Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2018

Y. N. Patt, Instructor

Chirag Sakhuja, John MacKay, Aniket Deshmukh, Mohammad Behnia, TAs
Final Exam

December 14, 2018

Name: S o ’ U H onN
Part A Part B
Problem 1 (10 points): Problem 6 (20 points):
Problem 2 (10 points): Problem 7 (20 points):
Problem 3 (10 points): Problem 8 (20 points):
Problem 4 (10 points): Problem 9 (20 points):

Problem 5 (10 points):

Part A Total (50 points): Part B Total (80 points):

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested: I have not given nor received any unau-
thorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (10 points): An LC-3b system, with a 16-bit address space, has a 16 KB physically indexed, physically
tagged cache. The cache is 4 way set associative, write-back, and uses a victim/next-victim replacement policy. A
cache line is 64 B.

How many bits of storage are required for the tag store? 2 " b\'\’s

G

| tog | index | FF |
(PN

6 — bl of 6B cache line size

Hocw any index bits?

2(Le B (Qche

L/WQ,gr " LY B bres i 26 sefs

M(/{f‘} be é in ole x b/-/-_g‘ , 50 Y /—o(j bits

tog sfore e/zw"éj

ack
€ (essany Yol Wit T

l VWC'H"W
[Vim| g A
I Y Lt
¥ bits per i’y
ZlL"B cocche

—_—

618 tine :(23 "mef> (8 it

Name:

Problem 2 (10 points): A given program takes time T to run on a processor. To improve performance, you consider
using a newer processor that provides a 2x speedup over the older one. You also have the option of using any number
of older processors to create a multi-core system. After analyzing the program, you find that 50% of the program can
be parallelized.

Part a (5 points): Which option performs better? Explain.

The New processor ’OC’COLMSE :-jOb(wou & need an an}n/%e nUymber
0 WC o (d pﬂ?cesror,c o ach/bre Hwe Sare ffeedup

To further improve performance you decide to construct a system consisting of the new processor and four older pro-
cessors together. Due to energy constraints, either only the new processor or the four-core system can run at any given
time.

Part b (5 points): What is the best speedup over the original execution time (T), given this configuration?

)

—

3 [588 b@‘ow)

0 .57 (He serial Fort) can pe reduced to 0.25T o1 He reco
be(,eSSO(

O -2T (‘Ht paralie/ /ocmf) carnr be veduced +o 0.125T 04y Jhe

Y old processors

Vewo Fine is ©-3757T, o speedup i s 021—75 d i

Name:

Problem 3 (10 points):

1. No branch prediction or data forwarding. For a branch instruction, Fetch of the instruction following the branch
occurs in the same cycle as when the branch reaches Writeback.

2. Perfect branch prediction, no data forwarding. Fetch of the next instruction following the branch occurs in the
next cycle after the branch instruction is fetched.

The function FOO is executed on this processor.

FOO AND
ADD
BRZ
ADD
SKIP ADD

RET

The table below contains the instructions in FOO and the cycle in which each reaches the Writeback stage for the two

schemes.

RO, RO, #0
RO, RO, #-1
SKIP

R6, R6, #1
R6, R6, #-1

Your task: Fill in the missing entries.

We have provided on the next page four copies of a timing diagram that you can use for scratch work. Use as much or

as little of it as you need.

For the LC-3b, an in-order pipeline was designed consisting of 5 stages: Fetch, Decode,
Address Generation/Execute, Memory and Writeback. Each stage takes one cycle. Assume registers and condition
codes are read in the Address Generation/Execute stage. Consider two different schemes:

Instruction Scheme 2
AND RO, RO, #0 5 5
ADD RO, RO, #-1 Q S

BRZ SKIP |)
ADD R6, R6, #1 1S L2
ADDR6,R6, #1 | | § |5

RET (4 (b

Sce [/L/OFV below

W/O \Oranoln FmoUc/HOn

Instruction

1]2

10

11

12

13

14

15

16

17

18

19

20

AND RO, RO, #0

ADD RO, RO, #-1

[
F

BRZ SKIP

3
A
P
E

\v)

>

>

ADD R6, R6, #1

T o> X | s

O P | v

N>\

T

AY)

ADD R6, R6, #-1

|

RET

LAV G
VAR S
\VAIRSIDY

® R
<R

wl ondn_ predicfion

Instruction

)

12

13

14

15

16

17

18

19

20

AND RO, RO, #0

ADD RO, RO, #-1

BRZ SKIP

o | P

<O

-

ADD R6, R6, #1

oo IS s
ﬁvk.{m

-

AV)

ADD R6, R6, #-1

R IRNES
T O (> |S

RET

RMVAVAESES
ARSI
9 |® S
~

>

=2

Instruction

10

11

12

13

14

15

16

17

18

19

20

AND RO, RO, #0

ADD RO, RO, #-1

BRZ SKIP

ADD R6, R6, #1

ADD R6, R6, #-1

RET

Instruction

10

11

12

13

14

15

16

17

18

19

20

AND RO, RO, #0

ADD RO, RO, #-1

BRZ SKIP

ADD R6, R6, #1

ADD R6, R6, #-1

RET

Name:

Problem 4 (10 points): Consider an N-bit IEEE-style floating point representation. The BIAS is determined in exactly
the same way as it is for 32-bit and 64-bit IEEE representations. For our N-bit representation, we are able to represent
the value 12% exactly, but we cannot represent the value 34% exactly. The smallest positive normalized value we can
represent is 2762

Of our N bits, how many are fraction bits?

Number of Fraction Bits: 6
Of our N bits, how many are exponents bits?
Number of Exponent Bits: 7
What is N?
/&N: /4
What is the bias? s “/3\4 b,:\, 1

Bias: é 2

L
= .
|2 5 /100 o = 1100 00(y1°

39 % 2 10001001z |. 000100555

’?4 Must be b fraction bits

Miaimum normalized exponent = | — BIAS

/V (3=~ BrAs

In 1rE€ , :
n IEEF style floating poInt, an exponent f7eld o OFIL -/

e presfen ts
f N1 Jhe acfua | Q)(‘p(/yye/)} O (\C Hhe bias s 10 e raioldfe)

62 => oIl
—_
T bits

Name:

Problem 5 (10 points): Recall my handout on virtual addressing, showing the VAX process but reducing the sizes of

everything to make the example less tedious. For example: VA is 9

bits, as follows:

8 7 6 4 3 0
T T T T T T
Region VPN Offset
| | | | | |
Physical memory is 256 bytes.
Page table entries are 8 bits each and are broken down as follows.
7 6 4 3 0
T T T T T
V1]o0 0 0 PFN
| | | | |
The following snippets of physical memory are known.
Addr | Data Addr | Data
0x10 | OxOF 0x30 | 0x80
0x11 | 0x88 0x31 | 0x89
0x12 | 0x83 0x32 | 0x88
0x13 | 0x89 0x33 | Ox8A
Addr | Data Addr | Data
0x90 | OxOF 0xFO | 0x03
0x91 | 0x88 0xF1 | OxOE
0x92 | 0x83 0xF2 | 0x81
0x93 | 0x89 0xF3 | 0x80

The instruction LOADBYTE R12,A is executed, where the virtual address A is 0x032.

After the instruction is fetched and decoded, three physical memory accesses are necessary to obtain the byte to be

loaded into R12. Fill in the physical addresses and data that are accessed.

The POBR and SBR are 0x120 and 0xFO, respectively.

Addr

Data

Y
.
s wr

Access 1

Ox F2_

ox &

Access 2

Y\U)({)09@

Ox 13

Ox §9

50

Access 3

Ox Q2

0y 8732

VA P A Pata
X [o0] o1 \oo/OL ; WOI]Oo(o\ " | 1000 00|

\i l
?DX (20 Z
PTE of X W\O |0 \OOTl 2\ ooel |001A . \ Jooo |loo) (

Ww
v
(& 05170 l

| ~
SPTE of X 3 >’Ml : ﬂow{ooo. \

Name:

Problem 6 (20 points): This problem is similar to the Tomasulo question from Exam 1, with some key differences.
Consider an out-of-order processor which executes its instructions based on the Tomasulo algorithm with in-order
retirement. The ISA specifies 8 registers, RO to R7. The execute stage of the pipeline contains one pipelined adder
and one pipelined multiplier. Fetch and Decode take one cycle each. The ADD instruction takes additional 4 cycles
to execute; the MUL instruction takes additional 5 cycles to execute. At the end of the last cycle of execution, each
instruction will store its result into any reservation stations waiting for it and its ROB (Reorder Buffer) entry. Both
ADD and MUL need one additional cycle to retire. Only a single instruction can retire at a time.

The adder and multiplier each have 2-entry reservation stations. The reservation stations and the ROB are initially
empty and are filled from top to bottom. Each instruction remains in the reservation station until the end of the cycle
in which it writes its result to its ROB entry.

In this example, the computer will execute a program fragment consisting of five instructions.

Part a (10 points): Determine the five instructions in the program fragment.

Opcode | DR | SR1 | SR2
ust need 1o lowle ot
1| APD |@y |RZ|R3 O/ ed

2| Muc [ps| @l [ry] Velues in RF and

B MpL | R | RB B
w]App |3 @3 |83 OB +o veconstruct

5| ApD | Ry |Ro |RY] tHhos

To help you we have included the state of the register file before the first instruction is fetched, and after all five in-
structions have retired (the bolded values indicate the values that changed). We have also included a snapshot of the
ROB (Reorder Buffer) at the beginning of cycle X.

Note that each ROB entry contains 3 bits of state information. The Valid (V) bit indicates if the entry is in use, i.e. V=0
indicates an empty slot in the Reorder Buffer. The Executed bit indicates that the entry corresponds to an instruction
that has successfully executed. The Retirement bit indicates that the executed instruction has retired.

V Tag Value V Tag Value V Executed Retired DR Value

RO | 1 - 4 RO | 1 - 4 0 1 1 R4 -3
Rl | 1 - 11 R1 | 1 - 44 0 1 1 R3 | -33
R2 | 1 - -6 R2 | 1 - -6 1 1 0 R1 44
R3 | 1 - 3 R3 | 1 - -66 1 0 0 R3 -
R4 | 1 - 205 R4 | 1 - 1 1 1 0 R4 1
RS |1 - 49 RS | 1 - 49 0 0 0 - -
R6 | 1 - 12 R6 | 1 - 12

R7 | 1 - 25 R7 | 1 - 25

Register File Before Cycle 1 Register File After Execution ROB at the beginning of cycle X
Part b (3 points): What is the value of X? | <

PROBLEM CONTINUES ON NEXT PAGE

ceo work on next pe

Name:

We have included a timing diagram template for your scratch work. Use as much of it as you deem useful.

Instruction 1213|4567 |8[9]10]11]12]13[14[15|16|17 |18
5l F E E|E|W

2 FID|=|—|-|t|E|E|E|F |W

I3 FIPIEIE|EIE|E| —|— | — | W

14 FIP|=-|—-|—|"|— |~ |E |E|€|E|W

) FIDIEIEIELG | —|—| | I~ |~ |w

Part c (7 points): Complete the values of the reservation stations, ROB, and register file after cycle 5.

\% TAG VALUE \Y TAG VALUE V TAG VALUE vV TAG VALUE
all|l— 1| =6 [t]|—] % =1 I Ol | —
Bloln | 0O 0| = | © =] A (V=] W

L

V Tag Value

RO || | — Yy V Executed Retired DR Value
Rl [0 o |- | O o _uU -

R2 | — -k (0 (o) R3 —

R3 |0 | 5| — | 0 o) Rl| -

R4 [0 | o0 | — | © 6 |3 | ~
RS |1 [= | ug ol — | - ==

ROV |7 |12 0| — — | — |~

R7 || | = | 25

Name:

Problem 7 (20 points): The unused opcode *1011” in the LC-3b ISA is used for a new instruction. The new instruc-
tion has the following format.

The state machine for the new instruction is shown below.

Your job: Augment the LC-3b data path and microsequencer shown on the next two pages to add the new instruction
to the LC-3b ISA, and describe what the new instruction does.

From state 32

To State 18 1

[MAR < A EC{ M[MAR] « MDR]

R
_RC[MDR « M[MAR] [MAR:—B]
[TEMP - MDR [MDR « TEMP]
[MA:(_B EC[[MAR] « MDR]

R
EQ MDR « M[MAR] [A<—+A+2]
[MAR « A [B‘jB 2]

10

Name:

Part a, The data path (9 points): We have provided registers for A, B, and TEMP, as well as GateTEMP tri-state
buffer, a left-shift-by-1 unit, and a subtractor. We also provide inputs from the bus and ZEXT IR[4:0] to the large box
shown. Your job is to implement the changes needed to support the new instruction by adding the necessary logic to
the box and connecting the necessary structures to the LC-3b datapath. You may only add two 4:1 muxes, wires, and
constant values. You may not add additional inputs or outputs to the box.

Note: ALUK is a 3-bit code in order to provide the ALU with the ability to subtract. This is needed in state 38.

GateMARMUX —/\

16

—/ MARMUX

[A
16 6

GatePC

REG
FILE

<+—ADDRIMUX

LD.REG—>
3 SR2 SR1

4734 DR
3
SR2—4> OUT OUT [<4 SRI

I

CONTROL

[

lTA [
R

Y
M

l—=¢

=]

>

-10

jn
N\

|

<™
A\

3 “
ALUK

i6
/- GateALU

—

TEMP

>

Gate. TEMP

A

SHF \<7641R[5:0]

16
GateSHF

Name:

Part b, The microsequencer (3 points): To make this work, we need to add to the microsequencer a COND2 control
signal and an input X. Fill in the box labeled X.

COND2 CONDI1 CONDO
X
BEN R IR[11]
fo¥e) olo foYo) 5
Branch Ready Addr.
Mode
J[5] J[4] J3] 2] [N J[0]

0,0,IR[15:12]

IRD

Address of Next State

Part c (8 points): In 15 words or fewer, explain what the new instruction does. (Hint: You really only need three words)

RQVEO’TG an qrraj

12

Name:

Problem 8 (20 points): A byte addressable processor with a 32-bit wide data bus executes the following function.

int check_palindrome (int * input)
int flag = 0;
for(int i = 0; 1 < 16; i++) {
if(input[i] !'= input[31-1i]
}
return flag;

}

{

) flag = -1;

This function determines whether an array of 32 integers is a palindrome. Integers are 32 bits. You may assume local
variables are stored in registers and only array accesses go to memory. The array begins at address x8000.

Suppose we have an 8-way interleaved DRAM memory, with the following address scheme:

15 11,10 Y+1,Y X+1 X

Row | Column

Bank

BoB

e A row access takes 6 cycles, and subsequent column accesses take 1 cycle.

Memory address and data buses are independent.

Memory requests arrive at the memory controller 1

Memory requests must be issued in order.

Part a (2 points): Fill in the values for X and Y.

per cycle.

v

If a request comes to a busy bank, it (and future requests) must wait until the bank is free. - 80‘6
[

for 37
M@W
[4

Part b (12 points): To execute this function, 32 memory locations must be accessed. What is the total number of

clock cycles that these 32 memory accesses take?

EX%

Part c (6 points): Will moving to a 16-way interleaved memory system improve performance? Explain.

fake | ¢ cle each

No because all acwsses arc <+ill jgteclegved oF 5one point and

13

S0

(1!'\(’L

O x §000
ox go¢C
bx 0oy
Ox §O07T13
Ox B 008
0 ¥Q0TH
Ox 30 0 C
Ox §0 710
Ox %0 [0

Flue line caunts the Number of +otal

W les

T+ 7+ 24

| 0000
|©coooO
| cooco
lo oo o
[oooo
lOboo

000

|© oo

| ©coo©

R

o000 00

Oocoo\l

060 00

(Ll oo

00000 Ol 09

ooo 0o\ |\

O00000
o000\ |

00 0000

oo 0O) (

[eX o R NaoXabl

:.?5%

Lto oo

olo ©©°

(Ol © o

oll 0O

| o0 © O

{ 6 o ©°©

Since +he row e,y
¢
harge, +he. rermaisning

Qecesses qlf f)4 i F

bani ba Gpored it

mma?n'lr)g acesce s offrall bankc are open

Name:

Problem 9 (20 points): The asynchronous bus discussed in class has two controllers relevant to this question, a cache
controller and a memory controller. The bus can transfer one byte at a time.

BYTE_A PN
)| Cach M
Cache (BYTED ach® emory » Memory
Controller Controller
|_Control PN
y L 4 A 4 4
Address
Data \4 v
Control A 3

Your job is to implement the state machine for a cache controller so it can load a cache line from memory in one bus
cycle. A cache line consists of eight bytes.

The cache controller gets the following inputs from the cache:
e REQ: a request from the cache to get a cache line from memory

e BYTE_A: address of the next byte to be accessed (initially the address of the first byte in the cache line; updated
in the cache and latched by the cache controller)

e CACHE.I: a control signal from the cache to the cache controller

e DONE: 1 if all of the bytes have been transferred; O if more bytes still need to be transferred
The cache controller has the following outputs to the cache:

e BYTE D: byte of data

e CACHE_O: a control signal from the cache controller to the cache
The cache controller gets the following inputs from the bus:

e BBSY I: 1 if the bus is busy; 0 if it is free

e SSYN: a control signal from the slave to the master

o DATA: the byte on the bus (produced by the memory controller and latched by the cache controller)
The cache controller has the following outputs to the bus:

e BBSY _O: 1 if the bus is busy; 0 if it is free

e MSYN: a control signal from the master to the slave

o ADDR: the address to access on the bus

PROBLEM CONTINUES ON NEXT PAGE

14

Name:

Part a (10 points): Complete the following asynchronous timing diagram by showing all the signals that are transmit-
ted. Note that we have labeled the states A, B, C, and D of the cache controller at various points in time. Those states
correspond to the states in the state machine on the next page.

Cache Cache Controller Memory Controller
BB

SY_0, Msy,
= N, AD
O S

S YN

e]
g)’ﬂ;/fo ’

cAcHED

oo A

C

ACHE |, BYTE 4

B

BS Yso MSYN A
4 7
@ DDR

BBSY o, m
= MSYN, A
® 20R

ssyN PA
5z) —
BYTE]

gasy-0 AUIES
CAtHe_ -

g sy-0., (’ACHE ©)|

C

—_—
ACHE 7, BYTE_A, DONE I

15

Name:

Part b (10 points): Complete the state machine for the cache controller by filling in the bolded boxes showing how it
loads a cache line from memory in one bus cycle.

r— - — — — — A
| | SSYN
| By |
O >
| |
BBSY O
| SACK | MSYN
| T -BYTE_A
| [Eesr= ADDR < ~
| BG | T
337
HOED
: REQ, . ss yn
BYTE_A BSy—o
' « -
| |
L - — — 4
CACHE-T % DoNg
PoN € SSYN
\ 4
EBSY_-0
O mm o @
CACHE_O (ACHE-T ra Y rE,D <

CACHE-T (A(HEe-T

16

