
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2018
Y. N. Patt, Instructor
Chirag Sakhuja, John MacKay, Aniket Deshmukh, Mohammad Behnia, TAs
Exam 1
October 10, 2018

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested: I have not given nor received any unau-
thorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (20 points):

Part a (5 points): When discussing out-of-order execution, some have misconstrued the notion of hazard and talked
about ”hazards,” and in particular, “WAR Hazards.” I prefer Professor Kuck’s term for this: “antidependencies.” Why
are they not a problem and create no latency when implementing out of order execution with the Tomasulo algorithm?

Part b (5 points): In a modern microarchitecture, where 4 instructions are fetched each cycle, performance is opti-
mized if we can maximize instruction supply. That is, no instruction supply misses, 100% branch prediction, and no
packet breaks. What causes a packet break? In ten words or fewer, please.

Part c (10 points): Little Computer Inc. has a CPU that takes 3 cycles to execute a MUL instruction, 5 cycles to
execute a DIV instruction, and 1 cycle to execute all other instructions. There is no pipelining. The target workload
has an instruction mix containing 10% MUL instructions, 10% DIV instructions, and 80% others.

Part c.i (5 points): What is the Cycles Per Instruction (CPI) of this CPU running this target workload?

Part c.ii (5 points): An improvement in the multiplier makes the MUL instruction take 1 cycle to execute but causes
the overall cycle time to increase by 20%. Does this new design make the workload run faster than the original CPU?
Explain.

2

Name:

Problem 2 (15 points):

We can add predicated execution to the LC-3b using the unused opcode 1011, much like the prefixes in the x86 ISA.
That is, if we wish to predicate instruction X, we put the following prefix just before instruction X in our program:

Instruction[11:9] act in a way similar to those bits in a conditional branch instruction. In the case of a conditional
branch, the branch is taken only if the condition is satisfied. In this case, instruction X is executed only if the condition
is satisfied.

Whether or not instruction X is executed, we wish to preserve the condition codes so we can predicate additional
instructions based on the same condition. Therefore, if instruction X is executed, it must not set condition codes. To
make this work, we need to augment the data path (next page) with a flip-flop A, an AND gate, and two new control
signals SETA and CLRA. SETA sets A to 1; CLRA sets A to 0.

The state machine for this addition is shown below. Only relevant states are shown, and some information (state
numbers, and activity in a state) is missing. Your job: Fill in the missing information.

3

Name:

We augment the datapath with a new flip-flop, A, and AND gate, and the control signals CLRA and SETA. The changes
to the datapath are in bold.

4

Name:

Problem 3 (20 points):

An LC-3b system has a GAg two-level adaptive branch predictor, with one modification. We index into the PHT
with a vector created (like g-share) by XOR-ing the four bits of the BHR with four bits taken from the address of the
current branch instruction, as follows:

INDEX[3] = BHR[3] xor PC[10]

INDEX[2] = BHR[2] xor PC[4]

INDEX[1] = BHR[1] xor PC[3]

INDEX[0] = BHR[0] xor PC[1]

The rightmost bit of the BHR comes from the most recent branch. When a branch instruction is encountered, the BHR
is updated with the result of the branch predictor, i.e., the speculative (predicted) result. That result is shifted into
the BHR, and the BHR is shifted one bit to the left. Information about the oldest branch is shifted out. The PHT is
updated with the actual result of the branch.

(We hasten to add that when the predicted branch is actually determined, that information should replace the predicted
value in the BHR. Unfortunately, this branch predictor was designed by an Aggie, and he never understood that the
branch prediction is better than no information, but better still is the actual direction of the branch. So, in this problem
we are stuck with the Aggie’s design, i.e., values in the BHR are always predicted values.)

Part a (6 points):
Given the snapshot of the branch predictor shown above, what is the index into the PHT?

Is the branch predicted taken or not taken?

Assume the branch is actually taken. Show the BHR after this branch is processed. Show the updated PHT entry in
the column labeled PHT after as a result of this branch. It is not necessary to copy the other 15 entries in the PHT after
that are unchanged as a result of this branch.

PROBLEM CONTINUES ON NEXT PAGE

5

Part b (14 points): The branch predictor is initially in the state shown below executes five branch instructions at
addresses 0x3004, 0x300a, 0x3012, 0x301c, and 0x3028.

After executing these five branch instructions, the state of the branch predictor is as shown below. Entries 2, 5, 8, and
14 are the only ones that changed.

PROBLEM CONTINUES ON NEXT PAGE

6

Name:

Your job: Using the before and after state of the branch predictor shown on the previous page, complete the table
below with the predicted and actual branch direction values for the five branches.

Branch PC
Prediction

(Taken/Not Taken)

Actual

(Taken/Not Taken)

0x3004

0x300a

0x3012

0x301c

0x3028

7

Name:

Problem 4 (20 points):

Assume memory locations x1000 to x1009 contain values as shown:

x1000 A
x1001 B
x1002 C
x1003 D
x1004 E
x1005 F
x1006 G
x1007 H
x1008 I
x1009 J

Assume:

• Memory is byte-addressable, little endian

• Memory address and data buses are independent and 16-bits each

• It takes 2 cycles after an address is sent to memory to latch a row address

• It takes 4 cycles to open a new row

• It takes 1 cycle to read the row buffer

• Data is on the data bus in the next cycle after the row buffer is read

• A new address can be supplied on the address bus in the same cycle that data is returned on the data bus

If we access memory in sequence starting with location x1000, we observe the following behavior on the memory
address and data buses.

Time Addr Data
0 0x1000
1 0x1002
8 0x1004 BA
9 0x1006 DC

10 0x1008 FE
11 HG
18 JI

Part a (5 points): Given the access latencies above, and restricting the number of banks and columns to their mini-
mum size, how many bank bits (B), column bits (C), row bits (R) and byte-on-bus bits (E) make up the 16 bit address
to memory.

Bank: Column: Row: Byte on Bus:

Specify with the letters B, C, R, E which bits of the 16-bit address belong to each.

PROBLEM CONTINUES ON NEXT PAGE
8

Name:

Part b (5 points): If instead of accessing successive memory locations, we access every 16th location, our address
stream will look like the following: 0x1000, 0x1010, 0x1020, 0x1030, 0x1040.

How many cycles does it take to complete this access stream?

Number of cycles

Part c (5 points): How would you change the assignments of address bits to bank, row, and column to minimize
latency? Note: we are not changing the memory architecture, i.e., we keep the same number of bank, row, and column
bits.

Again, specify with the letters B, C, R, E which bits of the 16-bit address belong to each.

Part d (5 points): How many cycles does it take to complete the access stream from part b after making the change
in part c?

Number of cycles

9

Name:

Problem 5 (25 points):

Consider an out-of-order processor which executes its instructions based on the Tomasulo algorithm. The ISA speci-
fies 8 registers, R0 to R7. The execute stage of the pipeline contains one pipelined adder and one pipelined multiplier.
Fetch and Decode take a single cycle each. The ADD instruction takes 4 cycles to execute; the MUL instruction
takes 5 cycles to execute. Both ADD and MUL take an additional cycle to store the result into a register and/or any
reservation stations waiting for it. There is no data forwarding/bypassing implemented in this system.

Only a single instruction can store its result at a time. If two attempt to store their results at the same time, the older
instruction has priority. The newer instruction will stall in execute until it can store its result.

The adder and multiplier each have 2-entry reservation stations. The reservation stations are initially empty and are
filled from top to bottom. Each instruction remains in the reservation station until the end of the cycle in which it
writes its result to a register.

The state of the register file is shown before execution, after cycle 7, and after all five instructions have completed.

V Tag Value

R0 1 - 15

R1 1 - 2

R2 1 - 7

R3 1 - 4

R4 1 - 5

R5 1 - 37

R6 1 - 10

R7 1 - 3

V Tag Value

R0 1 - 15

R1 1 - 2

R2 0 α -

R3 0 π -

R4 0 β -

R5 1 - 37

R6 1 - 10

R7 1 - 3

V Tag Value

R0 1 - 15

R1 1 - 19

R2 1 - 111

R3 1 - 14

R4 1 - 51

R5 1 - 37

R6 1 - 10

R7 1 - 3

Before Cycle 1 After Cycle 7 After Execution

The reservation stations are shown after cycle 7:

PROBLEM CONTINUES ON NEXT PAGE

10

The table below shows the cycles in which each functional unit is executing an instruction. An asterisk (*) indicates a
stall.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Adder E E E E E* E E E E E

Multiplier E E E E E E E E E E

Part a (12 points): Determine the five instructions that were executed.

Opcode DR SR1 SR2

I1

I2

I3

I4

I5

Part b (5 points): Complete the timing diagram for the execution of the five instructions. Indicate the stage each
instruction is occupying during each cycle. If an instruction is storing a result, write the name of the register written
in that cycle. If an instruction is stalled in a stage, add an asterisk (*) to that cycle.

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I1 F D

I2 F

I3

I4

I5

Part c (8 points): If an additional entry is added to the reservation station for both functional units, how many cycles
would it take to execute the same five instructions? Explain.

11

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

12

Table 1: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:

COND/2: COND0 ;Unconditional
COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

13

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<−SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

14

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.

LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG

FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

15

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

16

