A few comments on Measurements

Outline

- The Basic Equation (and what is wrong with it
- How do we measure
 - Real Hardware, Simulator, Analytic model
 - Hardware instrumentation, Microcode, Software monitoring
- What do we measure (i.e., benchmarks)
 - Synthetic code
 - Kernels
 - Toy Benchmarks
 - SPEC
 - The Perfect Club
 - Your relevant workload
- Serious Abuses

Why do we measure?

- Before the fact
 - So we will know what to build
- After the fact
 - So we will know what to build next time

The Standard Performance Equation

 $T = L \times CPI \times t$

L = no. of instructions executed (ISA)

CPI = Cycles per instruction (ISA, Microarchitecture)

• Pipelining, Issue rate, branch handling

t = Clock (technology, marketing)

How do we measure? (Degree of Sanitizing)

• Real Hardware

- Gotchas have a chance to get in the way (a good thing!)
- Least flexible
- Fast for doing a thorough job

• Simulation

- Some effects are missing
- Most flexible
- Slowest
- Analytic Model
 - Good for gross effects
 - Must be validated

How do we measure (Invasiveness)

Hardware instrumentation

- Most expensive
- Non-invasive
- Least flexible
- Microcoded instrumentation
 - Best of both worlds (e.g., performance counters, SSMT)
 - SPAM
- Software monitoring
 - Cheap
 - Very invasive
 - Most flexible

Benchmarks

• Why benchmarks?

• Find a set of programs or program fragments REPRESENTATIVE of the WORKLOAD you need the machine for

• Types

- The ADD instruction
- Instruction MIX (Gibson Mix, 1959)
- Kernels (Livermore Loops, Berkeley's 13 dwarfs)
- Synthetic Benchmars (Allows parameterization, but RRW is not RWR)
- Toy benchmarks (easy to hand-compile, pretty much in dispute today)
- SPEC (Systems Performance Evaluation Co-operative), Agreement!
- Real workload

A few of my concerns

- One number: SpecMARK (Better than ADD time)
- SimplScalar (the bar to entry, bugs)
- In the literature (1.85 IPC max, Issue width does not matter)
- 400 floating point ops or 1 LLC miss
- Power models

BAD ways to measure performance (...and each has been used and published)

- Apples and Oranges
 - RISC A lightly loaded VAX vs. Counting Simulated Cycles
- Who should get the credit
 - The architecture or the compiler (Berkeley Pascal or VMS Pascal)
 - Algorithm optimizations (disallowed by SPEC, determin concat)
 - Instruction set or Register Windows (Bob Colwell)
- Choice of Benchmarks
 - Overstates significance of a feature (procedure call, no floating point)
 - Small size (100% fits in cache, TLB hits, no I/O)

BAD ways to measure performance (continued)

• Play with Statistics (Which machine is better)

	Program A	Program B
Machine 1:	1 unit	2 units
Machine 2:	2 units	1 unit

Machine 1 is twice as fast on A, half as fast on B Speedup is $\frac{1}{2}(2 + \frac{1}{2}) = 1.25$