Department of Electrical and Computer Engineering
University of Texas at Austin

EE460N Fall 2020

Y. N. Patt, Instructor

Chester Cai, Sean Stephens, Arjun Ramesh, TAs
Final Exam

December 11th, 2020

Name:

EID:

Part A: Part B:
Problem 1: 10 points Problem 6: 20 points
Problem 2: 10 points Problem 7: 20 points
Problem 3: 10 points Problem 8: 20 points
Problem 4: 10 points Problem 9: 20 points

Problem 5: 10 points
Total: 130 points
Note: Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space provided.

Please read the following sentence, and if you agree, sign/print your name where requested: |
have not given or received any unauthorized help on this exam.

Signature:

Good Luck!

General Instructions:

1. You are free to use anything in the Handouts section of the course website that is listed
under “Course Related Handouts” or “LC-3b Handouts.” In particular, Appendix A and
Appendix C may be of use. Anything other than that from the course website, textbooks,
or the Internet is not allowed and considered unauthorized access.

2. If you have any questions, join the class Zoom link and ask a TA. You do not need to stay
on the Zoom call during the exam unless you have questions.

3. Announcements will be posted here. Check this page periodically throughout the exam.

4. You may take the exam by printing it, editing a PDF, or editing a Google Doc. Read the

instructions for your preferred method below.
5. You are required to stop working on the exam promptly at 10:00 PM.

Printing or editing a PDF:

1. Download and save the PDF.

2. Edit the PDF to fill in answers with a software of your choice. Feel free to show your
work in the available space. You may also choose to print the exam and solve it on paper.

3. When you are ready to submit your exam, save the edited PDF as “Final Exam <your
name>"; if you printed your exam, scan in your written answers as a PDF with the same
name. You may use a scanner or an app such as CamScanner.

4. Upload the PDF to Gradescope by 10:10 PM. The entry code for Gradescope is
IRPGX3.

Editing a Google Doc:

1. Save a copy of the document to your Google Drive.

2. While working on the exam, DO NOT expand any boxes that are given to you. Feel
free to show your work in the available space. If you need more space, you are writing
too much.

3. When you are ready to submit your exam, click “File”-> “Print” and select “Save as
PDEF”. Save the edited PDF as “Final Exam <your name>".

4. Upload the PDF to Gradescope by 10:10 PM. The entry code for Gradescope is
IRPGX3.

Execute | ‘ Add a
instructions | register
i

alias table

out of order

Commit | Commit
instructions | instructions
out of order | & out of order

Problem 1 (10 points): You are the new chief architect of Little Computer Company. You have
lots of great ideas about improving their next generation CPU, but are told by the CEO that the
ISA MUST remain unchanged. Which of the following improvements will satisty this
constraint?

For each improvement, write “Yes” if the improvement can be incorporated, or “No” if the
improvement would not be allowed. Each correct answer earns 2 points. Each incorrect answer

earns minus 2 points. Leaving an answer blank earns 0 points.

1. Adding a gshare branch predictor

2. Adding a new instruction for vector processing

3. Changing the memory bus width from 16 bits to 32 bits

4. Making the cache larger

5. Changing the size of the PTE

Problem 2 (10 points): A byte-addressable machine with a 4GB physical memory has a 2-way
physically addressed, set associative cache. The cache is write-back, and it uses LRU
replacement policy. The line size is 64 bytes. The cache’s data store has a capacity of 16KB.

Your job: Provide the following information

Number of cache lines in the data store:

Number of index bits:

Total number of bits of storage required to implement the tag store:
(Feel free to leave this as an equation)

Problem 3 (10 + 1 points): Assume a IEEE-like floating point data type, wherein each number
consists of 7 bits, of which three bits are used for the exponent. We wish to compute the sum of
A + B+ C, where A, B, and C are represented as follows:

Al O 1 1 0 1 0 1

C1 0 0 | 0 0 0 0

The add instruction adds two 7-bit floating point numbers, rounds the result towards 0,
and stores it in a 7-bit floating point register. Assume the microarchitecture has no round,
guard, or sticky bits.

Part a (5 points): What is the sum if you add A+B first? i.e., (A+B) + C.

Part b (5 points): What is the sum if you add B+C first? i.e., A + (B+C).

Part c (1 bonus point): If you were asked to sum an array of N positive floating point numbers,
some very large and some very small, in which of the three following orders would you perform
the N-1 additions in order to make the result as accurate as possible? Explain your choice in 20
words or fewer.

Option A: Sort the array from largest to smallest, then add the numbers from the beginning to the
end of the array

Option B: Sort the array from smallest to largest, then add the numbers from the beginning to the
end of the array

Option C: Don’t sort the array, just add the numbers from the beginning of the array to the end of
the array.

Problem 4 (10 points): While doing Lab3, a student found the following bugs:
e A taken branch always jumps to the instruction stored immediately after the branch
e All load and store instructions always set MAR to BaseR instead of BaseR + offset6
e JSR always jumps to the instruction stored immediately after the JSR instruction.

A picture of the datapath is shown below for your convenience.

<

GateMARMUX '

REG
FILE

LD.REG—=

i SR2 SR1
SR OUT OUT

ADDRIMUX

14, i 1,

16
v

L 0b bews ’:{‘ﬁ?

CONTROL

1
2 B W 5
3 LoCC—-IN|Z|P #;\I ALU / I SHF ,;-\ R} 5:40]
ALUK
X {3

Assuming there are no other bugs in the student’s implementation, which of the following is
a possible explanation of the bugs above? Explain your reasoning in fewer than 20 words.

Option 1: The ADDRIMUX’s output is always PC
Option 2: The ADDR2MUX’s output is always 0

Option 3: The PCMUX’s output is always PC+2

Problem 5 (10 Points): The best algorithm for a program running on a single processor takes
6 seconds. 75% of the program can run in parallel. The rest of the program has to run

sequentially.

Part a (5 points): Ignoring communication overhead, what is the minimum number of cores
needed to run the program with a speedup of 3?

Part b (5 points): What is the theoretical maximum speedup that can be obtained by running the
program on an unlimited number of cores?

Problem 6 (20 points): A user program consisting of four instructions shown below is executed
on a machine that implements Tomasulo's algorithm with an ROB to retire instructions in

program order.

Inst O

MUL R1, RO, RO

Inst 1

MUL R2, R1, R1

Inst 2

ADD R3, R4, R5

Inst 3

ADD R6, R2, R6

You are given the following information:

execution.

The machine has a 5-stage pipeline: Fetch, Decode, Rename, Execute, and Retire.

Fetch, Decode, Rename, and Retire each takes 1 cycle.

Fetch, Decode, Rename, and Retires stages can only operate on one instruction at a time
The machine has 1 non-pipelined adder and 1 non-pipelined multiplier.

The result of each instruction is written to the ROB during the last cycle of its execution.
Dependent instructions can start execution the cycle after the previous instruction finishes

During Rename, each instruction is assigned an ROB entry.
All functional units share the same 5-entry reservation station

e The reservation station can be bypassed by instructions with no dependencies.

At some point during the instruction sequence, an interrupt occurs. In response, the machine
immediately flushes all un-retired instructions. After executing the interrupt routine, the user

program resumes execution.

The graph below shows the number of allocated ROB entries at the beginning of each cycle. A

result is written to the ROB at the end of cycle 6 and another at the end of cycle 7. The allocated
ROB entries during the interrupt service routine are not shown. The interrupt finishes on cycle
A-1. We start fetching instructions from the user program again on cycle A.

Number of allocated ROB entries over time

(]

=]

Part a (2 points): In which cycle did the interrupt occur?

Part b (6 points): What is the latency for the add functional unit and multiply functional unit?

Adder:

Multiplier:

Part ¢ (2 points): What instruction is fetched during cycle A?

Part d (10 points): Complete the dynamic timing diagram below for the execution of the user
program, as we have done in class. Show all instructions that are fetched regardless of whether

they are committed or not.

e UseF, D, RN (for rename), A (for ADD), M (for MUL), and FL (for flush), and RT (for

retire) to indicate what is going on with each instruction during each cycle

Use * to indicate a clock cycle when an instruction is waiting

Use as many rows/columns as needed

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
10 F D RN

I1 F D

12

13

Cycle | A4 A+l | A+2 | A+3 | A+4 | A+5 | A+6 | A+7 | A+S8 | A+9 |A+10 | A+1]

Problem 7 (20 points):(Note: You are allowed to use a calculator to solve parts of the question.)
A byte-addressable machine implements virtual memory with a 4 MB virtual address space using
a three-level page table tree system similar to the x86 model. Each page table/page directory
occupies exactly one frame of physical memory. All page tables live in physical address space.

The breakdown of the virtual address bits is as follows:

L1 L2 L3 Offset

5 5 5 7

Part a (2 points): How many PTEs can fit in a frame?

Part b (2 points): What is the PTE size in bytes?

Parts ¢, d and e

A user process runs on this machine that requires exactly 343,240 contiguous bytes of virtual
memory and does not perform any dynamic memory allocation. The OS allocates at least this
amount of memory to the process at the time it starts.

Part c (6 points): Assume the machine only supports a single page size (1 page = 1 frame). Find
the minimum number of virtual pages and total number of page tables/directories at all levels
required for the process. Show your work.

Virtual Pages: Page Tables:

Part d (4 points): We wish to enhance this machine to support three different page sizes in the
same way Intel did for the x86. What are the three page sizes?

Part e (6 points): The same process now runs on a machine with the three page sizes from Part
d. The OS can allocate pages of different sizes to the same process at the same time. In this case,
while keeping the internal fragmentation at an absolute minimum, it allocates the fewest number
of pages possible. Find the total number of virtual pages and page tables/directories (at all levels)
required for the process. Show your work.

(Note: Internal fragmentation is the difference between how much space is allocated to the
process and how much space the process actually needs.)

Virtual Pages: Page Tables:

Problem 8 (20 points): Consider a machine with no cache, 4 KB of physical memory, and the
following address format:

11 n n-1 5 4 2 1 0

Row Column Bank Byte on Bus

Matrix A is a 16x16 matrix of 32-bit integers stored in row-major order beginning at physical

address x300. The following code is run on the machine to sum the matrix, accessing each
element in column-major order.

int sum = 0;
for (int 1 = 0; 1 < size; 1i++) {
for (int j = 0; 3 < size; Jj++) |
sum = sum + A[Jj][1i];

All loop variables and sum are stored in registers.

It takes 15 cycles to open a row.

It takes 5 cycles to load a value from the row bufter.
All row buffers are initially empty.

Memory requests are issued in order.

Part a (2 points): Which elements of the 16x16 matrix are stored in Bank 27

Part b (4 points): The access to A[0][0] is issued on Cycle 1 and returns on Cycle 20. The
access to A[1][0] is issued on Cycle 21 and returns on Cycle 25. The access to A[3][0] returns on
Cycle 50. How many row bits are in the physical address?

Part c (3 points): On what cycle does the access to A[15][0] return?

Part d (3 points): On what cycle does the access to A[15][15] return?

Zero-padding
Zero-padding is a technique which can be used to improve the performance of accessing a matrix
by adding a column of zeros. Below is an example of a zero-padding.

7 (ZD{) 3{11) 7 = (Zoo Z01 0)
Z].D 211 210 Zil 0

We zero-pad matrix A such that it is stored as a 16x17 matrix in physical memory. We run the
same code again on the zero padded matrix. Note: We still set size to be 16, not 17, since it
doesn’t affect our final sum.

Part e (4 points): On what cycle does the access to A[15][0] return?

Part f (4 points): On what cycle does the access to A[15][15] return?

Problem 9 (20 points):

We are trying to figure out parameters of a cache hierarchy by running the following
microbenchmark.

for i in 0..N:

Addr = (random_int () * stride) % max_addr //% is a modulo operator
LoadByte from Mem[Addr]

Assume the following:
e N is a large number (we observe steady-state behavior).
stride and max addr are powers of two (as shown in the chart below).
There are two levels of caches (L1 and L2) and main memory in the memory system.
The execution time is determined only by cache and memory access latencies.
All caches and memories have constant latency.
All sizes and associativities are power of two numbers.
Assume inclusive caches and LRU replacement where necessary.
All cache lines are 16 bytes in size.

We measure the execution time of each run while varying the values of stride and

max addr. The following plot shows the average execution time per loop iteration, where each
data point represents a separate experiment with different st ride and max addr values.
Note that the lines for st ride=1, 16, and 32 are all overlapped.

180

160 —a—stride:1

—#=stride:16
140

——stride:32
120 —==stride:64
100 —e—stride:128

—=stride:256

—
(%]
c

—

80 —a—stride:512

Average Execution Time per Iteration

60
40 . P o -
stride: 1 16
20 & . .) .
0

202 283 2M4 2A5 0 2A6 2A7 248 2A9 2A10 2°11 2°A12 2A13 2M4 275 2716 2M17
max_addr

(Problem continues on the next page)

Answer the following questions.

Part a (4 points): What is the total cache size (in bytes) for each level of cache? Explain your
answer briefly.

L1: L2:

Part b (6 points): What is the access latency (in ns) of each level of cache and main memory
(starting from the previous level, e.g., CPU—LI, L1—L2, ..)? Round each latency to the nearest
ten. Explain your answer briefly.

LI: L2: Main memory:

Part ¢ (10 points): What is the set-associativity for each level of cache? Explain your answer
briefly.

L1: L2:

