The Golden Age of Computer Architecture? Computer Architecture is just one small piece of the answer

Yale N. Patt The University of Texas at Austin

First presented: August 16, 2019

Problem

Algorithm

Program

ISA (Instruction Set Arch)

Microarchitecture

Circuits

Electrons

What I want to do today

- The transformation hierarchy
- Moore's Law will end, the von Neumann model won't
- Room at the bottom
- Room at the top
- Room straddling both
- What will we need to make it happen

What I want to do today

- The transformation hierarchy
- Moore's Law will end, the von Neumann model won't
- Room at the bottom
- Room at the top
- Room straddling both
- What will we need to make it happen

Room at the Bottom

- The run-time system (because latency is important)
- Dark silicon (not everything is needed all the time)
- The silliness of a multiple-ISA, multi-core chip
 - Endianness, page size, data types
 - The good sense of a single-ISA, multiple-uarch cores
- SSMT (helper threads for improving infrastructure) – Also, recompile
- ILP is not dead (contrary to some misguidance)
- New materials → new tools
- Asynch for a few cycles, then synch

What I want to do today

- The transformation hierarchy
- Moore's Law will end, the von Neumann model won't
- Room at the bottom
- Room at the top
- Room straddling both
- What will we need to make it happen

Room at the Top

Charles Leiserson and his MIT colleagues

- Algorithms, Languages

Two interfaces

- One for those who understand microarchitecture
- One for those who don't
- Tools to bridge the gap

What I want to do today

- The transformation hierarchy
- Moore's Law will end, the von Neumann model won't
- Room at the bottom
- Room at the top
- Room straddling both
- What will we need to make it happen

Most importantly: Room Straddling Both

Processor Paradigms

- Why? They yield higher performance, better energy needs
- From yesterday: HPS, GPU
- For tomorrow: Accelerators of all sorts

What's involved

- Lots of domain specific
- We will need to keep von Neumann
- We will have to break the layers
- We will have to deal with portability

Some Paradigms

- Tomasulo (what was good, what was bad)
- Data Flow (what was good, what was bad)
- HPS
- CDC6600
- HEP (what was good, what was the problem)
- SMT (what was good, what was bad)
- SIMD
- GPU
- Systolic Array
- Spatial Computing
- Non-Von, BVM, Connection Machine
- Multi-core
- User-writeable Control Store

Examples of Paradigm Evolution

- HPS
- SMT
- GPU
- VLIW
- Spatial Computing
- Accelerators

HPS

- Tomasulo + Data Flow → HPS
- Tomasulo had out-of-order, NOT precise exceptions
 - Also, ONLY the floating point unit
 - Also, ONLY one operation per instruction
 - Also, Stall on a branch (no steady supply of operations)
- Data Flow had micro-ops, but too unwieldly
 - Hard to take interrupts
 - Hard to debug

HPS took the good, added: in-order retirement, Restricted window, wide issue, aggressive br.predictor

SMT

- HEP + ooo + wide issue \rightarrow SMT
- HEP was brilliant, ahead of its time (SPIE 1977) – But issued only one instruction each clock cycle
- Actually, CDC6600 → HEP
- SMT (Hirata, ISCA 1992, Nemirovsky 1994, UW 1995)

GPU

- SIMD + SMT + Predicated Execution → GPU
- If the software can pay attention to branches
- If the software can organize memory accesses

VLIW

- Horizontal microcode → VLIW
- Not good for General Purpose Computing
- But good for domain specific stuff
 - Microcode Emulation of the ISA
 - DSP chips
- i.e., when the software is known in advance

Spatial Computing

- Systolic Array + FPGAs → Spatial Computing
- HT Kung (1979): not enough transistors, too "asic"
- Today, stream data through a data flow graph
- If the software can produce the data flow graph

The future: Accelerators of all kinds

- Many implementation mechanisms
 - ASICs
 - FPGAs
 - EMT instruction (with writeable control store)
- Examples (Quantum computing, Machine learning)
- Requires the attention of
 - The person writing the algorithm
 - The programmer
 - The compiler writer
 - The microarchitect
- Straddling the layers? -- Break the layers!!!

Accelerators will play a big role

- They will need CPUs to control them
- Which means Von Neumann will continue to thrive!

The Von Neumann Paradigm

- A straightforward model of executing programs
 - Fetch, Decode, Evaluate address, Fetch Data, ...
- Many have suggested its demise
 - Wrong!
 - Our **best** mechanism for maintaining order
- But it will be augmented with accelerators
 - The pervasive computing engine of the future

But the Best Accelerators Destroy Portability

- Companies find that unacceptable
- *i.e., the economics of allowing non-portability*

Without portability:

- The economics isn't there;
- Industry won't buy into it.
- I have two responses:
 - Economics Be Damned!
 - More soberly: Tools to the rescue

I believe there are things we need to tackle in spite of the apparent economics

- Things that should not have a price tag
 - Like curing cancer
 - Predicting tsunamis
 - Driverless cars that don't crash into walls
 - Or lots of other things we will "trust" computers to do.
- Things that need much greater performance
- We already have existence proofs
 - US DOE's Supercomputers for controlling nuclear plants
 - David Elliott Shaw's ANTON for understanding science
 - Google's recent Tensor Processing Unit and follow-ons
- What else if we reject a quick pavoff

What I want to do today

- The transformation hierarchy
- Moore's Law will end, the von Neumann model won't
- Room at the bottom
- Room at the top
- Room straddling both
- What will we need to make it happen

What we will need to make it happen

- New tools, as we have said again and again!
- Education: the motivated bottom-up approach.

Education: What do we do?

- We start in the freshman year
- Start with what they "know"
 - The transistor as light switch
 - Not quantum mechanics
- Choose a computer model that is simple
 As the genius said: simple, but still rich
- Continually build on what they know
- Continually raising the level of abstraction
- *Memorizing as little as absolutely necessary*
- Trying very hard to not introduce magic

We start with light switches, and quickly move to transistors (p-type and n-type)

- Then gates (inverter, NAND, NOR, ...)
- Then combinational structures (MUX, Decoder, ALU)
- Then latches, flip flops
- Then memory
- Then finite state machines
- Then a computer (LC-3), specially invented
- Then programming, debugging in machine language
- Then assembly language
- Then data structures
- Then physical I/O, and interrupts
- Then programming in C, C++

The ISA

A.3 The Instruction Set

	15 14 13 1	2 11 10 9	8 7 6	5 4 3 2 1	0
ADD ⁺	0001	DR	SR1	0 00 SR	2
ADD ⁺	0001	DR	SR1	1 imm5	r F
AND ⁺	0101	DR	SR1	0 00 SR:	2
AND ⁺	0101	DR	SR1	1 imm5	т. 1
BR	0000	n z p		PCoffset9	r r
JMP	1100	000	BaseR	000000	r r
JSR	0100	1	PC	offset11	U R
JSRR	0100	0 00	BaseR	000000	i.
LD ⁺	0010	DR		PCoffset9	T T
LDI ⁺	1010	DR		PCoffset9	
LDR ⁺	0110	DR	BaseR	offset6	ti N
LEA ⁺	1110	DR		PCoffset9	i -
NOT ⁺	1001	DR	SR	111111	1
RET	1100	000	111	000000	i r
RTI	1000		000000	000000	L.
sт	0011	SR		PCoffset9	T -
STI	1011	SR		PCoffset9	
STR	0111	SR	BaseR	offset6	i I
TRAP	1111	0000		trapvect8	L L
reserved	1101				T

The Data Path

The State Machine

Figure C.2 A state machine for the LC-3

The result:

The graduate is ready To straddle the layers

- Moore's Law will end
- But there is good reason to be hopeful
- There is room at the bottom and the top
- If we break the layers, more room straddling both
- We will need to keep the von Neumann model
- We will need new tools
- And we will need to do something about Education

Thank you!