
. . \

..

·, · Floating Point

Arithmetic

(The IEEE Standard)

:l• .

I .

Floating Point Arithmetic
(and The IEEE Standard)

· *. Floating -Point Arithmetic

- Representations
- . Issues
- Normalized, Unnormalized,

Subnormal
- Precision
- Wobble

* The IEEE Standard

- Why .
- What it contains, what it

doesn't contain
- Formats
- Rounding
- Operations
- ·lnfin,itie·s, NANs
- -Exceptions ·
- Traps

Several Issues Come Up:

* How many bits for range, how
many bits for precision?

* What to do with numbers too
small to represent with this
scheme?

* What to do with numbers that do
not correspond to exact
representations?

* What to do with numbers too
large to be represented?

* Shall we distinguish numbers too
large with true infinities?

* What about nonsense numbers?
(Examples:

Arcs in 2, ! , oo - oo)

First, An Example

WeSimf)lify: I SJ · :EX~ J F~ I
In DEC format: (-1)8 * 0._1 1fra 1 * 2EXP-4

J) I I I

1 o I oo 1 I- oo 1

\I I I

1 o 1 01 o I oo 1

+o.1oox2· 2 +0.1 00x2" 3

1
16

1
8 1 o I o 11 1- oo 1

Io I o.o1 I o1 I
+0.101.x2· 3

5
64

-1 ,+0.1 OOx2· _

1
4

First, Some General Stuff:

A number can be represented as

These numbers correspond to points on
the real line. If we insist. that all
representations be normalized, then the
points are shown (normalized·can mean:
do .. = fl, d 1 :;: 1)

I I I I I I I I I I 11! I I ii .,__
-oo 0

I II I 111 1 I I ' I I I I I I ..
00

(We can, incidentally, store the number
in signed-magnltude format:)

~ s j e + BIAS j d2 d3 d4 m
·s1GN
+' - .

Normalized, Unnormalized, Subnormal

Again, we are looking at+ d0 .d1 d2 ... *~e
. ' '

1 . If it i~_ norm:alized, it . is:

I ! 0. 1 d2 d3 ... ·* ~e

2. Unnormalized (after a subtract of
like· signs, for example)

I ! 0.0001 d2 d3 •·· * ~e+
3

I

3. Subnormal means it can't be
represented in the machine in ·
normalized format

- Recall the format I ti e+e1As ld2 d3 ---1

Corresponds to + 0. t d2 d3 ••• * ~e

- Suppose we success·ively <;livide by
_ ~- We ca:n do this until ·e+BIAS = 1.
· Below that we c~n't represent
. numb.ers ·(except O}'. Why?
_ Supp.d.~e,_ .. we Jet.e:+6.IA.S,c,;;,Jl. _

_- How do we now represent O?

Pre·cision

----+-----------4-____;.;_,_....;.· The Rea I Line

t
Representable " Representable

* Uncertainty is at Most: I½ ULP I
* Precision deals with worst unavoidable .

error

* Precision is a function of representation
Accuracy is a function. of ·your algorithm

* Relative uncertainty (the issue of
wobble)

I

! ULP _!_ ULP

2 • • + 2.
f jxxx xfxxxxx;a.q~

t
t --

Representable . Representable
Number Number

Representable
Number

One ULP-just above a power of ~ is ~
times as large as o~e ULP just below.

I

The IEEE Standard

1. Direct Support for:

Execution-time diagnosis of anomalies

Smoother handling of exceptions

Interval arithmetic at reasonable cost

2. Provide for development of:

- Standard elementary functions

- Very high precision arithmetic

Coupling of n~merlc & symbolic computation

The IEEE Standard
(Continued)

What does it contain:

Formats: single, double, extended
Operations: +,~, *, + ,r, REM,CMP
Rounding modes
Conversion: Int/Fl. , Dec/Fl., Fl/Fl
Exceptions: Underflow, Overflow,

Div /J, Inexact, Invalid

What jt does not contain:

Requirements tor implementation
in HDWR or SFWR

Interpretation of NaNs
Formats tor Integers, BCD
Convers ions other than above

The Formats ·

There are four;-we start with one as an
example.

Single

Representable Numbers:

* . Normalized

1.d1 d2d3 ... d 23 * 2 8

where -126< e ~ +127

~ 8 Bits~

s

t
Sign

0

e .. + 127 -~t~ ■ ■

.,

2 -~ 1 2· 6 2 -1 2 5

I I

■ ~3

2·124

I
,~ .. ---'·Nofmanzec1 --·- ·. _·_•--_--- _·"_-.·-··~

Note: The range of. exponents

-126 ~ e _ < +·1-21· .-

Coupled. with the BIAS (127) which is
added to the .exponent yie.lds an 8 bit
string -from 00·000001 ·

• . .

•
11111110

Two strings remain: ·00000090, 11111111

* Subnormal numbers (E.xp field = 00000000)

O.d1 d2••· d23· 2-126

2 -126 *

Subnormal

* Infinities (Exp field = 11111111)

I s I 11111111 I oo o ... o I

Formats (Continued)

That still leaves those strings
characterized: · ·

I s I 11111111 I Not Zero I

These are defined as NaNs.

They result from invalid-operations

(Like,: g , : , oo - oo)

Generalizing to the other formats
Single Single-X Double Double-X

Precision 24 .bits ~32 53 ~64

Exponent 8 bits ~11 11 ~15

Word Length 32 bits ~4.3 64 ~79

Exp BIAS +127 -- +1023 --
emax · +127 ~1023 +1023 ~16382

8 min -126 ~-1022 -1022 <-16382

Rounding

1 fil We perform the 2.R.!!.@llQn &
produce the infinitely precise
result

2ml We round to fit ii into the
destination format

E2fil Rounding Modes

1. Default: To nearest. If equally
near, then to the one having A 11
in LSB

2. Directed roandings

Toward+ oo
Toward - oo
Toward f4 (Chop)

Operations

* Arithmetic : + , - , *, .;... , REM

When y ;' 11, r = x REM y, Is defined:

r = x-y* n, where n is the integer
nearest f

whenever I n·f /=}, then n is EVEN

:. Remainder Is always exact

* Square root: Result defined if ARG
?:.11-

* Conversion from one format to
another

To fewer bits : rounded
- To more bits: exact

Operations (Continued)

* Conversion FL Pt~ ~----> Integers
Binary <----> Decimal

* Comparison .

- Always exact
- Never underflow, overflow

- Four relations are possible
{>, =, <, unordered}.

Note: Invalid· is signaled if unordered
operands are compared and unordered
is not the basis but > or < is the basis.

Examples:

?
Invalid if

Predicate > < . - unordered - • - F-F T F No -
?:;c T T F T No
> T F F F Yes
?<=p F T T T No

,,,· • . -·

Infinities, NaNs, t JI
oo:

* - oo < (fi_nite) < + ·oo

* · Arithmetic on oo is exact

* oo is created by

. - Overflow .
- "Di.vide by zero"

NaN:

* Signaling & Quiet

Signaling - Reserved operand that
signals the invalid Op.
Exception for all operations in the
standard. If no trap occurs, a
quiet NaN is delivered

Quiet - Operations on quiet NaNs
·produce quiet NaNs. They provide
hooks· to retrospective
diagnostic-information.

Exceptions

When detected-: Take Trap, or
·. Set Flag, or

Both ·

Flag can be reset only under program
control

* Invalid

-
-
-
-
-
-

-

Operation on a. signaling NaN.

00 - 00 0/0

0 * oo oo/ oo

x REM y, where y=O or x= oo

\JNEG
Conversi.on from Fl. to int. or
decimal, when ov·erflow, infinity,
or NaN prevents the conversion
Comparison via predicates

· involving > or <, and Not?, when
the operands are unordered
. ,. . '

Exceptions (Continued)

* Divide by zero

When f(finite) --> Infinite and
exact

*· Overflow

When the destinations largest
. finite number is exceeded by what

would have been the rounded
floating point result if the
exponent range were unbounded

To Nearest !
00

To Zero - -· •

.. ♦
. To - oo •

+ ◄

· To+ oo •
~ -

•

Exceptions(Contlnued)

* Overflow (Continued)

Trappe.d overflows! [Except for
·. conversions]

1'§1, Divide infinitely precise
· Result by 28

_ Single
a - 192

* Underflow

Double Extended
1536 3 •2n-2

. .· i
· n = I' exponent bits I

- Tiny value {w'1ich could cause
subsequent o\,erf.low)

- .Loss of precision

Deliver~d .result may.be.zero, subnormal .No.,
or t 2m•~--exp .

Exceptions (Continued)

* Underflow (continued)

Trapped underflows!
[All operations except conversions]

1 i!, Multiply infinitely precise
Result by 2•

* !nllm
When the result of an operation is
not exact, or on non-trapped
overflow.

Traps

For any of the five ·exception·s, a user
should be able-to·:

* Specify a h·andler· ..

* Request that an existing handler
be disabled, saved, restored.

When a system traps, the trap handler
should be able to determine: ·

* Which exception occurred on this
operation

* The kind of operation being
performed ·

* The des--ttnation· format

* In overflow, . underflow, .& in~xact,
the correctly rounded result

. . * . :·•_In i,nvalidc & d-ivi-de b-Y zero, the
operand values ·

{ "type": "BusinessCard", "isBackSide": false }

{ "type": "BusinessCard", "isBackSide": false }

{ "type": "BusinessCard", "isBackSide": false }

{ "type": "BusinessCard", "isBackSide": false }

{ "type": "BusinessCard", "isBackSide": false }

{ "type": "BusinessCard", "isBackSide": false }

