
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2017
Y. N. Patt, Instructor
Chirag Sakhuja, Sarbartha Banerjee, Jonathan Dahm, Arjun Teh, TAs
Exam 1
March 1, 2017

Name:

Problem 1 (25 points):

Problem 2 (10 points):

Problem 3 (15 points):

Problem 4 (25 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (25 points): Answer any five of the six. Draw a line through the one you do not want graded.

Part a (5 points): A load-store ISA does not allow what?

Part b (5 points): Unaligned accesses. Part of the ISA or part of the microarchitecture? Explain.

Part c (5 points): Interleaving. Part of the ISA or part of the microarchitecture? Explain.

Part d (5 points): J.E.Smith’s branch predictor introduced the use of saturating 2-bit counters. What does the word
“saturating” mean in this context, and why is it necessary?

Part e (5 points): McFarling modified my GAs predictor, creating g-share. What was his purpose for doing so?

Part f (5 points): Do processes having higher priority get increased privilege? If yes, explain why. If no, explain why
not.

2

Name:

Problem 2 (10 points): An Aggie hates the LC-3b, so he cuts the 16 wires labeled A and B on the data path, and
grounds the wire labeled C in the microsequencer so the LC-3b can not function properly. (The data path, showing
wires A and B is shown on the next page.)

Part a (2 points): If the 16 wires A are cut, which instruction(s) are impossible to function? Explain.
Instruction(s) Explanation

Part b (4 points): If the 16 wires B are cut, which instruction(s) are impossible to function? Explain.
Instruction(s) Explanation

Part c (4 points): If wire C is grounded, which instruction(s) are impossible to function? Explain.
Instruction(s) Explanation

C

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5] J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

3

Name:

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.

LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

LD.MDR

D.MAR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG

FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

CONTROL

A B

4

Name:

Problem 3 (15 points): In this problem we add an SAg 2-level branch predictor to the LC-3b. Recall that the S means
the branches are partitioned into sets, where all branches in a set share the same BHR. In our case, we have 8 sets, and
therefore 8 BHRs. Bits 13, 10, and 7 of a branch’s address determine which set a branch belongs to. For example, a
branch at address x9E84 uses BHR 3 because bit 13 is 0, and bits 10 and 7 are 1.

The current state of the BHRs are shown below. The direction (taken = 1, not taken = 0) of the most recent branch is
the right-most bit of its respective BHR.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

PHT

(before)

BHRs

(before)

BHRs

PHT

(after)

(after)

0 1 1 1

1 1 0 0

0 1 0 1

1 1 1 1

0 1 0 1

0 0 1 1

0 1 0 0

1 0 0 1

0 1

0 1

0 0

1 0

1 0

1 1

1 1

0 1

1 1

1 0

0 1

1 1

1 1

0 0

1 0

0 0

Part a (5 points): The PC contains x360E, and the instruction fetched is a branch. Does the branch predictor predict
taken or not taken? On what information is your answer based? Please be specific.

Part b (5 points): The branch at x360E is taken. Compute the new BHRs and PHT in the figure above after this
branch completes execution. It is only necessary to show the “after” entries that have changed.

PROBLEM CONTINUTED ON NEXT PAGE

5

Name:

Part c (5 points): Execution of the program results in four more branches (for a total of five) being executed. They are
at locations xCC48, xD028, x4842, and x6974. Each of the five branches retires before the next branch is fetched. The
table below shows the prediction and direction for each of these five branches. Your job: complete the table below. Do
not make any changes to the figures on the previous page.

Branch at address Prediction Actual

x360E (Answer in part a) Taken

xCC48 Taken

xD028 Taken

x4842 Not Taken

x6974 Not Taken

6

Name:

Problem 4 (25 points): An out-of-order processor executes its instructions according to the Tomasulo algorithm. The
ISA specifies 8 registers, R0 to R7. The microarchitecture contains one pipelined adder and one pipelined multiplier.
Pipelining allows an add (or multiply) instruction to initiate execution each clock cycle.

• Fetch and Decode take one cycle each.

• ADD execution takes 3 cycles

• MUL execution takes 5 cycles.

• For ADD and MUL, if two instructions are ready to dispatch to the same functional unit in the same cycle, the
older instruction is dispatched and the younger instruction waits.

• For ADD and MUL, one cycle is needed to write the result to a destination register. Only one result can be
written in a single clock cycle. If two instructions want to write results in the same clock cycle, the older
instruction writes, and the younger is stored in a buffer and is available for writing in the following cycle.

• Data forwarding is not implemented.

The adder and multiplier each have 3-entry reservation stations. Note: if an instruction is of the form ADD Rx, Ry,
Rz or MUL Rx, Ry, Rz, and Ry contains valid data 74 and Rz contains valid data 27, the reservation station entry has
the form:

V TAG V TAG VALUEVALUE

1 74 1 27

The reservation stations are initially empty and are filled from top to bottom. Each instruction remains in the reserva-
tion station until the end of the cycle in which it writes its result to a register.

The table below contains a program of seven instructions that are executed.

I1 ADD

I2 R4

I3

I4 R3

I5

I6 R2

I7 ADD R5

PROBLEM CONTINUTED ON NEXT PAGE

7

Name:

Three snapshots of the machine are shown: (a) before execution, (b) after clock cycle 5, and (c) after clock cycle 9.
Note that some information in the program (shown on the previous page), in the register file, and in the reservation
stations are missing.

R0

R1

R2

R3

R4

R5

R6

R7

V TAG VALUE

1

1

1

1

1

1

1

1

1

0

2

3

4

5

6

7

R0

R1

R2

R3

R4

R5

R6

R7

V TAG VALUE

1

1

1

1

1

0

4

6

R0

R1

R2

R3

R4

R5

R6

R7

V TAG VALUE

1

1

1

1

0

3

4

(a) Beginning (c) After cycle 9(b) After cycle 5

0

0

0

0

0

0

0

0

4

β

δ

β

γ

α

V V TAG VALUEVALUEV TAG V TAG VALUEVALUE TAG

αα

β

γ

δ

σ

φ

1

1

1 1

10

1

1

2 1

0α

(b) After cycle 5

α

V V TAG VALUEVALUEV TAG V TAG VALUEVALUE TAG

αα

β

γ

δ

σ

φ

1

1

1

1 0

3 0

β

1

1 1 1 3

(c) After cycle 9

0

Part a (20 points): Your job: Fill in the missing information in the program (shown on the previous page), and in the
bolded boxes in the register file and reservation stations at each of the snapshots.

Part b (5 points): The figure below shows, for each clock cycle, which phase of the instruction cycle each of the
seven instructions are in. Complete the figure. We have provided 20 clock cycles. Only use what you need.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
I1 F D
I2 F D
I3 F D
I4 F D
I5 F D
I6 F D
I7 F D

8

Name:

Problem 5 (25 points): Suppose we have a 4-way interleaved DRAM memory, with bits[2:1] designating the bank.
All address bits are as shown. Note, the question marks below; in part b, you are going to have to determine how many
row bits and how many column bits.

012315 11 10 ??

Rank Row BankColumn Byte on Bus

Recall that a single memory bank has the following form:

168 8

Y

X

Memory Bank

Chip 1 Chip 0

Row Buffer Row Buffer

A row access takes 13 cycles, and a subsequent column access takes 3 cycles.

We store sequentially in this memory, starting at location x8000, an array of 64 English words, each containing 7
letters. Each word is stored in 8 consecutive locations, one location each for the corresponding ASCII code, and one
location for a null terminator (x00). For example the word “Compute” would be stored as:

x43

x6F

x6D

x70

x75

x74

x65

x00

PROBLEM CONTINUTED ON NEXT PAGE

9

Name:

Part a (6 points): Suppose we were to load the contents of location x8000. After the load completes, A, B, C, and D
are bytes of data in the row buffer. What are the addresses of the locations containing those bytes of data?

168 8

Y

X

Memory Bank

Chip 1 Chip 0

DBA C... ...
Buffer

Row

Buffer

Row

Address containing A:

Address containing B:

Address containing C:

Address containing D: x8000

Part b (19 points): We wish to determine how many of the 64 English words end in the letter ‘e’ with a minimum
number of memory accesses.

Part b1 (7 points): If we end up having to load 8 rows into the row buffer, how many bits must have been used to
specify the row, and how many bits must have been used to specify the column?

Row bits: Column bits:

Part b2 (6 points): How many clock cycles are necessary to access this information from memory, assuming memory
accesses are sent to DRAM in order of increasing addresses? (Note: Your answer will depend on how much you can
use interleaving.)

Clock cycles:

Part b3 (6 points): Suppose we interchange the column bits and the bank bits. Now how many clock cycles are nec-
essary to access this information from memory, assuming memory accesses are sent to DRAM in order of increasing
addresses?

Clock cycles:

10

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

11

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

12

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<−SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

13

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.

LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG

FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

14

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

15

