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Name:

Problem 1 (20 points)

Part a (5 points): A microarchitecture is predicting whether a branch is takenor not taken using a single saturating
2-bit counter. The last five branches were: taken, taken, taken, taken, not taken. What does the branch predictor
predict?Circle one: Taken/Not Taken. Explain.

Part b (5 points): The LC-3b data path has several tri-states connected to the bus: GateMDR, GatePC, GateALU,
to name a few. What is the maximum number of these signals thatcan be asserted in a single clock cycle if you are
sourcing the bus in that cycle?

Answer:

Explain.

Part c (5 points): If you were asked to design the HEP processor, which branch predictor would you use? Explain.

Part d (5 points): To perform a DRAM access, do you always need to assert the Row Address Strobe (RAS) so that
the high bits of address are applied to the DRAM chip?Circle one: Yes/No. Why or why not? Explain.
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Name:

Problem 2 (20 points)

A 2 MB, byte addressable physical memory consists of two 1MB memory chips (20 bit address, 8 bits of data), con-
nected to a 16 bit data bus. The processor is a 32-bit machine,i.e., the ALU processes 32-bit data, registers are 32 bits
wide, etc. The instruction set allows byte, half-word, and 32-bit word loads via LD8, LD16, and LD32 instructions.
Note that Memory Chip 0 is connected to the low 8 bits of the bus, and Memory Chip 1 is connected to the high 8
bits of the bus. You should assume anything that is not explicitly stated should be treated as discussed in class and as
treated for the unaligned question on the problem set.
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To accomplish all memory accesses, the system requires a control logic unit containingm inputs (i1 throughim) and
n outputs (o1 throughon), as shown below:

...
...

Combinational
Logic

LD/ST
SIZE

WE1
WE0
CE

i1

i

o1

MEM.EN

m on

Note that a few of the control signals have been provided.

Part a (5 points): Identify all n control signals. Unaligned access is allowed.
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Name:

Problem 2 continued

Part b (6 points): Identify all m inputs to the control in the table below. Note that LD/ST, SIZE, and MEM.EN have
been provided. Note that some rows in the table may not be needed.

Control Signal Purpose Values
LD/ST Load or Store Load, Store
SIZE Data Size Byte, Halfword, Word

MEM.EN Enable Memory No, Yes

Part c (9 points): We wish to process the instruction LD32 R1, A. Recall LD32 means load 32 bits of data from A
into the 32-bit register R1.

Construct those rows of them-input,n-output truth table that are needed to guarantee that the correct 32 bits of data
are loaded into the MDR as a result of LD32 R1,A. Assume a little endian ISA. Note that some rows in the table may
not be needed.
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Name:

Problem 3 (20 points)

Assume a 256-byte, byte-addressable virtual memory systemof the same style as the VAX discussed in class. Physical
memory address space is 128 bytes, consisting of 16 page frames. We will assume virtual address space is divided
equally between a single process (user) region starting at VA 0x00, and a single system region starting at VA 0x80
(i.e., two regions, not four).

Each page requires a one-byte PTE, as shown below:

7 6 0
V ?

Note that the actual location of the PFN within the PTE is not specified. But, the bits of PFN are continuous within
the PTE.

Like the VAX, the user space Page Table is in System Virtual Memory, and the System Page Table is in physical
memory.

The table below lists the sequence of accesses to physical memory required byn consecutive LDByte instructions
(excluding instruction fetch) to addresses in user virtualspace. Exactly one of those instructions resulted in a TLB
miss (the TLB only contains PTEs for user space). No page faults occurred during these accesses.

Physical Address Data TLB Hit?
Access 1 1111001 10101010

2 1101000 10001110
3 0111101 11010001
4 1000001 10000001
5 1011001 10001110
6 0011101 11100101
7 1001000 10111011
8 0111001 10101110

Part a (3 points): What isn? Explain.

Part b (3 points): Identify which of the accesses in the table resulted in a TLB hit by putting a check mark in the
corresponding rows of the column labeled TLB hit.

Part c (4 points): What is the data returned by the LDByte instruction that resulted in the TLB miss?

Answer:
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Name:

Problem 3 continued

Part d (4 points): Two of the virtual addresses listed below correspond to accesses incurred in getting from the
LD Byte instruction that resulted in the TLB miss to the actual data required. Please circle them.

Virtual Address
11000001
00010101
00101000
01011101
01101001
10111101

Part e (3 points): What is the UBR (User Space Page Table Base Register)?

Answer:

Part f (3 points): What is the SBR (System Space Page Table Base Register)?

Answer:
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Name:

Problem 4 (20 points)

Consider a microarchitecture for an out-of-order processor, in the Tomasulo style. The data path has one adder and one
multiplier. Neither is pipelined. The adder requires 4 clock cycles to execute, the multiplier requires 6 clock cycles to
execute. All instructions require one cycle each for Fetch,Decode, and WriteBack. The WB bus can accommodate
one result per WB cycle. Reservation station entries are allocated in program order. Instructions remain in the reserva-
tion stations until their results are written in the WB stage, and are then available for replacement by other instructions
needing a reservation station slot.

We wish to execute a program fragment consisting of five instructions I1 to I5. All instructions are of the form
OPCODE DR,SR1,SR2. Figure 1 lists the five instructions in program order. In processing these five instructions, a
sequence of writes to the Reservation Stations and to the Register Alias Table occurred. Figure 2 lists that sequence in
the order they occurred. Note that writes to the ReservationStations occur at the end of Decode/Rename and writes
to the Register Alias Table occur during Write Back. (Other writes occur to the Register Alias Table, but we will not
concern ourselves with them in this problem).

I1

I2
I3
I4

I5

Opcode DR SR1 SR2

R2
R5

Figure 1: Program Fragment
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Figure 2: Program Trace

Your job is to complete both tables. Note that one source and one destination in Figure 1 are already filled in, and
many of the entries of Figure 2 are partially filled in.

Entries in Figure 2 are of the form “R/S source1 source2,” or “RAT tag value.” For example,

R/S 1 - 7 1 - 13

means a Reservation Station entry was written, and valid data values 7 and 13 obtained from the two registers identi-
fied in the corresponding instruction.

RAT α 20

means the value 20 was written to the Register Alias Table entry having the tagα.

PROBLEM IS CONTINUED ON THE NEXT PAGE!
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Name:

Problem 4 continued

To help you complete the tables, we have included a mapping ofthe reservation stations, and the contents of registers
R0 through R7 before and after the program fragment executes. Note that there are three reservation station entries
for the multiplier and three for the adder. You are not required to fill in the reservation stations. We include this figure
only to provide you with additional information you might find useful in solving the problem.
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Figure 3: Reservation Stations
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Figure 4: Contents of Registers
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Problem 5 (20 points):

We wish to add a new instruction BLOCKADD to the LC-3b ISA. BLOCKADD sums the integers contained in a
block of contiguous memory locations, writes the results toa destination register and sets the condition codes based
on the sum. Its format is as follows:

  1  0  1  0

15                12  11           9     8    7     6    5                                0   

SR20BaseRBLOCKADD 0 0DR

where 1010 is the opcode, BaseR contains the starting address of the block of memory, and SR2 contains the number
of 16-bit integers in the block.
Modifications to the data path required by BLOCKADD are shownbelow in boldface.
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Figure 5: Modified datapath to support BLOCKADD instruction
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Name:

Problem 5 continued:
Three things must be done to complete the task of implementing BLOCKADD.
Part a (9 points): Five new states are required in the state machine. Fill in themissing information in the state
machine below. Don’t forget to give each state a state number(aka control store address).

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

B

A

[CONTINUE]

43

42

C

D

E

R

R

1

CONTINUE < TEMP1 = 0
?

0

To state 18

32

Figure 6: State diagram for BLOCKADD instruction

10



Name:

Problem 5 continued:
Part b (6 points): Augment the Microsequencer as necessary, without using anymuxes. Hint: cond (see part c below)
is a 3 bit field.

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Part c (5 points): Fill out the control signals that constitute the microinstructions for the five new states in the state
machine. List any signals that are don’t cares for a particular state as 0.
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Figure 7: LC-3b Instruction Encodings
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Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES
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Figure 8: A state machine for the LC-3b
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Figure 9: The LC-3b data path
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Figure 10: The microsequencer of the LC-3b base machine
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