Floating Point

Arithmetic

(The IEEE Standard)

Floating Point Arithmetic (and The IEEE Standard)

* Floating Point Arithmetic
- Representations
- Issues
- Normalized, Unnormalized, Subnormal
- Precision
- Wobble

* The IEEE Standard

- Why
- What it contains, what it doesn't contain
- Formats
- Rounding
- Operations
- Infinities, NANs
- Exceptions
- Traps

Several Issues Come Up:

* How many bits for range, how many bits for precision?
* What to do with numbers too small to represent with this scheme?
* What to do with numbers that do not correspond to exact representations?
* What to do with numbers too large to be represented?
* Shall we distinguish numbers too large with true infinities?
* What about nonsense numbers?
(Examples:

$$
\left.\operatorname{Arcsin} 2, \frac{0}{0}, \infty-\infty\right)
$$

First, An Example

In DEC format: (-1) * 0.1 fra * $2^{\text {EXP-4 }}$

First, Some General Stuff:

A number can be represented as

$$
\pm d_{0} \cdot d_{1} d_{2} \ldots \beta^{e}
$$

These numbers correspond to points on the real line. If we insist that all representations be normalized, then the points are shown (normalized can mean: $\mathrm{d}_{0}=\phi, \mathrm{d}_{1}=1$)

(We can, incidentally, store the number in signed-magnitude format:)

Normalized, Unnormalized,Subnormal

Again, we are looking at $\pm d_{0} \cdot d_{1} d_{2} \ldots * \beta^{e}$

1. If it is normalized, it is:

$$
\pm 0.1 d_{2} d_{3} \ldots * \beta^{e}
$$

2. Unnormalized (after a subtract of like signs, for example)

$$
\pm 0.0001 d_{2} d_{3} \ldots * \beta^{e+3}
$$

3. Subnormal means it can't be represented in the machine in normalized format

- Recall the format | $+e+B I A S$ | d_{2} | $d_{3} \ldots$ |
| :--- | :--- | :--- |

Corresponds to $\pm 0.1 \mathrm{~d}_{2} \mathrm{~d}_{3} \ldots$ * β^{e}

- Suppose we successively divide by β. We can do this until e+BIAS =1. Below that we can't represent numbers (except 0). Why? Suppose we let e+BIAS $=0$. How do we now represent 0 ?

Precision

Representable
Representable

* Uncertainty is at Most: $\frac{1}{2}$ ULP
* Precision deals with worst unavoidable error
* Precision is a function of representation Accuracy is a function of your algorithm
* Relative uncertainty (the issue of wobble)

Representable
One ULP jumber just above a power of β is β times as large as one ULP just below.

The IEEE Standard

Reasons:

1. Direct Support for:

- Execution-time diagnosis of anomalies
- Smoother handling of exceptions
- Interval arithmetic at reasonable cost

2. Provide for development of:

- Standard elementary functions
- Very high precision arithmetic
- Coupling of numeric \& symbolic computation

The IEEE Standard (Continued)

What does it contain:

- Formats: single, double, extended
- Operations: $+,-, *, \div, r$, REM,CMP
- Rounding modes
- Conversion: Int/FI., Dec/FI., FI/FI
- Exceptions: Underflow, Overflow, Div \emptyset, Inexact, Invalid

What it does not contain:

- Requirements for implementation in HDWR or SFWR
- Interpretation of NaNs
- Formats for Integers, BCD
- Conversions other than above

The Formats

There are four; we start with one as an example.

Single
Representable Numbers:

* Normalized

1. $d_{1} d_{2} d_{3} \ldots d_{23} * 2^{e}$
where $-126 \leq e \leq+127$
$\leftarrow 8$ Bits \rightarrow

Sign

Note: The range of exponents

$$
-126 \leq e \leq+127
$$

Coupled with the BIAS (127) which is added to the exponent yields an 8 bit string from 00000001

$$
\begin{gathered}
\vdots \\
11111110
\end{gathered}
$$

Two strings remain: 00000000, 11111111

* Subnormal numbers (Exp field $=\mathbf{0 0 0 0 0 0 0 0}$)

$$
0 . d_{1} d_{2} \ldots d_{23} \quad 2^{-126}
$$

* Infinities (Exp field = 11111111)

s	11111111	$000 \ldots 0$

Formats (Continued)
That still leaves those strings characterized:

s	11111111	Not Zero

These are defined as NaNs .
They result from invalid operations

$$
\text { (Like,: } \frac{0}{0}, \frac{\infty}{\infty}, \infty-\infty \text {) }
$$

Generalizing to the other formats Single Single-X Double Double-X

Precision	24 bits	≥ 32	53	≥ 64
Exponent	8 bits	≥ 11	11	≥ 15
Word Length	32 bits	≥ 43	64	≥ 79
Exp BIAS	+127	-	+1023	-
$e_{\text {max }}$	+127	≥ 1023	+1023	≥ 16382
$e_{\text {min }}$	-126	≤-1022	-1022	≤-16382

Rounding

1 st We perform the operation \& produce the infinitely precise result

2 nd We round to fit it into the destination format

Four Rounding Modes

1. Default: To nearest. If equally near, then to the one having $A \varnothing$ in LSB
2. Directed roundings

- Toward $+\infty$
- Toward - ∞
- Toward Ø (Chop)

Operations

* Arithmetic: +, - , * \div, REM

$$
\text { When } y \neq \emptyset, r=x \text { REM } y \text {, is defined: }
$$

$r=x-y * n$, where n is the integer nearest $\frac{x}{y}$
whenever $\left|n-\frac{x}{y}\right|=\frac{1}{2}$, then n is EVEN
\therefore Remainder is always exact

* Square root: Result defined if ARG $\geq \varnothing$.
* Conversion from one format to another
- To fewer bits: rounded
- To more bits: exact

Operations(Continued)

* Conversion FI. Pt. <----> Integers Binary <--->> Decimal
* Comparison
- Always exact
- Never underflow, overflow
- Four relations are possible \{>, =, <, unordered\}

Note: Invalid is signaled if unordered operands are compared and unordered is not the basis but > or < is the basis.

Examples:

\geq dicate					Invalid if unordered
隹	F	F	T	F	No
? \ddagger	T	T	F	T	No
>	T	F	F	F	Yes
? < \ddagger	F	T	T	T	No

Infinities, $N a N s, \pm \varnothing$

∞ :

* $-\infty<($ finite $)<+\infty$
* Arithmetic on ∞ is exact
* $\quad \infty$ is created by
- "Overflow

NaN :

* Signaling \& Quiet

Signaling-Reserved operand that signals the invalid Op. Exception for all operations in the standard. If no trap occurs, a quiet NaN is delivered

> Quiet - Operations on quiet NaNs produce quiet NaNs. They provide hooks to retrospective diagnostic information.

Exceptions

When detected: Take Trap, or Set Flag, or Both

Flag can be reset only under program control

* Invalid
- Operation on a signaling NaN .
- ∞ - O/O
- $0 * \infty \quad \infty / \infty$
- x REM y, where $y=0$ or $x=\infty$
- $\sqrt{\text { NEG }}$
- Conversion from Fl. to int. or decimal, when overflow, infinity, or NaN prevents the conversion
- Comparison via predicates involving > or <, and Not?, when the operands are unordered

Exceptions (Continued)

* Divide by zero

When $f(f i n i t e)$--> Infinite and exact

* Overflow

When the destinations largest finite number is exceeded by what would have been the rounded floating point result if the exponent range were unbounded

To Nearest

To Zero -

Exceptions(Continued)

* Overflow (Continued)

Trapped overflows! [Except for conversions]

1st, Divide infinitely precise Result by $2^{\text {a }}$

$$
a=\frac{\text { Single }}{192} \frac{\text { Double }}{1536} \frac{\text { Extended }}{3 * 2{ }^{n-2}}
$$

$$
\mathrm{n}=\mid \text { exponent bits } \mid
$$

Why?

* Underflow
- Tiny value (which could cause
subsequent overflow)
- Loss of precision

Delivered result may be zero, subnormal No., or $\pm 2^{\text {min-exp }}$

Exceptions (Continued)

* Underflow (continued)

Trapped underflows!
 [All operations except conversions]

1 st, Multiply infinitely precise Result by $\mathbf{2 a}^{\text {a }}$

* Inexact

When the result of an operation is not exact, or on non-trapped overflow.

Traps

For any of the five exceptions, a user should be able to:

* Specify a handler
* Request that an existing handler be disabled, saved, restored.

When a system traps, the trap handler should be able to determine:

* Which exception occurred on this operation

* The kind of operation being performed
* The destination format
* In overflow, underflow, \& inexact, the correctly rounded result
* In invalid \& divide by zero, the operand values

