Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2013

Y. N. Patt, Instructor

Faruk Guvenilir, Sumedha Bhangale, Stephen Pruett, TAs
Exam 1

March 6, 2013

Name;

Problem 1 (20 points):
Problem 2 (20 points):
Problem 3 (20 points):
Problem 4 (20 points):
Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (besub@orting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaime

Please sign the following. | have not given nor received arguthorized help on this exam.

Signature:

GOOD LUCK!

Name;

Problem 1 (20 points)

Part a (5 points): A microarchitecture is predicting whether a branch is tagenot taken using a single saturating
2-bit counter. The last five branches were: taken, takergntataken, not taken. What does the branch predictor
predict?Circle one: Taken/Not Taken. Explain.

Part b (5 points): The LC-3b data path has several tri-states connected tathe3ateMDR, GatePC, GateALU,
to name a few. What is the maximum number of these signalsdrabe asserted in a single clock cycle if you are
sourcing the bus in that cycle?

Answer:

Explain.

Part ¢ (5 points): If you were asked to design the HEP processor, which branafigtor would you use? Explain.

Part d (5 points): To perform a DRAM access, do you always need to assert the Rinlve&s Strobe (RAS) so that
the high bits of address are applied to the DRAM chipfcle one: Yes/No. Why or why not? Explain.

Name;

Problem 2 (20 points)

A 2 MB, byte addressable physical memory consists of two

1MBnory chips (20 bit address, 8 bits of data), con-
nected to a 16 bit data bus. The processor is a 32-bit madlénghe ALU processes 32-bit data, registers are 32 bits

wide, etc. The instruction set allows byte, half-word, a2dbdt word loads via LD8, LD16, and LD32 instructions.

Note that Memory Chip 0 is connected to the low 8 bits of
bits of the bus. You should assume anything that is not eigl
treated for the unaligned question on the problem set.

the launsl Memory Chip 1 is connected to the high 8
Istated should be treated as discussed in class and as

Memory Memory
Chip 1 Chip 0
1 0
3 2
8 8
16
16 16
Y
Byte MUX \
16 160 16
16 16 Bvte
\ Y ot
MDR 0
| 32

To accomplish all memory accesses, the system requiresteotlmgic unit containingm inputs ¢; throughi,,) and

n outputs ¢, througho,,), as shown below:

i1
SIZE—
LD/ST

MEM.EN

Logic

|

i :

Combinational | _ \wEgQ

m

Note that a few of the control signals have been provided.

Part a (5 points): Identify all n control signals. Unaligned access is allowed.

Name;

Problem 2 continued

Part b (6 points): Identify all m inputs to the control in the table below. Note that LD/ST, 5]and MEM.EN have
been provided. Note that some rows in the table may not beeteed

Control Signal Purpose Values
LD/ST Load or Store Load, Store
SIZE Data Size Byte, Halfword, Word
MEM.EN Enable Memory No, Yes

Part c (9 points): We wish to process the instruction LD32 R1, A. Recall LD32 nselad 32 bits of data from A
into the 32-bit register R1.

Construct those rows of tha-input, n-output truth table that are needed to guarantee that theat®2 bits of data
are loaded into the MDR as a result of LD32 R1,A. Assume & ldtidian ISA. Note that some rows in the table may
not be needed.

Name;

Problem 3 (20 points)

Assume a 256-byte, byte-addressable virtual memory systéne same style as the VAX discussed in class. Physical
memory address space is 128 bytes, consisting of 16 pagedravile will assume virtual address space is divided
equally between a single process (user) region startingha®¥00, and a single system region starting at VA 0x80

(i.e., two regions, not four).

Each page requires a one-byte PTE, as shown below:

LV] ? |

Note that the actual location of the PFN within the PTE is nacified. But, the bits of PFN are continuous within
the PTE.

Like the VAX, the user space Page Table is in System Virtuaindey, and the System Page Table is in physical
memory.

The table below lists the sequence of accesses to physiecabmeequired byn consecutive LDByte instructions
(excluding instruction fetch) to addresses in user virsgdce. Exactly one of those instructions resulted in a TLB
miss (the TLB only contains PTEs for user space). No pagésfagkurred during these accesses.

Physical Address Data TLB Hit?
Access 1 1111001 10101010
1101000 10001110
0111101 11010001
1000001 10000001
1011001 10001110
0011101 11100101
1001000 10111011
0111001 10101110

oOo~NO UL WN

Part a (3 points): What isn? Explain.

Part b (3 points): Identify which of the accesses in the table resulted in a TitBoy putting a check mark in the
corresponding rows of the column labeled TLB hit.

Part ¢ (4 points): What is the data returned by the LByte instruction that resulted in the TLB miss?

Answer:

Name;

Problem 3 continued

Part d (4 points): Two of the virtual addresses listed below correspond to sse® incurred in getting from the
LD_Byte instruction that resulted in the TLB miss to the actuatbdrequired. Please circle them.

Virtual Address
11000001
00010101
00101000
01011101
01101001
10111101

Part e (3 points): What is the UBR (User Space Page Table Base Register)?

Answer:

Part f (3 points): What is the SBR (System Space Page Table Base Register)?

Answer:

Name;

Problem 4 (20 points)

Consider a microarchitecture for an out-of-order procgssdhe Tomasulo style. The data path has one adder and one
multiplier. Neither is pipelined. The adder requires 4 &agcles to execute, the multiplier requires 6 clock cyctes t
execute. All instructions require one cycle each for Felbcode, and WriteBack. The WB bus can accommodate
one result per WB cycle. Reservation station entries aogaled in program order. Instructions remain in the reserva
tion stations until their results are written in the WB stagied are then available for replacement by other instrostio
needing a reservation station slot.

We wish to execute a program fragment consisting of five irtsitons 11 to 15. All instructions are of the form
OPCODE DR,SR1,SR2. Figure 1 lists the five instructions in program order. Ing@ssing these five instructions, a
sequence of writes to the Reservation Stations and to thisteeglias Table occurred. Figure 2 lists that sequence in
the order they occurred. Note that writes to the Reservaiations occur at the end of Decode/Rename and writes
to the Register Alias Table occur during Write Back. (Otheites occur to the Register Alias Table, but we will not
concern ourselves with them in this problem).

Opcode DR SR1 SR2 Access Data Traffic

11 R/S 1 - 7 1 —- 13
12 R2 R/S 1 -] 0Oa -
13 R5 RS |0m -— O0a -
14 RS 1-- | 1-—-[|
15 RAT a 20
Figure 1: Program Fragment RAT o ’—‘
RS |1—-] | 1--] |
RAT m 40
RAT || [|
RAT | | 260

Figure 2: Program Trace

Your job isto complete both tables. Note that one source and one destination in Figure 1 aredgifdied in, and
many of the entries of Figure 2 are partially filled in.

Entries in Figure 2 are of the form “R/S sourcel source2,”RAT tag value.” For example,

R/S1-7 1-13

means a Reservation Station entry was written, and valia d#ties 7 and 13 obtained from the two registers identi-
fied in the corresponding instruction.

RAT « 20
means the value 20 was written to the Register Alias Tablg éatving the tagy.

PROBLEM ISCONTINUED ON THE NEXT PAGE!

Name;

Problem 4 continued

To help you complete the tables, we have included a mappittgeaeservation stations, and the contents of registers
RO through R7 before and after the program fragment execilete that there are three reservation station entries
for the multiplier and three for the adder. You are not regdito fill in the reservation stations. We include this figure
only to provide you with additional information you might firuseful in solving the problem.

V TAG VALUE V TAG VALUE V TAG VALUE V TAG VALUE
a Tt
B Y
>

NESY, _x_/

Figure 3: Reservation Stations

BEFORE AFTER

RO 4 4
R1 1 1
R2 2 21
R3 6 6
R4 3 3
R5 5 260
R6 7 7
R7 13 13

Figure 4: Contents of Registers

Name;

Problem 5 (20 points):

We wish to add a new instruction BLOCKADD to the LC-3b ISA. BCRADD sums the integers contained in a
block of contiguous memory locations, writes the resulta giestination register and sets the condition codes based
on the sum. Its format is as follows:

15 12 11 9 8 7 6 5

1

BLOCKADD 1010 DR BaseR (0 0 O SR2
1 1 1 1

where 1010 is the opcode, BaseR contains the starting addiréfse block of memory, and SR2 contains the number
of 16-bit integers in the block.
Modifications to the data path required by BLOCKADD are shdwetow in boldface.

REG .
FILE % v4
0—7
SR2 SR1
ouT ouT
——=| CONTINUE
LD.CONTINUE
16 16
———= TEMP1
IR[5] SR2MUX LD.TEMP1 =]
16 TO THE

CONTROL

7 TEMP2
LD.TEMP2

0 1
~ \DECMUX

6
GateALU

GateConst

Figure 5: Modified datapath to support BLOCKADD instruction

Name;

Problem 5 continued:

Three things must be done to complete the task of implemgBirOCKADD.

Part a (9 points): Five new states are required in the state machine. Fill inntissing information in the state
machine below. Don't forget to give each state a state nuifahercontrol store address).

4 N\
32
BEN <- IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]
- J
4 N\
A
- J
4 N\
B
J
C
R
R
<
D 42
2
CONTINUE <— TEMP1 £ 0
J
E 43
[CONTINUE]
io
To state 18

Figure 6: State diagram for BLOCKADD instruction

10

Name;

Problem 5 continued:

Part b (6 points): Augment the Microsequencer as necessary, without usingamgs. Hint: cond (see part c below)
is a 3 bit field.

COND1 CONDO
BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J4] J3] J2] J[1] J[o]

0,0,IR[15:12]

l 6
is

Address of Next State

<}—— IRD

Part c (5 points): Fill out the control signals that constitute the microinstions for the five new states in the state
machine. List any signals that are don't cares for a pasdicstiate as 0.

w
)
LUHNZ >
z %9 ,52x53 5B % 2 3
%)
< 0wous 332 . & <-|.|J|.uo§ z =
= =2 xxOo0g g =535 3 gz ERREQD S5 0O
0O 00 O0® 8 @ x I = <« docao 8 I o
COND J J 3 3 30 O on « 2 xoa4a a0 <« 0
state A — N I B | I
state B - T T T 1 [I
state C | | [| | | | |
state D I T T T T | I
state E — I N B | I

11

ADD'
ADD’
AND
AND'
BR
JMP
JSR
JSRR
LDB*
LDW *

+

LEA
NOT’
RET
RTI
LSHF "
RSHFL
RSHFA'
STB
STW
TRAP

XOR'

+

XOR

not used

not used

15 14 13 12 11 10 9 8 7 [5 4 3 2 1 0

o | o | i o] w] s
o | o | 1o
:01:0]: :DR: :SRI: 0 0:0 :SRZ:
oo | o | 1o
o0 [nz]p] poomen
oo | o | soun | s
o0 (1|
o0 o o0 soun | s
:00:10: :DR: B:cxse:R : tj)Off:sef:é :
:01:10: :DR: B:cxse:R : :offs:efé: :
wo | o | e
oo | o | w |1
EREARTARE="S
CORBE
ot | R | % [0]0] amouns
Dot | o | s [o]1] amouns
Do | o2 | % [1]1] amouns
oon | % | boser | botiets
:01:11: :SR: B:dse:R : :offs:efé: :
e | s
o | o] |
‘10‘01‘ ‘DR‘ ‘SR‘ 1 | ir‘nm‘s |
————— —
‘10‘10““““““
‘IO‘H‘

Figure 7: LC-3b Instruction Encodings

12

Table 1: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)
PCMUX/2: PG+2(0) ;select pe-2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7
SRIMUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]
ADDR1IMUX/1: PC(0), BaseR(1)
ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffsetl1(3) ;select SEXT[IR[10:0]]
MARMUX/1: 7.0(0) ;select LSHF(ZEXTIIR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)
MIO.EN/1: NO(O0), YES(1)
R.W/1: RD(0), WR(1)
DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:
COND/2: CONDL ;Unconditional
COND; ;Memory Ready
COND, ;Branch
CONDs; ;Addressing Mode
IRD/1: NO, YES

13

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDB

P

To 18

To 18 15

6AR<—LSHF(ZEXT[IR[7:O]]9

To 18

R7<-PC
PC<-BaseR

R7<-PC

To'18 GC<—PC+LSHF(Off1

3

13
T0 18/ HR<-SHF(SR,A,D,amt
set CC

To 18/ DR<- PC+LSHF(off9 0
setCC CMAR< B+offED CAR< B+LSHF(off6} @AR< B+LSHF(off6}) CMAR< B+offED

To 18/ \
24

23
NOTES C@DR< M[MAR[15 1](D CDR< M[MAR)D MDR<-SR MDR<-SR[7:0]
B+off6 : Base + SEXT[offset6]

PC+0ff9 : PC + SEXT[offset9]

i

To 18

17

set CC

I ' " R "

To 18 To 18 To 18 To 19

MAR[0]

Figure 8: A state machine for the LC-3b

14

*OP2 may be SR2 or SEXT[imm5)| DR<- MDR
** [15:8] or [7:0] depending on ER< SEXT[BYTE DAT} C MAR]< MDR M[MAR]< MDR*DD

GateMARMUX

—?/MARMUX

A A

16 16

<—ADDR1MUX 16

LD.REG—>

3
SR27L|>

SR2
ouT

SR1
ouT

l<t-4-DR
3
I<t4—SR1

z}z}z}ooo

v

—l>; SR2MUX7

Y

CONTROL

4

6
SHF \vLIR[S:m

[[
youTPUT

|<+—DATA.SIZE o)
LOGIC WE RW
l<—MAR[0]
Loeic MIO.EN
DATA.
y \Y SIZE v
WE1 WEO
16 _ ADDR. CTL.
MEMORY LoGIC
2 ||
MDR LD.MDR MEM .EN
MIO.EN i
[y
16 A6
LOGIC <
|<+——DATA.SIZE INMUX
l<—MAR[0] 4-‘

Figure 9: The LC-3b data path

15

J5]

0,0,IR[15:12]

|

J[4]

J3]

COND1

J

CONDO

BEN

J2]

J

Branch

N

J[1]

RN

Ready

IR[11]

J[0]

~—

ie

Address of Next State

<}— IRD

Figure 10: The microsequencer of the LC-3b base machine

16

J

Addr.
Mode

