
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015
Y. N. Patt, Instructor
Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Exam 2
April 22, 2015

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (15 points):

Problem 4 (25 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (5 points): A 7 by 6 word array (i.e. 7 rows by 6 columns) is stored in Row major order. Memory is word-
addressable. We wish to load column 1 (i.e. the second column; column 0 is the first column) into a vector register.
Before we initiate the vector load, what values must we load into VSTRIDE and VLEN registers.

VSTRIDE VLEN .

Part b (5 points): The Decoupled-Access-Execute (DAE) execution relaxed oneconstraint from VLIW, i.e., the parts
of a wide instruction did not have to execute in lock-step. Infact, the access stream (LDs and STs) could slip ahead or
behind the execute stream (ADDs, MULs, etc.). The diagram below shows the two streams.

Memory
Access
Unit

Execute
Unit

ADDs, MULs, etc.LDs, STs

Instructions

One might think that allowing one stream to slip ahead or behind the other could cause the wrong result of a LD to
be supplied to a subsequent ADD, for example. What characteristic of the execution model made this not a problem.
(Ten words are more than enough to answer this question.

2

Name:

Part c (10 points): The data flow graph shown below gets two inputs, the value N (N> 0) and the value 3. What is
output at ”Answer”?

Copy

n

= 0

ANSWER

FT

BR

> 0

Copy

3

Copy

b − a

b

BR

F T

a

3

Name:

Problem 2 (15 points)

The numbers 25/8, 9/16, and 1/16 can all be representated exactly with a 7-bit floating point representation, in the
format of the IEEE Floating Point standard. Note: One or moreof the numbers may be represented as a subnormal
number.

Part a: Show the representation of the three numbers, clearly identifying which bits are the fraction and which are the
exponent.

25/8:

9/16:

1/16:

The bias is:

Part b: Add the three numbers in the following sequence. First add 25/8 and 9/16 and show the resulting 7-bit floating
point number. Whenever necessary, round to zero, i.e., chopoff the low order bits:

Now add 1/16 to the intermediate result, and show the final result here:

Part c: Add the same three numbers, this time by first adding 9/16 and 1/16. Show the result here. Again, whenever
necessary, round to zero, i.e., chop off the low order bits:

Now add 25/8 to the intermediate result, and show the final result here.

Part d: Compare the final result of part b and of part c. If they are identical, explain why. If they are not identical,
express the difference as a fraction and explain why.

4

Name:

Problem 3 (15 points)

I learned recently that current ARM chips have improved on the standard method of processing interrupts in the fol-
lowing sense:

Suppose the machine is operating at priority 2 and an interrupt signals at priority 4. We push PSR and PC onto the
system stack and initiate the interrupt. During the execution of the interrupt service routine, an interrupt at priority
3 signals. Since priority 3 is less than priority 4, we continue processing the priority 4 service routine. HOWEVER,
When we execute RTI at the end of the priority 4 service routine, rather than do what we currently do, ARM immedi-
ately initiates the priority 3 service routine.

We wish to implement this improvement. Your job is to augmentthe state machine to make it happen. In this exercise,
you can assume we do not have to be concerned with exceptions.

Part a (7 points): What do we currently do when we execute RTI from the priority 4service routine and then intiate
the priority 3 interrupt? Hint: Four accesses to the system stack are necessary to do this.

On the next page is an improved state machine that will allow,in our scenario, the priority 3 service routine to imme-
diately initiate as part of the execution of RTI for the priority 4 service routine. In fact, by so doing, we will save three
of the four accesses required in your answer to Part a.

We include below definitions of new signals we have used in thestate machine: You may or may not need to look at
them to understand what is going on.

• INT Priority: the priority of the highest priority interrupt which is currently pending

• INT: a signal signifying a pending interrupt whose priorityis higher than the priority of the running process

– i.e. INT = (INT Priority > PSR[10:8])

• INTV: the vector of the highest priority interrupt which is currently pending

• Vector: the vector of the interrupt which we will handle next

• SavedUSP: the saved User Stack Pointer

• SavedSSP: the saved System Stack Pointer

• TEMP: a temporary register

Part b (8 points): Identify the appropriate modifications to the execution flowof RTI to accomplish this improvement.
That is, identify X, identify the state that RTI takes you to from state 32 (shown in bold), fill in state 58 (shown in
bold), and connect the arrow out of state 58 to the state you goto next.

X is

5

Name:

A few hints about the state machine to help you get started: The flow starting at state 49 is the normal interrupt from
states 18,19. The flow on the left is the flow for RTI. Normally,X is 0 and the RTI completes as usual along the
left path. If a higher priority interrupt is pending, you instead go to state 58 to initiate processing the higher priority
interrupt. Finally note that in state 44, you are loading into MDR the next to top element on the stack, NOT the top of
the stack.

MAR<−PC
PC<−PC+2

[INT]

IR<−MDR

BEN<−IR<11>⋅N + IR<10>⋅Z + IR<9>⋅P
[IR[15:12]]

37

45

49

18

33

35

32

MDR<−M

R
R

0
1

Write

R

Write

R

MDR<−M

R

PC<−MDR

41

47

43

44

53

58

26

0 1

34

51 59

46

48

50

52

54

RTI

R

R
R

T

TT

o

oo

18

1818

36

38

R

R

R

R

[X]

MAR<− x0200 + LSHF(Vector,1)

PC<−MDR

MDR <− PC−2

MAR, SP<− SP−2

MAR, SP<−SP−2

Saved_USP <− SP
SP <− Saved_SSP

0 1

rest of state machine

MAR<−SP + 2

1

0

MAR<−SP

SP<−SP + 4

SP<−Saved_USP
Saved_SSP<−SPNothing

[PSR[15]]

MDR <− M

MDR <− M

PSR[10:8] <− INT_Priority
Vector <− INTV

MDR <− PSR
PSR[15] <− 0

[PSR[15]]

TEMP <− MDR

PSR <− TEMP

6

Name:

Problem 4 (25 points)

A Vector Processor is attached to a multiplexed, asynchronous, pending bus. (Recall pending is the opposite of split-
transaction.) A non-interleaved memory is also attached tothis bus. We wish to perform a vector store, transferring
the components of the vector register to memory locations during one very long bus cycle.

We assume that the controller on the memory side is a typical dumb controller. If it receives an address it latches it to
an address register. If it receives data, it stores the data in the location specified by the address register. The controller
on the memory side does no arithmetic.

The vector processor bus controller, on the other hand, contains all that is needed to make this work. It contains a
64-element BUFFER to hold the vector to be stored, an index register i, so we know which BUFFER[i] we are deal-
ing with at any moment, a VSTRIDE register, a VLEN register, and a Memory Address Register (MAR). We load
BUFFER, MAR, VSTRIDE, VLEN, and set i to 0 before the bus controller requests the bus.

Note: BUFFER entries are BUFFER[0] to BUFFER[VLEN-1].

Your job: complete the timing diagram and the state machine for the processor bus controller.

Two new signals are provided for you: M-CNTRL for the processor and S-CNTRL for memory.

Processor Memory

Time

BBSY, MSYN, MAR, WRITE

7

Name:

Note: Your job is to complete the Moore-model (not Mealy-model) state machine, starting with the state shown in
boldface. You can assume VLEN is non-zero. Any signal not written in a state we will assume is not asserted while in
that state.

Note that we have provided one state for you. This is the statein which MAR is updated, i is updated, and i is tested.
Use this state as you find useful in your state machine.

BBSYIN

BBSYIN

BR

BG0

BG0

IN

IN
0D SACKIDLE

BG0OUT

BG0IN

BG0IND&BG0IN

D&BG0IN

VSTRIDE
MAR<−MAR+

i<−i+1

i < (VLEN−1)

i < (VLEN−1)

8

Name:

Problem 5 (25 points)

Assume a Tomasulo-style, out-of-order execution machine that handles ADD and MUL instructions. Instructions are
of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed in class. Each instruction requires a Fetch cycle, a
Decode cycle, some number of Execution cycles (2 for ADD, 5 for MUL), and a final cycle to store the result into a
register and/or one or more reservation station entries that are waiting for the result. A result is available to subsequent
instructions after it is stored in a register or reservationstation entry.

A program fragment, consisting of four instructions, is executed on this machine. The first instruction is fetched in
cycle 1. Your job: Complete the table below, i.e., the complete specification of the four instructions:

Instruction Opcode DR SR1 SR2

1

2

3 R1

4

Information on the next page will help you identify the four instructions executed.

9

Name:

The following information is provided to help you specify completely the four instructions executed. The machine has
one adder and one multiplier. Neither is pipelined. Each hasthree reservation stations supplying it with instructionsto
execute.

The adder and multiplier are in use only during the cycles containing an E in the table below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Adder E E E E

Multiplier E E E E E E E E E E

The Register Alias Table before cycle 1 and after cycle 9 are shown below. Note that some entries are missing. Part of
your job is to fill them in.

R0

R1

R2

R3

R0

R1

R2

R3

1	

1

1

1

−

−

−

−

Registers Before Cycle 1 Registers After Cycle 9

1	

0

1

0

−

−

3

−

7

−

3

4

0

8

TAG VALUE TAG VALUEV V

The contents of the Reservation stations after cycle 4. Notethat reservation stations are assigned from the top down,
and that the topmost reservation station with both data entries valid is the next to be processed. Each instruction
remains in its reservation station until its result is stored. Note also that some entries are not filled in. It is also partof
your job to fill them in.

−−−− −−−−− −

−−−− −−−−− −

α

V V TAG VALUEVALUEV TAG V TAG VALUEVALUE TAG

αα π

−−−−−−−− −−

0

−

β

γ

τ

σ

Reservation Stations after Cycle 4

The contents of the Reservation stations after cycle 9. Notethat some entries are not filled in. It is also part of your
job to fill them in.

−−−−−−−− −−−

−−−−−−−− −−−

−−−− −−−−− −

α

V V TAG VALUEVALUEV TAG V TAG VALUEVALUE TAG

αα π

β

γ

τ

σ

−− −−1 1

4−− 4−−1 1

8

Reservation Stations after Cycle 9

Part b (5 points): The design of this machine was not particularly well suited to out-of-order execution. What simple
change would you make to it that would yield a lot more performance processing instructions out of program order
(20 words or fewer).

10

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

11

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

12

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

13

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

14

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

15

