Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015

Y. N. Patt, Instructor

Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Final Exam

May 15, 2015

Name;

Problem 1 (10 points):
Problem 2 (10 points):
Problem 3 (10 points):
Problem 4 (20 points):
Problem 5 (25 points):
Problem 6 (30 points):
Problem 7 (25 points):

Total (130 points):

Note: Please be sure that your answers to all questions (bsubporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaine

Please sign the following. | have not given nor received amguthorized help on this exam.

Signature:

GOOD LUCK!

Name;

Problem 1 (10 points)

Part a (5 points): An application that is 96% parallelizable is executed onnglsi processor in 2.5 hours. If the
application is allowed to run with an unlimited number of pessors, what is the lower bound on its execution time?

Part b (5 points): We wish to use even parity to protect each single-byte vale¢ransmit, by adding a ninth bit. If
we wish to transmit 01010101, what nine bits should we trat¥sm

If we wish to transmit 00110111, what nine bits should wesrait?

Name;

Problem 2 (10 points)

The following program fragment operates on 8-bit IEEE-Iflaating point format. Your job is to figure out how
many bits for exponent, how many bits for fraction, and to ptete the table below. BIAS (excess) is 4. Rounding is
unbiased nearest.

fl oat B;
float A = 5/16;

for(int i=0; i < 6; ++i)

{
}

B = A (1<<i);

Note that (k <i) is equal t02I .

Each row of the table below specifies thesults of one iteration of the for loop. Note that some iterationasea
underflow and/or inexact exceptions, in addtion to prodgeivalue for B.

Hint: Some representations of B are subnormal.

Iteration | Binary RepresentationFloating point representation Exceptions

(1) of B of B Underflow | Inexact
0 NO NO
1 NO NO
2 NO NO
3 NO YES
4

5

Name;

Problem 3 (10 points)

Consider a tightly coupled mutltiprocessor system with pracessors (P1 and P2). Each processor has its own private
data cache.

The Goodman “write-once” snoopy cache protocol we studiedlass is used for maintaining cache coherence. On a
cache miss, if another processor has the line in the modifégd,sts cache supplies the line to the processor having
the cache miss.

The table shows the behavior of the system for eight consectdiéta accesses, all to location A. Assume the caches
are initially empty. Each access is performed by either PR2rYour job: complete the entries in the table.

Note: In the last column, the entry "No one” means there ise®dto supply the cache line because the private cache
had a cache hit.

Instance P1 Executes a P2 executesa Bus Activity | Cache line

LOAD/STORE | LOAD/STORE supplied by
1 LOAD A —
2 P2 READS A | MEMORY
3 STORE A — P1 WRITES A| NO ONE
4 P1 CACHE
5 P1 READS A | P2 CACHE
6 — STORE A
7 — STORE A
8

LOAD A —

Name;

Problem 4 (20 points)
Recall the Tomasulo problem on midterm two. The rules arg sinilar here.

Instructions are of the form ADD Rx,Ry,Rz and MUL Rx,Ry,R3,discussed in class. Each instruction requires a

fetch cycle, a decode cycle, some number of execution cyateba final cycle to store the result into a register and/or

a reservation station entry that is waiting for that resiltesult is available to subsequent instructions afterstised

in a register or reservation station entry. Functionalsinivt pipelined. Reservation stations are assigned from the
top down. The top-most reservation station with both datdesnvalid is the next to be processed. Each instruction

remains in its reservation station until its result is stbre

The only differences in the problem today are the followifitnere may be more than one adder and more than one
multiplier. We have changed the number of execution cydesdycles for the adder and 4 cycles for the multiplier.
All the adder(s) share three reservation stations. All thutiplier(s) likewise share three reservation statiorigally,

each instruction has two unique source registers; thabisglf instructions OP Rx,Ry,Rz 4z

A program fragment, consisting of five instructions, is axed on this machine. The first instruction is fetched in
cycle 1. Part of your job: Complete the table below, i.e.,dbmplete specification of the five instructions.

Instruction | Opcode DR SR1 SR2

1

2 RO

5 ADD R3

Information on the next page will help you identify the fivesiructions executed.

Name;

The table below shows in what cycles the function units aezeting. AnE in row ADD indicates that in that cycle
at least one adder is executing. Erin row MUL indicates that at least one multiplier is execagtin

112(3|4|5|,6|7(8|9|10|11|12
ADD E|IE|E|E| E|E
MUL E|E|E|E|E|E|E| E

Initial values in the Register File are shown below:

RO|[1|—-|7
R1||1|-14
R2{[1|-|5
R3||1|-19

The rest of your job is as follows: Provide the missing emstiiethe Register File and in the reservation stations for
the adder(s) and multiplier(s) at the end of cycle X and aetine of cycle 10. Identify which cycle is X.

After Cycle X After Cycle 10

Register File: Register File:
RO RO|1 |- |20
R1 R1
R2|1 |- |5 R2|1 |- |14
R3 R3 |0

Reservation Stations for adder(s): Reservation Stationadder(s):
o 1 « 1 — 5
Bll- | = |= ||= |= |- — === = | =
Y- |- |- - |- |- 71

Reservation Stations for multiplier(s): Reservation iStad for multiplier(s):
T 1 T — - — — — _
ofll |- |5 o 1 |- 1|9
T — — — — — — T — — — — — —

Finally, how many adders and multipliers are there?

Adderg Multipliers

Name;

Problem 5 (25 points): An LC-3b supporting VAX-style virtual memory has 16-bitritial addresses, 11-bit physical
addresses, and a 128-byte page size. User space occupiasviemory locations 0x0000 to Ox7FFF; system space
occupies locations 0x8000 to OxFFFF.

Each PTE has the following format (Note: The PFN size is nedig):
7 0

\ 0..0 PFN
1

A user space TLB contains two entries, with perfect LRU reptaent.

The computer executes the following three instructions:

LDW RO, R1, #0
ADD

STW RO, R2, #0

You can assume no exceptions occur during their processing.

Before execution:
The TLB contains one valid entry: Page x14, 10000110
PC: x4000
R2: x1278

Your job: Complete the table and fill in the four additionakks.

Virtual Physical Data TLB Hit
Address Address
x81
x8880
x200
x88
x3064 xABCD
x190
x124 x87
xABCE
UBR: SBR: Initial value of R1:
15 0

The second instruction: | 0 0 0 1
| Il Il

Name;

Problem 6 (30 points)
A 64KB byte-addressable memory is 4-way interleaved. Tlegssor/memory bus is 16 bits wide, and each memory
access takes 4 cycles. There is only 1 channel.

The address bits are specified as shown below:

15 1110 32 1 0

Chip |Bank (Interleave)
Rank Address Bits Byte on Bus

128 64-bit signed integers are stored in a 1024-byte artastirsg at address x0000. We wish to know how many of
these integers are negative.

The sign of a 64-bit signed integer is specified by its signilat, the most significant bit of the most significant byte
of the integer. Thus, to determine the signs of all 128 intgg&e only need to load and examine 128 bytes from
memory, as opposed to all 1024 bytes of the array.

Part a: What is the minimum number of cycles needed to read these yit28 irom memory?

Part b: A smart engineer realized the time to read these 128 bytes fnemory can be decreased if two bytes of
padding were added to each array element (i.e. the entag aaow requires 1280 bytes instead of 1024 bytes). What's
the minimum number of cycles needed to read the 128 bytesiintemory after padding has been added?

Name;

Part c: Assume our algorithm for determining the number of negdtitegers processes the 128 integers in sequential
order. As previously stated, the algorithm only needs teasd byte per integer to determine its sign. The processor
includes an initially empty 8KB, 4-way set associative dzahe having a line size of 16 bytes. Compute the cache
hit ratio when the algorithm processes 64-bit integers aittpadding.

Compute the cache hit ratio when the algorithm processdstdtegers with padding.

Name;

Problem 7 (25 points): We wish to augment the LC-3b with a new instruction LTA, whadpies a linked list into a
sequential array. (LTA: Linked To Array). The LTA instructi can be of either of the following two formats:

15 12 11 9 8 6,5 4
T I T T I I T
LTA 1 0 DR SR1 1 imm5
15 12 11 9 8 6,5 4 3
T I T T I I T
LTA 1 DR SR1 0|0 0| SR2
An example may help explain what is going on:
' x6010 x0001
x4000 x0001 x5002 x0004 x0002
x0002 x0005 x0003
x0003 x0006 x0004
x5002 x0000 x0005
| x0006

Linked list to be copied Resulting sequential arr:
SR1 contains the memory address of the head of the linke@H€X00, in the above example). Each node in the
linked list consists of n consecutive 16-bit words, follaiN®y the pointer to the next node. SR2 or the immediate field
contains the value for n (in the above example, n=3).

LTA copies the nodes into sequential locations of memoaytisig with the location specified by DR (in the above
example, x6010). Note: there is no need to copy the poinsarse the nodes are now stored in sequential memory
locations.

Assume that DR, SR1, and SR2 (if SR2 is being used) all refdifferent registers. Assume that all the linked list
nodes and the destination array are aligned in memory andtoverlap.

Note: After processing the LTA instruction, SR1 contains ttull pointer, since the linked list no longer exists; DR
contains the address of the next location following the satjal array (in the above example x601C). The condition
code will be setto Z.

Part A. Implement the state machine.

Part B. Complete the data path diagram by augmenting the DRMUX adihgdiny other necessary structures and
control signals inside the provided box. Note: we have giyem a counter which can be incremented or reset to 0.
Hint: Axor A=0

Part C. Complete the microsequencer. Hint: you will need to add oN®Ajate and one OR gate.

10

Name;

from state 32
i

L

45

47

[

w
»

i

w
©

43

11

[Z]

(this state is empty)

'

to state 18

Name;

ZEXT &
LSHF1

4

[10:0]

IR[11:9]
110

111

[7:0] 2/

ADDR2MUX

%INCREMENT

COUNTER

LD.CC—>|N|Z|P

16 16 IISIEE S —
3 o
LD.REG—>] <t
R
3 SR2 SR1 3
SR274(> ouT ouT <D7LSR1
f————
LSHF1] Z \<—ADDRIMUX s
. 16 16 2
DRMUX
16 16
Y
16 A6 A6 Ai6 \
0 18 SR2MUX
y
? ? ?o ° o
CONTROL
¢ SEXT T f 244 -
R
v v ‘

| |
yOUTPUT

I<—DATA.SIZE ol
LOGIC e RW
<—MAR[0]
LOGIC MIO EN
DATA.
y v SIZE Y
WEIWEO
16 ADDR. CTL.
MEMORY Loaic
2 ||
MDR LD.MDR MEM.EN
MIO.EN R
T
16 Ai6
LOGIC

l<+—DATA.SIZE
l—MARI0]

INMUX

}A AL

12

Name;

COND1 CONDO

|

BEN R IR[11]
Branch Ready Addr.
Mode
J[3] J[4] J[3] J[2] J[1] J[0]

0,0,IR[15:12]

l 6
ie

Address of Next State

<}— IRD

13

ADD'
ADD’
AND
AND'
BR
JMP
JSR
JSRR
LDB*
LDW *

+

LEA
NOT’
RET
RTI
LSHF "
RSHFL
RSHFA'
STB
STW
TRAP

XOR'

+

XOR

not used

not used

15 14 13 12 11 10 9 8 7 [5 4 3 2 1 0

o | o | i o] w] s
o | o | 1o
:01:0]: :DR: :SRI: 0 0:0 :SRZ:
oo | o | 1o
o0 [nz]p] poomen
oo | o | soun | s
o0 (1|
o0 o o0 soun | s
:00:10: :DR: B:cxse:R : tj)Off:sef:é :
:01:10: :DR: B:cxse:R : :offs:efé: :
wo | o | e
oo | o | w |1
EREARTARE="S
CORBE
ot | R | % [0]0] amouns
Dot | o | s [o]1] amouns
Do | o2 | % [1]1] amouns
oon | % | boser | botiets
:01:11: :SR: B:dse:R : :offs:efé: :
e | s
o | o] |
‘10‘01‘ ‘DR‘ ‘SR‘ 1 | ir‘nm‘s |
————— —
‘10‘10““““““
‘IO‘H‘

Figure 1: LC-3b Instruction Encodings

14

Table 1: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)
PCMUX/2: PG+2(0) ;select pe-2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7
SRIMUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]
ADDR1IMUX/1: PC(0), BaseR(1)
ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]
MARMUX/1: 7.0(0) ;select LSHF(ZEXTI[IR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)
MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)
DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

15

Table 2: Microsequencer control signals

Signal Name Signal Values

J/6:
COND/2: CONDL ;Unconditional
COND; ;Memory Ready
COND; ;Branch
CONDs ;Addressing Mode

IRD/1: NO, YES

16

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDB

P

To 18

To 18 15

6AR<—LSHF(ZEXT[IR[7:O]]9

To 18

R7<-PC
PC<-BaseR

R7<-PC

To'18 GC<—PC+LSHF(Off1

3

13
T0 18/ HR<-SHF(SR,A,D,amt
set CC

To 18/ DR<- PC+LSHF(off9 0
setCC CMAR< B+offED CAR< B+LSHF(off6} @AR< B+LSHF(off6}) CMAR< B+offED

To 18/ \
24

23
NOTES C@DR< M[MAR[15 1](D CDR< M[MAR)D MDR<-SR MDR<-SR[7:0]
B+off6 : Base + SEXT[offset6]

PC+0ff9 : PC + SEXT[offset9]

i

To 18

17

set CC

I ' " R "

To 18 To 18 To 18 To 19

MAR[0]

Figure 2: A state machine for the LC-3b

17

*OP2 may be SR2 or SEXT[imm5)| DR<- MDR
** [15:8] or [7:0] depending on ER< SEXT[BYTE DAT} C MAR]< MDR M[MAR]< MDR*DD

GateMARMUX

—?/MARMUX

A A

16 16

<—ADDR1MUX 16

LD.REG—>

3
SR27L|>

SR2
ouT

SR1
ouT

l<t-4-DR
3
I<t4—SR1

z}z}z}ooo

v

—l>; SR2MUX7

Y

CONTROL

4

6
SHF \vLIR[S:m

[[
youTPUT

|<+—DATA.SIZE o)
LOGIC WE RW
l<—MAR[0]
Loeic MIO.EN
DATA.
y \Y SIZE v
WE1 WEO
16 _ ADDR. CTL.
MEMORY LoGIC
2 ||
MDR LD.MDR MEM .EN
MIO.EN i
[y
16 A6
LOGIC <
|<+——DATA.SIZE INMUX
l<—MAR[0] 4-‘

Figure 3: The LC-3b data path

18

J5]

0,0,IR[15:12]

|

J[4]

J3]

COND1

J

CONDO

BEN

J2]

J

Branch

N

J[1]

RN

Ready

IR[11]

J[0]

~—

ie

Address of Next State

<}— IRD

Figure 4: The microsequencer of the LC-3b base machine

19

J

Addr.
Mode

