
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Fall 2005
Yale Patt, Instructor
Aater Suleman, Linda Bigelow, Jose Joao, Veynu Narasiman, TAs
Exam 2, November 16, 2005

Name:

Problem 1 (20 points):

Problem 2 (20 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (6 points): A 12 x 18 array of bytes is stored in row major order, starting at location 10,000 (decimal). Memory
is byte-addressable. I wish to execute a vector load of the 15th column.

What value must first be put in the Vstride register?

What value must first be put in the Vlength register?

What is the starting address of the vector load?

Part b (5 points): A snapshot of the taken/not-taken branch behavior of a processor is

... T T T T T T N N T T N N T N N T

If the branch predictor used is the 2-bit saturating counter, how many of the last ten branches are predicted correctly?

ANSWER:

Part c (6 points): The DMA mechanism allows information to travel between and

, thereby freeing up for other activities.

Part d (3 points): Most interrupts and very few exceptions are , which means they

may not be serviced as expeditiously as is usually the case, or they may not be serviced at all.

2

Name:

Problem 2 (20 points)

Initially, the register file of the Tomasulo-like machine shown below contains the following data in the registers and
the reservation stations. Note that one instruction has been fetched, decoded, and issued, but has not been executed
yet.

V VALUETAG V VALUETAG V VALUETAG V VALUETAG V VALUETAG
α
β
χ

π
ρ
σ

1
1
1
1

1
1
1R6

R5
R4
R3
R2
R1
R0 π

ρ
σ
β
β

α
χ +

δ

∗

τ

0 αR7

1 5 1 717
13
14
16

3
7

5

8

− −

Four more instructions are then fetched, decoded and issued in program order, none are executed. At that point the
register file and reservation stations are as shown below:

V VALUETAG V VALUETAG V VALUETAG V VALUETAG V VALUETAG
α
β
χ

π
ρ
σ

1
1
1
1

1
0
1R6

R5
R4
R3
R2
R1
R0 π

ρ
σ
β
β

−

−

1

1 7

+

δ

∗

τ
16

0R7

17
13
14
16
5
3
7
8π

α
ρ

1 −0 α
51 −

51 −

0 χ −
0 β 0 χ

0 −π14−
− −

Part a (14 points): Using only instructions of the form ADD Ri, Rj, Rk and MUL Ri, Rj, Rk, where Ri is
the destination register and Rj and Rk are the source registers, show all five instructions in program order. (Hint: You
might consider doing part b first and using that result to help you solve part a.)

NOTE: The instructions in this problem are unique, but two of them can be swapped. Both orderings will receive full
credit.

1

2

3

4

5

3

Name:

Problem 2 continued

Part b (6 points): Show the data flow graph of the code in part a.

4

Name:

Problem 3 (20 points)

A vector processor with 11 cycle memory latency and 16-way interleaved memory, 8 vector registers of length 64,
supporting vector chaining, is used to execute the vector code resulting from compiling the following high-level code:

for (i=0; i<10; i++) {
D[i] = B[i] * C[i];
E[i] = A[i] + D[i];

}

Part a (5 points): Write the vector code to accomplish this. Both results D[i] and E[i] have to be stored to memory.
You have available the following vector instructions:

MOVI VLEN, #n ; (1 cycle)
MOVI VSTR, #n ; (1 cycle)
VADD Vi,Vj,Vk ; Vj, Vk are sources, Vi is dest (4-stage pipelined adder)
VMUL Vi,Vj,Vk ; (6-stage pipelined multiplier)
VLD Vi,A ; Vi gets loaded with contents of memory, starting at A
VST Vi,A ; Contents of Vi gets stored in memory, starting at A

5

Name:

Problem 3 continued

Part b (6 points): If the memory has 2 load ports and 1 store port, how many cycles does the program take to finish?

ANSWER: cycles

Part c (9 points): If this program has to finish in fewer than 60 cycles,

the minimum number of load ports required is: ,

the minimum number of store ports required is: .

With this configuration, the program takes cycles to finish.

6

Name:

Problem 4 (20 points)

You are asked to implement the state machine for an asynchronous controller to handle both arbitration and trans-
action functions. The controller manages read and write traffic for the device attached to it.

Recall the transaction timing diagrams as described in class for a bus with separate address and data lines.

SSYN

MSYN

SSYN

M S M S

SSYN SSYN, D

BBSY BBSY

BBSY, MSYN, A, D, TYPE

BBSY, MSYN, A, TYPE

MSYN

WRITE READ

In this problem, we have a multiplexed address/data bus. Furthermore, transfers can be one bus-width or two.

The bus master knows which of the four transactions is required and asserts a 2-bit signal TYPE in conjunction with
MSYN at the start of the bus cycle to notify the slave which of the four transactions (write of width one, read of width
one, write of width two, and read of width two) is about to occur.

The master and slave will each need one extra control signal to perform these transactions. Call them Extra-M (EM)
and Extra-S (ES).

Part a (12 points): Complete the equivalent timing diagrams for the four cases by specifying the relevant control
signals on every line where there is a “?”. (Note: one “?” may imply more than one missing signal).

BBSY

BBSY BBSY

BBSY

SSYN

M M M M

D, ?

D, ?

D, ?

D, ?

WRITE/1 READ/1 WRITE/2 READ/2

D, ? D, ?

S

BBSY, MSYN, A, TYPE

S S S

BBSY, MSYN, A, TYPE

BBSY, MSYN, A, TYPE

BBSY, MSYN, A, TYPE

SSYN

SSYN, ? SSYN, ?

? ? ?
?

?

?

?

?

?

?

7

Name:

Problem 4 continued

Part b (8 points): Complete the state machine for the asynchronous controller to handle both arbitration and
transaction functions. Show all relevant input signals that cause transitions and output signals according to the Moore
machine convention. You only need to specify the control signals BUT you do need to specify ALL relevant control
signals.

BGi−out

BGi−in

D & BGi−in BGi−in

D & BGi−in

BRi

BGi−in

D BGi−in
SACK

Request Bus Next Master

BBSY−in

BBSY−in

[TYPE]

2nd State
Bus Master
(READ/2)

2nd State
Bus Master
(READ/1)(WRITE/1)

Bus Master
2nd State 2nd State

Bus Master
(WRITE/2)

1st State
Bus Master

Idle

Pass BG

?______

?______?______
?______?______

?______?______ ?______ ?______
?______?______?______?______

8

Name:

Problem 5 (20 points)

Little Computer Inc. is extending the LmmVC-3 (Little “mickey mouse” Vector Computer 3) that you implemented
in Problem Set 5. For your convenience, the modified data path that you constructed in Problem Set 5 is shown on
page 12. The description on the remainder of this page repeats EXACTLY the specification given in Problem
Set 5.

Little Computer Inc. is now planning to build a new computer that is more suited for scientific applications. LC-3b
can be modified for such applications by replacing the data type Byte with Vector. The new computer will be called
LmmVC-3 (Little “mickey mouse” Vector Computer 3). LmmVC-3 ISA will support all the scalar operations that
LC-3b currently supports except the LDB and STB will be replaced with VLD and VST respectively. Our data path
will need to support the following new instructions:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

amount6

amount6

offset6

 0 0 VSR2

 0 0 SR2

offset6

VDR, VSR1, SR2 0

 1

Vlength, amount6

VDR, BaseR, offset6

VDR, VSR1, VSR2

VSR, BaseR, offset6

Vstride, amount6MOVI

MOVI

VLD

VADD

VADD

VST

000 000

001 0001011

VDR BaseR0010

1010

1010

VDR

VDR

VSR1

VSR1

VSR BaseR0011

1011

Note: VDR = Vector Destination Register, VSR = Vector Source Register

MOVI
If IR[11:9] = 000, MOVI moves the unsigned quantity amount6 to Vector Stride Register (Vstride).
If IR[11:9] = 001, MOVI moves the unsigned quantity amount6 to Vector Length Register (Vlength).
This instruction has already been implemented for you.

VLD
VLD loads a vector of length Vlength from memory into VDR. VLD uses the opcode previously used by LDB. The
starting address of the vector is computed by adding the LSHF1(SEXT(offset6)) to BaseR. Subsequent addresses are
obtained by adding LSHF1(ZEXT(Vstride)) to the address of the preceding vector element.

VST
VST writes the contents of VSR into memory. VST uses the opcode previously used by STB. Address calculation is
done in the same way as for VLD.

VADD
If IR[4] is a 1, VADD adds two vector registers (VSR1 and VSR2) and stores the result in VDR.
If IR[4] is a 0, VADD adds a scalar register (SR2) to every element of VSR and stores the result in VDR.

VLD, VST, and VADD do not modify the content of Vstride and Vlength registers.

9

Name:

Problem 5 continued

Since vector instructions take many cycles to complete, we want to be able to service interrupts in the middle of a vec-
tor instruction’s execution. After the interrupt is serviced, the vector instruction should resume execution, but should
not recompute any values that were computed prior to the interrupt.

Part a (7 points): In order to support this new feature, the interrupt initiation sequence needs to save three additional
registers on the supervisor stack in addition to the PSR and PC. What are they?

Part b (3 points): Describe any changes you will need to make to the RTI instruction (in fewer than 20 words).

Part c (3 points): Assuming that the data path already includes all the support required to handle interrupts, describe
the changes that you have to make to the data path shown on page 12 to implement interruptable vector instructions.

10

Name:

Problem 5 continued

Part d (7 points): We show the beginning of the state diagram necessary to implement VADD. Using the notation of
the LC-3b State Diagram, add the states you need to implement VADD. Inside each state describe what happens in
that state. You can assume that you are allowed to make any changes to the data path and microsequencer that you
find necessary. You do not have to make/show these changes. You will need at least four states to implement VADD.

NOTES:
1. Your implementation must support servicing interrupts in the middle of VADD.
2. Clearly indicate in which state you check for interrupts.
3. Assume that the value of the Vindex register is 0 before the first vector instruction is ever executed.
4. As in the problem set, you are allowed to clobber the condition codes.
5. Make sure that your implementation works for Vlength = 0.

[IR[15:12]]

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

A

1010

State 32

11

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D.MAR

2

KBSR

MEM.EN

R

LD.VSTRIDE

LD.VLENGTH

S3MUX S3MUX

S1MUX

S2MUX

IR[5]

IR[4] 0

1 0

1

10

0 01 1

0 1

.W

MIO.EN

GatePCGateMARMUX

16

16

16 16 16

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

[7:0]

LSHF1

[4:0]

1616

16 16

16

1616

16

1616

LD.CC

16

16

16

LOGIC

16 16

GateMDR

LD.CC

16

SHF

GateSHF

6
IR[5:0]

GateIR GateALU

16

SR2
OUT

SR1
OUT

MARMUX

16

3

0

16

ADDR2MUX

2

ZEXT &
LSHF1

3

PCMUX
2

SR2

LD.REG

3

FILE
REG DR

SR1

SCALAR

ADDR1MUX

FILE
REG

VECTOR
VDR

OUT
VR1
OUT

VR2

3

3
VR2

LD.VREG

VR1

3

6

N Z P
2

IR

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

ALUK

Vindex

IN
C

R
E

M
E

N
T

.V
IN

D
E

X

R
E

SE
T

.V
IN

D
E

X

16
LD.IR

Vlength

Vstride

ALU
B A

6

6CONTROL

R

LSHF1
ZEXT&

Figure 1: Modified data path to implement vector instructions

12

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

13

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

14

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

15

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

16

