
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2017
Y. N. Patt, Instructor
Chirag Sakhuja, Sarbartha Banerjee, Jonathan Dahm, Arjun Teh, TAs
Final Exam
May 12, 2017

Name:

Problem 1 (20 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (20 points):

Problem 5 (20 points):

Problem 6 (25 points):

Problem 7 (25 points):

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested: I have not given nor received any unau-
thorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (20 points): Answer the following questions.

Part a (5 points): Write a program fragment in LC-3b code that will take a value stored in R1, divide it by 4, and
store the result in R2. Use as many instructions as you need.

Part b (5 points): A physical cache read access requires a TLB access, a Tag Store access, and a Data store access.
In general we decrease latency substantially by doing the Tag Store access at the same time as we do the Data Store
access. If we do that, a direct mapped cache has shorter latency than a 4-way set associative cache. What is the major
reason for this?

Part c (5 points): Several device controllers are connected to the asynchronous bus discussed in class. What two
things must be true for a device controller to assert SACK? What must all be true for a device controller to subse-
quently negate SACK?

To assert SACK To negate SACK

Part d (5 points): As you know, wobble is a problem in floating point arithmetic. Is it a problem in fixed point
arithmetic? Why or why not? Explain in 15 words or fewer.

2

Name:

Problem 2 (10 points): Shown below are the addresses and contents of five memory locations.

Addr Contents
x00 00000000
x01 00000001
x02 00000010
x04 00000011
x1E 00000100

Memory address bits are broken down as follows:

Row Rank ByteColumn

Part a (5 points): Your first job, identify the five locations specified above by putting their contents in the proper
locations of the memory structure:

Row Buffer Row BufferRow Buffer Row Buffer

16

8 88 8

Rank 0

Chip 1Chip 0 Chip 1Chip 0

Rank 1

Part b (5 points): How many clock cycles would it take to read the contents of the five memory locations specified
above in sequential order, if we are restricted to access the memory one byte at a time? Assume it takes 3 cycles to
open a row, 1 cycle to access an open row, and 2 cycles to close a row.

3

Name:

Problem 3 (10 points): Three processors P1, P2, and P3; each has its own cache C1, C2, and C3. The caches are
connected to the memory via a bus. Cache coherency is maintained by a Goodman Snoopy Cache protocol. Initially,
cache lines A, B, and C are not contained in any of the three caches. P1, P2, and P3 access memory data from lines A,
B, and C in the following order:

P1 read A
P2 write B
P1 write A
P3 read B
P2 write B
P1 write C
P3 read C
P1 write A

What is the state (Invalid, Valid, etc.) of each cache line in each cache after the 8 accesses have completed?

C1 C2 C3
A
B
C

A
B
C

A
B
C

4

Name:

Problem 4 (20 points): Consider the LC-3b, augmented with a multiply instruction. In this problem, Both ADD and
MUL are restricted to the single format OPCODE Ra,Rb,Rc. i.e., no immediates. ADD instructions take 1 cycle of
execution, MUL instructions take 8 cycles of execution. The data path contains exactly one pipelined multiplier.

The dataflow graph of a seven-instruction fragment of a program that is in the process of execution is shown below:

X

X

X

+ + +

+

2 −4−3−5

2 6

7

1

Prior to fetching the first instruction, the Register file is as shown:

R0 7
R1 2
R2 6
R3 6
R4 -3
R5 -4
R6 -5
R7 1

At the time that the seventh of the seven-instruction fragment is stored in a reservation station, the Reorder Buffer is
as follows:

V R Ret DR Value
1 1 1 R2 4
1 1 0 R2 6
1 0 0 R2 –
1 0 0 R2 –
1 1 0 R0 4
1 1 0 R1 -2
1 0 0 R0 –
1 1 0 R1 -1
1 0 0 R6 –

Each entry contains 3 bits to indicate its state. The Valid (V) bit indicates if the entry is in use, i.e. V=0 indicates
an empty slot in the reorder buffer. The Ready (R) bit indicates that the entry corresponds to an instruction that has
successfully completed execution. The Retirement bit (Ret) indicates that the executed instruction has retired.

PROBLEM CONTINUES ON NEXT PAGE

5

Name:

Part a (5 points): What is the value of R2 when the Reorder Buffer is as shown on the previous page?

Part b (15 points): Completely specify below the seven instructions in the seven-instruction fragment.

6

Name:

Problem 5 (20 points): We wish to add a new instruction to the LC-3b, called ARRAYCMP, which compares two
equal size, word arrays. If they are identical, the Z bit will be set to 1. If not, the Z bit will be set to 0. We will use
unused opcode 1010. The instruction format for ARRAYCMP is:

SR2000SR1DR

15 0123456891011121314 7

1010

SR1 and SR2 contain the starting addresses of the two arrays. DR contains the size of the arrays in words. Note the
side effects: SR1, SR2, and DR are clobbered by ARRAYCMP.

We implement ARRAYCMP by comparing the two arrays one word at a time. After each compare, we decrement DR.
If the two arrays are identical, DR will equal 0, and the Z bit will be set. If a mismatch occurs, ARRAYCMP will stop
execution with Z=0.

The datapath is modified to implement ARRAYCMP, shown below in bold. We have also added a third input to
SR1MUX to select IR[2:0]. Your job: Complete the state machine and microsequencer and fill in the control store
signals on the following two pages.

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.

LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

LD.MDR

D.MAR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

[7:0]

LSHF1

[4:0]

1616

16

16

16

LOGIC

16 16

GateMDR

16

GateALU

16

SHF

GateSHF

6
IR[5:0]

16 16
16 16

N Z P

SR2
OUT

SR1
OUT

REG

FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALUK

2

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

CONTROL

ALU
B A

2

−1

A B

AMUX BMUX

2

7

Name:

Part a (10 points): Complete the state machine to implement ARRAYCMP given the datapath modifications on the
previous page.

R

R

R

R

10,50

A

C

To 50

To 18
0

1

To 19

51
1

0

B

PROBLEM CONTINUES ON NEXT PAGE

8

Name:

Part b (5 points): Add logic to the microsequencer to support the state machine from Part a. Put all your modifications
in the bold box. You may use two additional control store signals called US1 and US2. You may also add additional
inputs to the bold box.

IRD

Address of Next State

6

6

0,0,IR[15:12]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

R IR[11]BEN

J[5] J[4] J[3]

Part c (5 points): We have added several control signals for controlling the data path, as shown below:

Signal name Signal values
LD.A/1: NO, LOAD
LD.B/1: NO, LOAD

AMUX/2: SR2MUX ;select output of SR2MUX
2 ;select the value 2
-1 ;select the value -1
A ;select the value in A

BMUX/1: SR1OUT ;select the value in SR1OUT
B ;select the value in B

Fill in the control signals needed to implement states A,B,C shown in bold in the state machine.

State ALUK LD.CC LD.A LD.B AMUX BMUX GateALU
A
B
C

9

Name:

Problem 6 (25 points): Consider the LC-3b augmented with a direct-mapped, write-back cache that contains instruc-
tions and data. Line size is 8 bytes. The cache is initially empty.

In the execution of a program, a number of accesses between memory and the cache occurred. The table below shows
the first several cache line transfers between the cache and memory during execution of the program.

Hint: Recall, in a write back cache, transfers go from memory to cache and from cache to memory.
Hint: Recall, the LC-3b is little-endian.

Address Cache Line
x3000 xE00030006000E001
x3008 xF0250BFDD0016200
x6010 x0000000000000000
xC020 x0000000000000000
x8040 x0000000000000000
x0080 x0000000000000000
x3000 xE00030006000E000
x0100 x0000000000000000

... ...

Part a (5 points): Shown below is part of the program that was executed. Your first job: Complete the table with the
remaining instructions of the program. ...in assembly language, of course!

Label Assembly
.ORIG x3000
LEA R0, A

BRnp B
HALT

Part b (5 points): Why is there an access to x3000 after the access to x0080? Please answer in 20 words or fewer.

PROBLEM CONTINUES ON NEXT PAGE

10

Name:

Part c (15 points): Finally, complete the specification of the cache, i.e., how many bits of index, how many bits of
tag, how big is the data store? Please show your work.

Number of index bits: Number of tag bits: Size of data store:

11

Name:

Problem 7 (25 points): Consider a byte-addressable memory system with two levels of virtual to physical translation
(like the VAX).

Virtual Address Space: 64KB Physical Memory Size: 4KB
User Space: 0x0000-0x7FFF Page Size: 128B
System Space: 0x8000-0xFFFF PTE Size: 2 bytes

A PTE is shown below:

A PTE includes a Valid bit, a Modify bit, and a 4 bit PROT field. The low bits (the exact number is for you to deter-
mine) are used for the PFN. In user mode, the processor can read/write to all user space pages and does not have any
access to system pages. The system pages can only be read/written in supervisor mode. To implement this protection,
the encoding of the PROT bits is 1111 for user page PTEs and 1100 for system page PTEs.

Each process, as you know, has its own user space page table. Process page tables are stored in contiguous system
virtual memory as follows: Process1 user space page table is stored immediately after Process0 user space page table,
and Process2 user space page table is stored immediately after Process1 user space page table.

All user space page tables start at the beginning of a page. The system space page table starts at the beginning of a
frame.

Process0 user space Length Register (LR): 128 Process1 user space LR: 64 Process 2 user space LR: 64

The processor executes the following code:

Process0: ADD R0, R1, R2
Process0: RSHFL R3, R1, #1
<Context switch>
Process1: ADD R1, R2, R3
<Context switch>
Process2: ADD R1, R2, #0
Process2: AND R2, R2, R3

Note: context switches are required if the processor moves from executing code from one process to executing code
from another process.

PROBLEM CONTINUES ON NEXT PAGE

12

Name:

The microarchitecture includes an 8-entry TLB. Its state, before the user code starts execution, is shown below. Note
that the Process ID is included so the TLB is not flushed on a context switch. The TLB only contains PTEs for user
space.

Process Page Number Frame Number
-
1 x000 x04
-
2 x003 x05
1 x013 x1B
2 x042 x08
-
-

Part a (12 points): Fill in the following values:

SBR

Process0 user space BR

Process1 user space BR

Process2 user space BR

Part b (13 points): The following table shows successive entries for successive memory accesses due to execution of
the user code shown above. Memory operations due to the OS during context switches are not included.
Your job: Complete the table. Some entries may remain blank.

Process ID VA PA Data TLB Hit?
xB01B

xA004 xBC02
x0104

x212
x01FE

xF86
xE88
x080

13

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

14

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

15

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<−SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

16

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.

LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG

FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

17

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

18

