Short Retrospective on RISC

Open Microcode

- Compiler Generates Lowest Level of Interpretation
 - No Microcode
 - Single Cycle Execution
- Complex Compiler vs. Complex Hardware
- Issues:
 - Bandwidth, Compiler Complexity, On Chip Tailoring
 - Wasted Cycles

What is it?

- Originally : Open Microcode
 - John Cocke (1970's)
- 1980: Simple Set of Simple Instructions
 - Sequin, Patterson (1980)
- 1989: Short, Tight Pipelines
 - John Hennessy
- 1994: VLIW
 - Wall Street Journal

Characteristics

- Fixed Length, Uniform Decode Instructions
- No Microcode
- Load/Store
- Larger Register Set
- Delayed Branch
- Register Windows

What is it (Non-Technical)

- Everything Since 1983
- "Good"
 - Motorola 68010 Article
 - Microcoded RISC Article
 - MicroVAX 2
 - VAX 9000 Literature
- SPARC System
 - The "RISC" Core

Why Did It Happen

Masterful Marketing

- Published Berkeley Benchmarks
- RISC Chip in Weeks, VAX in Years
- Simple is Beatiful
- 4-on-floor vs. Automatic
- Time-to-Market Curve
 - VAX 8600 Was Very Late
 - Track Technology Curve
- Why Was it Taken Seriously
 - HP Bet the Family Store

Comments on the Hype

- Simple is Beautiful
 - Complex Instructions Provide Opportunity for Speed-Up
 - 1st add Fl.Pt.
 - Graphics
 - *MMX*
 - Compilers Never Use It
 - Some BAD Implementations
 - One Compiler or All Compilers
- Published Berkeley Benchmarks
- Why did H-P jump in ?

The Players

• The University Experiments

- RISC (Berkeley, 1980, Patterson, Emphasis on "Simple")
- MIPS (Stanford, 1981, Hennessy, Emphasis on Compiler)

Commercial Products

- HP-PA (The IBM Team, Emphasis on Compiler)
- SPARC (Berkeley RISC)
- MIPS (Simple)
- AMD 29000

٠

...

- Motorola 88000
- IBM RISC System 6000 (Return to Past)