
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2014
Y. N. Patt, Instructor
Stephen Pruett, Emily Bragg, Siavash Zangeneh TAs
Final Exam
December 12, 2014

Name:

Problem 1 (20 points):

Problem 2 (10 points):

Problem 3 (15 points):

Problem 4 (15 points):

Problem 5 (20 points):

Problem 6 (20 points):

Problem 7 (25 points):

Total (125 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (25 points)

Part a (5 points): We showed in class that multiplication of two 16-bit binary fixed point numbers consists of a
sequence of 16 shifts and adds. Andrew Booth’s algorithm reduced that number from 16 to what?

Part b (5 points): Speed-up with p processors is defined as T1/Tp, where T1 is thetime to solve the problem with
one processor and Tp is the time to solve the problem if you have p processors. What important requirement is there
on T1?

Part c (5 points): A four processor system, each processor having its own cache, uses the Directory scheme to main-
tain cache coherence. The directory stores a bit vector for each ”line” (or, ”block”) of memory, indicating its status
relative to the caches.

Assume no cache has line A. Then in sequence: processor 1 wishes to read a value in line A, processor 2 wishes to
write a value in line A, processor 3 wishes to read a value in line A. At the end of this sequence, what are the contents
of the bit vector for line A.

Part d (5 points): One Pseudo-LRU replacement scheme for 4-way set-associative caches uses 3 additional bits for
each set in the cache. What does each of the three bits specify?

2

Name:

Problem 2 (10 points)

Assume IEEE-like floating point, except a data element contains 7 bits, rather than 32 or 64. We can represent the
values 14 and 1/32 as 7 bit numbers.

Furthermore, we can multiply 14 times 1/32 with a MUL instruction, which yields the result 7/16 (as we would ex-
pect), or we can execute the for loop:

result = 0
for (i = 0; i < 12; i = i+1)

result = result + (1/32)

which yields the result 1/4. Why do we get 1/4 instead of the correct value 7/16?

Your job: Complete the specification of the IEEE-like 7-bit floating point number:

Exponent:

Fraction:

Excess (also called bias):

3

Name:

Problem 3 (15 points)

An Aggie messed up the wiring of an 8-bit addressable memory by leaving out bit 1 rather than bit 0, when he wired
15 bits of the MAR to the two memory chips. Instead of having chip 0 contain all even addresses and chip 1 contain
all odd addresses, he ended up with what is shown below.

Your job is to implement the memory controller shown on the next page to support unaligned accesses of 32 bit loads.

.

.

.

MAR

+1−1 +2

16

.

.

.

8

Chip 0

5
4

0
1

8

Chip 1

16

MARMUX
00 01 10 11

16

byte rotator
conventional

7
6
3
2

16

2

1

MDR

16

From Processor

[15:2]’[0]

16

Note: The conventional byte rotator simply takes a 16-bit vector and swaps the bytes.

Note: The MDR is a 32 bit register.

Note: The output of the byte rotator is simultaneous appliedto both MDR[15:0] and MDR[31:16].

4

Name:

Problem 3 continued

Part a: The memory controller shows a missing input (X) and two missing outputs (Z,W). Label them.

CE

LD.MDR
4

LD.MAR

W

Z
2DATA.SIZE

MEM.EN

X

Memory
Controller2

2
1st, 2nd,

3rd, 4th access

X Z W

Part b: Given the byte rotator does a conventional byte rotate, whatis the maximum number of bytes one can load
into the MDR in each cycle.

Part c: For the case where data size is 32 bits, complete the truth table for the 4 input combinations labeled A, B, C,
D:

X 1st,2nd,3rd,4th accessLD.MDR3 LD.MDR2 LD.MDR1 LD.MDR0 Z1 Z0 W
00 00 ***** ***** ***** ***** ***** ***** *****
00 01 ***** ***** ***** ***** ***** ***** *****
00 10 ***** ***** ***** ***** ***** ***** *****
00 11 ***** ***** ***** ***** ***** ***** *****

A 01 00
B 01 01
C 01 10
D 01 11

10 00 ***** ***** ***** ***** ***** ***** *****
10 01 ***** ***** ***** ***** ***** ***** *****
10 10 ***** ***** ***** ***** ***** ***** *****
10 11 ***** ***** ***** ***** ***** ***** *****
11 00 ***** ***** ***** ***** ***** ***** *****
11 01 ***** ***** ***** ***** ***** ***** *****
11 10 ***** ***** ***** ***** ***** ***** *****
11 11 ***** ***** ***** ***** ***** ***** *****

5

Name:

Problem 4 (20 points)

Assume a Tomasulo-style, out-of-order execution machine that handles ADD and MUL instructions. Instructions are
of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed in class. Each instruction requires a fetch cycle, a
decode cycle, some number of execution cycles, and a final cycle to store the result into a register and/or a reservation
station entry waiting for that result. A result is availableto subsequent instructions after it is stored in a register or
reservation station entry.

Assume a program consists of four instructions. The first instruction is fetched in cycle 1.

Shown below is a snapshot of the register file before cycle 1, the register file at the end of cycle x, and the reservation
stations at the end of cycle x.

Reservation station entries are allocated in order, from top to bottom. That is, for example, the first MUL is allocated
to the top reservation station entry associated with the mulfunctional unit, the second MUL with the second
reservation station entry, etc. Each instruction remains in its reservation station until its result is stored in its
destination register.

R0 1 – 1
R1 1 – 2
R2 1 – 3
R3 1 – 4

Figure 1: Registers Before Cycle 1

R0 1 – 5
R1 1 – 2
R2 1 – 3
R3 0 β –

Figure 2: Registers After Cycle X

α

β

Σ

V V TAG VALUEVALUEV TAG V TAG VALUEVALUE TAG

αα

−− −−

τ

ρ

π

−− −−

−−−−−−−− −−−−

−−

−−−−

−−

− −−−−

−−− − −−

−−− 1 1−− 6

10

− −−

ρ −− 6

1

Figure 3: Reservation Stations after Cycle X

The machine has one add functional unit and one mul functional unit. Neither is pipelined. The timing diagram
below indicates the cycles (with the letter E) that each functional unit is busy in the execution phase of an instruction.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Adder E E E E

Multiplier E E E E E E E E

6

Name:

Problem 4 continued

Part a (5 points): What is X (There are more than one correct answer. We are only asking for one of them)?

Part b (15 points): Complete the table by filling in the four instructions.

Instruction Opcode DR SR1 SR2

I1

I2

I3

I4

7

Name:

Problem 5 (20 points)
Assume 16-bit physical address space, byte-addressible memory, and a 512 byte, 2-way set-associative, write-back
cache with LRU replacement that allocates on a write-miss. Assume the cache is initially empty.

Part a (10 points):

Suppose we execute the following code segment which copies an array A[256][4], whose starting address is x1000
into an array B[256][4], whose starting address is x2000. Each element in both arrays is one byte.

for (i=0;i<255;i++)
for (j=0;j<4;i++)

A[i][j] = B[i][j];

We note that the cache hit ratio for executing this code segment is 7/8.

Your job: Determine the cache parameters:

Block Size:

No. of Sets:

Tag Size:

Tag store size:

Part b (10 points)

Suppose instead, we execute the following code segment, starting with the same empty cache.

for (j=0;j<4;i++)
for (i=0;i<255;i++)

A[i][j] = B[i][j];

What is the cache hit ratio this time?

8

Name:

Problem 6 (20 points)
We wish to enhance the LC-3b by adding virtual memory and a newinstruction, Load Indirect (LDI). Our virtual
memory scheme will follow the VAX scheme which you have already studied. LDI will use the unused opcode 1011,
and have the following format:

 1 0 1 1 offset6

15 12 11 9 8 6 5 0

LDI DR BR

LDI operates as follows: A virtual address (call it A) is computed by adding the sign-extended offset to the contents
of the register specified by BR. The contents of A is a virtual address B. The contents of B are loaded into the register
specified by DR.

(If you took EE306, you studied the LDI instruction. Note, however, that the LDI instruction in EE306 computed the
address A differently than is shown here.)

The virtual memory model is as follows: Virtual addresses are 16 bits. Physical addresses are 12 bits. Frame size is
64 bytes. Memory is partitioned into system space (x0000 to x7FFF) and user space (x8000 to xFFFF). Each PTE is
2 bytes and has the format

15 5 0
PTE V 00...0 PFN

9

Name:

Problem 6 continued

Assume the state of the machine before this instruction is executed includes:

R0: x9500
R1: xA400
PC: x8200

A 4 entry TLB.

V Page #
PTE

V PFN
1 x090 1 x08
0 - - -
0 - - -
0 - - -

To process LDI R0,R1,#0, seven physcial memory accesses areneeded. The table below shows the VA, PA, Data, and
whether or not there was a TLB hit for each of these seven physical memory accesses in the order they occurred.

Your job: Complete the table and fill in the additional two boxes. You can assume no page faults occur in the
processing of the LDI instruction.

Virtual Address Physical Address Data TLB Hit
x978
x490
x600

x8006
x3102 x801A
xC07E xC07E

UBR:

SBR:

10

Name:

Problem 7 (25 points):
The linked list is a useful data structure that connects nodes, each of which is a record consisting of values for a
number of parameters. Usually, the first word in a node is a pointer to the next node. The first word of the last node is
usually x0000 (the null pointer).

x0000

5 7 3

BR

It is common to traverse a linked list searching for a particular value for a particular parameter.
A useful instruction to accomplish this could be added to theLC-3b ISA. Call it LinkedListSearch (LLS), which uses
opcode 1010, and has the following format:

 1 0 1 0 Offset6

15 12 11 9 8 6 5 0

LLS BRCR

CR contains the value one is searching for. BR contains a pointer to the first node in the linked list. offset is the offset
from the starting address of a node where the value of the parameter being queried is contained.
LLS operates as follows:

while (BR != 0) {
if (CR == M[BR + Offset6])

return
else

BR = M[BR]
}

After LLS executes, BR contains the address of the first node that contains the value we are looking for, or it will
contain x0000, the null pointer signifying that no node contained that value.
Note that LLS modifies condition codes to an undefined state.

11

Name:

Problem 7 continued:
Part a : Complete the state machine for this instruction.

To state

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

26

10

50

32

[Z]

38

[Z]

To state

51

53

55

52

54

36

Figure 4: State diagram for LLS instruction

12

Name:

Problem 7 continued:
Part b : Add the additional data path required by filling in the dashedbox.

16

OUT OUT
SR1SR2

FILE
REG

16

IR[5] SR2MUX

SEXT (IR[4:0])
16

2

16

16

ALUK

GateALU

ALU

Figure 5: Modified Datapath for LLS instruction

13

Name:

Problem 7 continued:
Part c : Modify the microsequencer as necessary.

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

14

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 6: LC-3b Instruction Encodings

15

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

16

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 7: A state machine for the LC-3b

17

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 8: The LC-3b data path

18

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 9: The microsequencer of the LC-3b base machine

19

