
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015
Y. N. Patt, Instructor
Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Exam 1
March 11, 2015

Name:

Problem 1 (20 points):

Problem 2 (30 points):

Problem 3 (25 points):

Problem 4 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (5 points): The x86 ISA has variable length instructions. This characteristic of the ISA has pluses and minuses.

The major plus is

The major minus is

Part b (5 points): If two locations are in the same row buffer on a DRAM, the only bits of their corresponding
addresses that are different are the

Part c (5 points): If the contents of a memory location is protected with a parity bit, and two bits are inverted during
transmission, what happens? Is this a problem? Why or why not?

Part d (5 points): If two processes translate different virtual addresses in their own virtual address space to the same
physical address, and the cache is virtually indexed, physically tagged, the location corresponding to that one physical
address can be present in two different locations in the cache. We call the two instances of the same physical cache

line and the problem is referred to as the .

2

Name:

Problem 2 (30 points)
A computer system contains a physically-indexed, physically-tagged, 2-way set associative, write-back cache. The
ISA specifies an n-bit physical address space, and an 128 bytepage size.

With the cache initially empty, the processor makes ten consecutive memory reads, as shown in the table below. Note
that some result in cache hits, others result in cache misses. Note that the actual number of bits of physical address is
not shown.

Physical Address Hit/Miss
1 00...0000010000 Miss
2 00...0100000101 Miss
3 00...0000011000 Hit
4 00...0110000111 Miss
5 00...0111100001 Miss
6 00...0100000010 Hit
7 00...0110100111 Miss
8 00...0100100000 Miss
9 00...0111100010 Miss
10 00...0100001111 Hit

In order to concurrently access the TLB, the Tag Store, and the Data Store, the index bits are selected from the page
offset, i.e., they are not affected by the virtual to physical address translation.

Part a (10 points): What is the cache line size? Why?

Part b (10 points): What are the index bits? Why?

Part c (5 points): What is the size of the cache (i.e., how many bytes of data can be stored in the cache)?

Part d (5 points): Given that the tag store requires 68 bits, and that the cache uses perfect LRU replacement, what is
the physical address space of memory for this computer system.

3

Name:

Problem 3 (25 points)

The following program fragment executes on a machine that supports virtual memory.

LD R0, A ;R0 <-- M[A]
LD R1, B ;R1 <-- M[B]
ADD R1, R1, R0 ;R1 <-- R1 + R0
ST R1, C ;M[C] <-- R1

A, B, and C are virtual addresses.

The ISA specifies:
Virtual address space: 64KB
Physical address space: 8KB
A page is 256 bytes

The memory management system uses the two-level page table scheme similar to the VAX. Virtual memory is parti-
tioned into two halves. User space starts at x0000, System space starts at x8000. A PTE is 16 bits. For purposes of
this exam only, we will assume that a PTE has the following form:

V 00..0 PFN

Assume no cache and no shared memory(that is, no two pages mapto the same frame). Assume the TLB only contains
PTEs for pages in user space.

For the snippet of code above, if one gets no TLB hits, the processor makes nine accesses to physical memory (we are
ignoring the fetching of instructions). The table below shows the sequence of nine memory accesses needed to do the
job.

Virtual Address Physical Address Data
x1AA8

x5400 x0700 x5410
x8008

x80C2
x0646

x8016
x8005

x7618 x5824

On the other hand, IF the TLB initially contained the entriesshown below,

V Page No PTE
1 x14 x8001
1 x23 x8006
1 x28 x8004
0 - -

the processor would only need to make seven accesses to physical memory.

Your job: Complete the table.

4

Name:

Problem 4 (25 points)

Let’s use one of the unused opcodes to add an instruction AVG (i.e., average) to the LC-3b ISA. Its format will be

 1 0 1 0 DR SR1AVG 1 imm5

15 12 11 9 8 6 5 4 0

 1 0 1 0 DR SR1AVG SR2000

15 12 11 9 8 6 5 3 2 0

depending on whether the second operand is an immediate or the contents of a register. AVG will sum the n (n> 0)
16-bit integers in consecutive memory locations starting at the location specified by SR1, divide that sum by n, and
load the result into DR, setting the condition codes. The value n is either an immediate value or the contents of SR2.
Assume that the n integers are aligned in memory (i.e. SR1 holds an even number), and assume that DR, SR1, and
SR2 (if SR2 is being used) all refer to different registers.

For this problem, you can assume no overflows will occur. Note: execution of this instruction will destroy the initial
contents of SR1.

Your job: augment the LC-3b state machine, the data path and the microsequencer as necessary to add AVG to the
LC-3b ISA.

Part a (8 points): The state machine (see page 6). From state 32 (the decoder) wego immediately to the eight states
needed to carry out the work of the AVG instruction. One of thestates has been specified for you, and another (state
39) has been partially specified.Your job is to complete the specifications of all the states and add the missing
state numbers

Part b (8 points):
The data path (see page 7). To implement AVG you will need additional structures. Four are shown in boldface on the
data path diagram.

The DIVIDE UNIT takes two inputsX ,Y and produces a resultX/Y . The divide is a multi-cycle operation that
latchesX , Y internally in the first cycle, and signals completion with a DIV R (for Divide Ready) signal when done.
The DIVIDE UNIT starts processing when the control signal DIV is asserted.Your job is to connect the DIVIDE
UNIT to other elements of the data path as needed.

The CTR is a step-down counter. It can be loaded when a LD.CTR control signal is asserted, and it can be decremented
when a DEC.CTR control signal is asserted.Your job is to connect it to other elements of the data path as needed.

Registers containing x0000 and x0002 have also been added tothe data path.Your job is to connect it to other
elements of the data path as needed.

Feel free to add tri-state devices for any signals you wish toput on the bus.

There is also a dashed box in the data path.Your job is to put in that box any other necessary structures(register
or combinational logic) to complete the data path for implementing AVG.

Part c (9 points): The microsequencer (see page 8). The augmented state machine requires additional control
provided by the microsequencer.Your job is to augment the microsequencer.You will need an additional COND
bit, call it COND2, which will be used to modify J[5] and J[4] when necessary. The necessary OR gates have already
been put in place. Add whatever additional logic structuresyou need.

5

R

37

39

from state 32

10

41

42

To state 18

Div_R

R

1 0

[Z]

SR1 <− SR1 + 2

Div_R

Figure 1: State diagram for AVG instruction

6

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D.MAR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

1616 16 16

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

[7:0]

LSHF1

[4:0]

16

16

16

16 16

GateMDR

16

GateSHF

6
IR[5:0]SHF

16

16

16

16

LOGIC

LD.CC N Z

x0000

REG
FILE

16

16

16

LD.CTR

16

16

16

MARMUX

16

0

16

ADDR2MUX

2

ZEXT &
LSHF1 ADDR1MUX

PCMUX
2

IRLD.IR

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

SR23 3
SR1

DR

SR2

ALU
B

GateALU

A

R

P
2

ALUK

CONTROL

x0002

3

SR2MUX

CTR

DEC.CTR

16

16

DIVIDE
UNIT

X

Y

16

16

DIV

DIV_R

RESULT

OUT
SR1
OUT

LD.REG

Figure 2: Data path for AVG instruction

7

J[2]J[4]J[5]

IRD

Address of Next State

6

6

0,0,IR[15:12]

Branch Ready
Mode
Addr.

J[0]J[1]

COND0COND1

J[3]

R IR[11]BEN

Figure 3: Microsequencer for AVG instruction

8

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

9

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

10

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

11

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

12

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

13

