 0, let ui = max{0, u∗i − ε
2n} and consider the bid profile defined

by a−i = (ci, ui) for each edge i. Then a− is an ε-Nash equilibrium.

The proof uses three lemmas regarding the bids of the minimum price solution. The first
lemma shows that edges i 6∈ F∗ not in the minimum cost solution have zero demanded profit
(that is, ũi = 0). This confirms the intuition that, as in the known-demand case, only edges
in the minimum-cost solution can demand a payment significantly more than their cost.

Lemma 5.3. The minimum cost solution includes all i with u∗i > 0.

Proof. Consider the inequality in LP 16 corresponding to solution F∗. This inequality states
that

∑
i 6∈F∗ u

∗
i ≤ 0. Together with the non-negativity constraints, this implies that u∗i = 0 for

all edges i not in the minimum cost solution. Thus the minimum-cost solution includes all
edges i with u∗i > 0.

The second lemma supports the intuition that the minimum cost solution F∗ has minimum
price.

Lemma 5.4. The minimum cost solution is a minimum expected price solution with respect
to bids ãi = (ci, ũ

∗
i ).

Proof. As the first parameter of any bid ãi is ci, the expected price of any solution F is equal
to its expected cost plus the sum of demanded profits of its edges. Since u∗i = 0 for i 6∈ F∗,
we have

ã(F∗) = c(F∗) +

n∑
i=1

u∗i . (18)

For any flow F , the inequality 17 of LP 16 corresponding to F states that c(F∗) ≤ c(F) −∑
i 6∈F u

∗
i . Adding

∑n
i=1 u

∗
i to both sides and using equation 18 gives ã(F∗) ≤ ã(F).

The third lemma argues that no single edge is essential to the minimum price solution. In
other words, for each edge there is a minimum price solution that avoids that edge. Intuitively,
if this were not the case, then the edge ought to be able to demand extra profit.

Lemma 5.5. With bids ã = (ci, ũ
∗
i ), for any edge i there is a minimum price solution F (i)

that does not contain i.
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Proof. Let F be a solution not containing i and suppose every minimum price solution contains
i. Then, by Lemma 5.4, the inequality corresponding to F must be strict. As this holds for
any solution F not containing i, every inequality containing u∗i is strict. Therefore u∗i + δ is a
feasible solution for some δ > 0, contradicting the optimality of solution u∗i .

Proof of Theorem 5.5. Suppose a− is not an ε-Nash equilibrium. Then, there is some
i which can change its bid to increase its payoff by ε. Let (c′i, u

′
i) be i’s successful strategy,

and let a′ denote the bid profile given by a′i = (c′i, u
′
i) and a′j = a−j for all j 6= i. Let F be

the solution output by the mechanism with bids a− and F ′ be the solution output by the
mechanism with bids a′. Note it must be the case that i ∈ F ′.

We observe that the change in expected price of F ′ from bid vector a′ to a− is at least
ε. Let ρi be the probability (over the demand distribution) that i is in solution F ′. Then i’s
utility increases from ui to u′i + (c′i − ci)ρi, and so by assumption u′i + (c′i − ci)ρi − ui ≥ ε.
Therefore, as only i’s bid changes and i ∈ F ′,

a′(F ′)− a−(F ′) = (u′i + ρic
′
i)− (ui + ρici) ≥ ε. (19)

Now, by Lemma 5.5, there is a solution F (i) not containing i which has minimum price with
respect to bids ã = (ci, ũ

∗
i ). Let F (i) be that solution. Then ã(F (i)) ≤ ã(F ′). Note that for

any solution F , the price with respect to bids a− is within ε/2 of the price with respect to
bids ã: a−(F) ≤ ã(F) ≤ a−(F) + ε/2. Therefore

a′(F (i)) = a−(F (i))
≤ ã(F (i))
≤ ã(F ′)
≤ a−(F ′) + ε/2
< a′(F ′),

where the last inequality follows from inequality 19. This contradicts the optimality of F ′. �

5.2.4 Randomized 2-parameter Auction

The mechanism presented above has an ε-Nash equilibrium corresponding to every optimal
solution to LP 16, but we cannot guarantee that there are no other ε-Nash equilibria. As a
result, it was not possible to bound the total payoff to the edges. In this section, we consider
a slightly modified mechanism in which we add a small random payment, as in the mechanism
RandomPath. We prove that, with this modification, it is possible to bound the total payment.
Our mechanism uses Auction 2-Parameter as a subroutine and therefore is not implementable
in polynomial-time.

Randomized 2-parameter Auction: As before, each edge i bids a pair ãi = (c̃i, ũi) where
c̃i is interpreted as i’s reported cost, and ũi is interpreted as i’s demanded profit.

1. The 2-parameter auction. This step is conducted exactly as in Auction 2-Parameter
by solving IP 12 to select the minimum price solution.
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2. Rejection. If for any edge not in the selected solution ũi 6= 0, reject the bid profile. No
edge is selected and no flow is sent.3

3. The randomized audit. For edges on a random source-destination path, the payoff
is based entirely on the c̃i component of the bid, and is constructed as in the mech-
anism RandomPath. The parameters α, τ , and B are as defined in the mechanism
RandomPath. If an edge has true cost ci and bids (c̃i, ũi), its expected payoff from this

component is g(c̃i) = τ [cic̃i −
c̃2i
2 ]. The exact form of the payoff was derived in the proof

of Lemma 5.1.

The audit component of the auction encourages edges to submit bid vectors in which their
costs are nearly truthful. The first two steps of the auction help guarantee that the demand
profits form a nearly feasible solution to LP 16. These facts allow us to derive bounds on the
expected payment as stated in the following theorem.

Theorem 5.6. The total price paid by the auctioneer in the randomized 2-parameter auction
is at most  r∑

j=1

jpjc(Fr+1)

− rc(F) + nr
√

2ε/τ + 3αn2B.

The result of Theorem 5.6 stands in an interesting relation to that of Theorem 5.1. We do
not achieve the intuitively appealing bound of the expectation of the bounds on the known
demand auction in Section 5.1, i.e., Ej [Pj ] =

∑r
j=1 jpj(c(Fj+1)−c(Fj)) but instead we achieve∑r

j=1 rpj(c(Fr+1)(j/r)− c(Fj)). In other words, the external multiplier j is replaced by r (a
larger quantity), while in the first term the quantity c(Fj+1) is replaced by c(Fr+1)(j/r),
which can also be larger because the cost of j units of flow is a convex function of j. Our
Theorem 5.1 is therefore weaker in two important respects than Theorem 2, but it does have
a similar overall structure.

To prove Theorem 5.6, we first show that all edges are nearly truthful about their costs in
equilibrium:

Lemma 5.6. Let ã = (c̃, ũ) be an ε-Nash equilibrium of the randomized 2-parameter auction.
Then, for all i,

ci −
√

2ε/τ ≤ c̃i ≤ ci +
√

2ε/τ

Proof. We argue that player i can always do better by bidding his true cost; the bounds follow
from the ε-Nash equilibrium condition and the expected-payoff graph of the randomized path
audit. Let ρi be the probability of i being included in the lowest price solution in the ε-Nash
equilibrium ã. If ρi = 0, then i’s entire expected payoff is due to her expectation of winning
in the randomized path audit, and the bounds on c̃i follow directly. The same argument holds
if ρi > 0 but i receives a negative expected payoff from the 2-parameter auction (because her
bid c̃i was too low).

Now, suppose ρi > 0, and, further, i receives a positive payoff from the 2-parameter auction
in the ε-Nash equilibrium. Consider the strategy a′i = (ci, u

′
i) with u′i = ũi + ρi[c̃i − ci]. (i

3This step ensures that, for all edges i not in the winning solution, ũi is 0. Alternatively, we could ensure
that these ũi are close to zero (which is enough for our purposes) by charging a small tax to all bidders who
submit a positive ũi component of the bid.
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received a non-negative profit under ã, so it follows that u′i is non-negative.) Let F be the
solution chosen in the 2-parameter part of the mechanism when the bids are ã. Note that if
i were to deviate from ãi to a′i, the price of F would not change: the change in the utility
component would exactly cancel the change in the cost component. Also, for any other flow
F ′ that did not use i, the price of F ′ would not change with i’s deviation; thus, using the
consistency of the tie-breaking rule, F ′ would not be chosen above F . Thus, we conclude that
i remains in the winning solution (which need not be F) under the bids a′i.

Next, observe that i’s expected payoff from the 2-parameter auction (with bid a′i) is u′i,
because i bids her cost truthfully and is in the winning solution. This is exactly the same as
i’s payoff ρi[c̃i − ci] + ũi from the 2-parameter auction in the ε-Nash equilibrium ã.

To prove the bounds on c̃i, we compare i’s payoff from the randomized part of the mecha-
nism with bids ãi and a′i. The bounds follow directly from the form of the randomized audit
payoffs.

Using the fact that the costs are nearly truthful, we can show that the utility values are
an (almost) feasible solution to LP 16, and hence, derive the following bound on the total
payment. We use the linear programming formulation given in LP 16, only this time we
define the LP with respect to the reported costs rather than the true costs. Rewriting, we get

maximize
n∑
i=1

ui (20)

subject to ∀ feasible solutions F :
∑
i 6∈F

ui ≤ c̃(F)− c̃(F∗)

∀ 1 ≤ i ≤ n : ui ≥ 0

where F∗ is now the minimum cost solution with respect to costs c̃.
Let ã = (c̃, ũ) be any ε-Nash equilibrium of the Randomized 2-Parameter Auction. Let

F∗ be a minimum cost solution with respect to costs c̃, and let Fr+1 be a minimum cost
(r + 1)-flow with respect to costs c̃.

Lemma 5.7. Let u be any feasible solution to LP 20. Then for bids ã = {(c̃i, u∗i )}, the
minimum price solution F satisfies

ã(F) ≤ c̃(Fr+1)

r∑
j=1

jpj − rc̃(F∗).

Proof. Throughout this proof, minimum cost refers to minimum cost with respect to cost
vector c̃. Consider an integral (r+ 1)-flow Fr+1 minimizing c̃(Fr+1). Then Fr+1 is a minimum
cost (r + 1)-flow and consists of (r + 1) disjoint paths {P1, · · · , Pr+1} from s to t. For each
k ∈ {1, 2, · · · , r, r + 1}, define F−kr = Fr+1\Pk, that is, the r-flow obtained by dropping the
k’th path. Extend F−kr to a collection of flows F−k = {F−k1 , F−k2 , · · · , F−kr }, where F−kj
consists of the j lowest-priced paths in F−kr . Noting that F−kj has cost at most j

r that of F−kr ,

c̃(F−k) ≤ c̃(F−kr )
r∑
j=1

pj
j

r
.
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Now, summing the inequality corresponding to F−k over all k, we get:

r+1∑
k=1

∑
i 6∈F−k

r

ui ≤
r+1∑
k=1

c̃(F−kr )

r∑
j=1

pj
j

r
− c̃(F∗)

 .

Note that the left hand side includes each element of Fr+1 exactly r times. Similarly, the flows
F−kr in the right hand side cover Fr+1 exactly r times. Thus,

(r + 1)

n∑
i=1

ui −
∑
i 6∈F−k

r

ui ≤ rc̃(Fr+1)

r∑
j=1

pj
j

r
− (r + 1)c̃(F∗),

and so,

ã(F) ≤ ã(F∗)

≤ c̃(F∗) +

n∑
i=1

ui

≤ c̃(F∗) +

n∑
i=1

ui + r

n∑
i=1

ui −
∑
i 6∈F−k

r

ui

≤ c̃(Fr+1)
r∑
j=1

jpj − rc̃(F∗).
Now, to prove our main theorem, we simply need to prove that the bid profile is a feasible

solution of the linear program.

Proof of Theorem 5.6. Similar to Theorem 5.3, the total probability that the mechanism
picks a path in the randomized audit is bounded by nα. Any such path can have at most
n edges on it, each with price at most B. Thus, the expected payment for using one of
these paths is at most αn2B. Similarly, we can bound the bonus fe(b) paid to any edge e:
fe(b) ≤ n[αB + τnB2]. This is always less than 2αnB.

Now we show that vector ũ of demanded profits in bid profile ã is a feasible solution to
LP 20. By assumption, for all losers, the demanded profit is zero. Therefore,

ã(F) = c̃(F) +

n∑
i=1

ui ≥ c̃(F∗) +

n∑
i=1

ui.

Consider any solution F ′ and note that

c̃(F ′) +
∑
i∈F ′

ui = ã(F ′) ≥ ã(F) ≥ c̃(F∗) +

n∑
i=1

ui,

and so the constraint corresponding to F ′ is satisfied. Therefore ũ is a feasible solution. Since
the ũ satisfy the conditions of Lemma 5.7, noting that for any set of edges F , c(F )−n

√
2ε/τ ≤

c̃(F ) ≤ c(F ) + n
√

2ε/τ , we can apply Lemma 5.7 to get the result. �
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6 Conclusion

In this paper, we showed that first-price auctions entail potentially lower payments than VCG
mechanisms. In particular, the results in Section 5 show that for a fixed k-unit path auction,
the upper bound on total payments in strong ε-equilibria is almost the same as the lower
bound on the VCG mechanism payments; further, the bounds are the same in the limit as
ε tends to 0. It is apparent from the simple examples in Section 3 and results in Archer
and Tardos [2] and Elkind et al. [12] that the VCG mechanism will often require payments
considerably higher than this lower bound (and hence, considerably higher than the strong
ε-equilibria of the first-price auction).

In Section 5.2.2 and 5.2.3 we considered a model in which the demand is a variable with a
known distribution, and we need to select paths ex ante. We showed that a simple first-price
auction may not even have an ε-Nash equilibrium. However, we proved that a variant of the
auction with 2-parameter bids induces a surplus-sharing game with a nonempty core, and that
every core element can be perturbed slightly to get an ε-Nash equilibrium. We also proved a
bound on the total payment to links in a core allocation, which suggests that in this domain
too it may be possible to prove that the VCG mechanism has higher expected payments.

This leads us to a comparison between first-price and VCG path auctions similar to the
comparison between the cost-sharing mechanisms considered by Young [39]. First-price auc-
tions entail potentially lower payments, and have greater collusion resistance than VCG mech-
anisms. However, they suffer from one major drawback, in that the solution concept (strong
ε-Nash equilibrium) requires agents to know all costs, and coordinate on the choice of equilib-
rium. This is much more demanding than the dominant-strategy mechanisms and can lead to
inefficiency in practice. Thus, the auction models analyzed here are not completely satisfying,
as there is no mechanism prescribed for the agents bids’ to reach equilibrium. This is true
even for the weaker concept of ε-Nash equilibrium.

However, the results in this paper shed new light on the functions of overpayment in VCG
mechanisms. We can identify three distinct functions of overpayment:

1. Cheaper paths have a competitive advantage and can thus command a surplus.

2. The surplus paid to links eliminates the need for negotiation between links, leading to a
simple mechanism without delays or expensive reasoning.

3. The surplus eliminates the externalities of one agent’s strategy on other agents, leading
to a mechanism that is fair in the sense that uninformed agents can do as well as informed
agents.

The first source of overpayment is common to the first-price auction and the VCG mechanism.
However, our results show that for path auctions, the VCG mechanism often winds up paying
a premium for functions 2 and 3. (In contrast, for single-item auctions, the first-price auction
always pays as much in the worst case as the VCG mechanism.)

This premium can be viewed as the “cost of implementation” of the dominant-strategy
mechanism, particularly in situations in which this form of fairness is not compelling. We
believe that a promising direction for future research is to find bargaining mechanisms to
enable the bidders to converge to an equilibrium. When the edges all know each others’ costs,
an n-party bargaining protocol, such as the one in the Krishna and Serrano [28], could be used.
When the edge costs are unknown initially but become revealed eventually, the approach of
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Kalai and Kalai [23] for implementing a cooperative solution concept by a noncooperative game
may be used. When there is uncertainty, the situation is more complex. Such a mechanism
may be subsidized; for example, the links may be given an additional payment that decays
with time, to incentivize them to quickly reach an agreement. As long as the subsidy is smaller
than the VCG premium, it may be a better alternative.
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c(1) on the payment in a 1-unit auction, which motivated us to pursue this work. We also
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