Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2015

Yale Patt, Instructor

Stephen Pruett, Siavash Zangeneh, Kamyar Mirzazad, Estak€éd, Ali Fakhrzadegan, Zheng Zhao,
Steven Flolid, Nico Garofano, Sabee Grewal, William Hoehigeesh Jain, Matthew Normyle

Final Exam, December 11, 2015

Name: go)\A‘(QV\

Part A:

Problem 1 (10 points):
Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:

Problem 6 (10 points):
Problem 7 (15 points):

Problem 8 (20 points):

Problem 9 (25 points): Part B (70 points):

Note: Please be sure that your answers to all questions (supaorting work that is required) are contained in thecgpa
provided.

Note: Please be sure your name is recorded on each sheetexfaine

I will not cheat on this exam.

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Name: <O (\A‘l' (O V\

Problem 1. (10 points):

Part a. (5 points):
Construct the truth table for the following logic circuit.

A|/B|C|D|z

0/0|0]0]]

ojlojlo]1]o

ojlo|l1]0]]

001]1|0

ol1][o0|0]]

A:z>_L O|1/0| 1]\
B ojl1l1]0],
. ol1]1]1])

C 1/0/0|0]}
D 110/0]12])
1/o0/1][0])

1/0[1]1])

111]0][0])

1101}

1/1/1]01])

1[1]1)1])

Part b. (5 points):
Cosntruct a logic circuit to implement the function:

f = (A AND B AND (NOT C)) OR ((NOT A) AND (NOT B) AND D)

A >

B—»_YK N

_/“—“—=—>F
D——)

e N0 (\ML 0N

Problem 2. (10 points):
Assemble the following program. You may not need every spageided.

AGAI N
DONE

BANNER
RESULT
MASK

. ORI G x3000
LEA R1, BANNER
AND R2, R2, #0
ADD R2, R2, #1
LDR RO, RL, #0
BRnp AGAI N

ST R2, RESULT
HALT

. STRI N " Bevo"
. BLKW #3

. FI'LL x0030

. END

x3000

) 1100010000001 0

x3001

01010100101 00000

x3002

0001010010 10000

x3003

0 110000001000000

x3004

000010 LV V1 {10l

x3005

0011010000000 110

x3006

111009900100 10 "

x3007

000000000109000Q I

x3008

000000000 1100107

x3009

000000000 \ (101710

x300A

000000000 110 V1 1

x300B

0,00000,00,00000000

x300C

x300D

x300E

x300F

x3010

x3011

x3012

x3013

Name: g@ I\/\"‘ |Q)/\

Problem 3. (10 points): Shown below are the block diagram and the siaggaim for a simple four state machine.

SO

S1

Combinational Logic

SO’

ST

Master-Slave flipflop

A

Master-Slave flipflop | <

S1 SO
I 0 11
1 0
0 S
0
1
00 Olﬁ
1 1
0,1

Note that upper left hand state is missing its label. Writa the box provided.

Fill in the state table, and draw the logic circuits requitedmplement this state machine.

S1[S0[X [S1']S0'[Z
00 [0 \ || ||
010|110 |1
0111000 |
o[1[1]0 o]
1[ojof| (o
1ol | [[
T1(o] I 1 g
111 ol 1]0

SO

——Qq
—d

I}

q

Sl———=

-

=ha
=B

\/

\

—

D--—» S1

Name; <D I U\%I'O 4

Problem 4. (10 points):

The instruction cycle of only one of the -8 instructions requires all three of the states 18, 32, @antblexecute that
instruction.

Part a. (1 points): What is the assembly language name for thatictsdn’s opcode?

TRAP

Part b. (9 points): The table below consists of three rows, one éacbtates 18, 32, and 15. The columns identify the
control signals of the LC-3.

Your job: Fill in the entries in the table.
If it does not matter what value is in that entry, put an x irnt gsatry.

Note: Table C.1 at the back of your exam lists the signal \&afoee each control signal. Use the signal value names
specified in Table C.1 as entries in the table you fill in below.

x x
o | |8 8 g 5
I T N I = =
= @© .
51819 ,/8]9 |6 & o
18] || | | C +1

3200
15(){

~ | O | O |GaeMARMUX
O X > | MarRMUX
R

OO | O

OO
O | O | O | GateMDR
O | o | O |MOEN

O] © |0
X | X | X | prmux
X | X | X

Name: _'<O /(AN'L I.O l/\\

Problem 5. (10 points):

The following program, after you insert the two missing mstions, will examine a list of positive integers stored in

consecutive sequential memory locations and store thdesshahe in location x4000. The number of integers in the list
is contained in memory location x4001. The list itself staat memory location x4002. Assume the list is not empty;(i.e.
the contents of x4001 is not zero.)

. ORI G x3000

LD R1, SIZE

LD R2, LISTPO NTER

LDR RO, R2, #0

ADD R1, R1, #-1

BRz ALMOSTDONE ; Only one element in the Iist

AGAI' N ADD R2, R2, #1
LDR RS, R2, #0
NOT' R4, R3
ADD R4, R4, #1
ADD R4, RO, R4

BRnz SKI P
ADy Ro,R3,#0
SKI P ADD R1, R1, #-1
@RP AGA/N
ALMOSTDONE LD R5, M N
STR RO, R5, #0
HALT
M N . FI LL x4000
S| ZE .FI LL x4001
LI STPAO NTER .FI LL x4002
. END

Your job: Insert the two the missing instructions.

Name: §Q (U\.-)L'O\/\‘

Problem 6. (10 points):

As you know, the LC-3 ISA specifies that the JSR instructioresahe return linkage in R7, and JMP R7 returns to the
calling program. Some ISAs prefer to save the return linkagthe stack. There are actually pluses and minuses of doing
it that way, which you will learn before you graduate.

Suppose we decide to do that, have JSR cause the returndiridze pushed on the stack and use the unused LC-3
opcode as the RET to pop the return linkage from the stack.

Your job: Fill in the boxes in the state machine below to implement BGRRET if we implement the call/return mech-
anism by saving the return linkage on the stack.

32
BEN <~ IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]
JSR ///// \\\\\\ RET
T MAR <SP
49 60
[MDK < P(j FzC[MDR <-—— M[MAR] }
R 62
R wwme—wor) P MDA
R 61

(kG }50 | sPe—spen

1 0 To State 18

21 20

[PC <——- PC + offsetl1l [PC <——— BaseR }

|

To State 18 To State 18

Name: §Q l(v/\ '/‘l'() n

Problem 7. (15 points): The following user program (priority 0) is asgded and loaded into memory.

. ORI G x8000
LD RO, Z
AGAIN ADD RO, RO, #-1
BRnp AGAI N
LD RO, W
BRp L1
LD RO, X
TRAP x21
BRnzp DONE
L1 LEA RO, Y
TRAP x22
DONE HALT

. FILL x34

. STRI N&Z " COOOPS! ™
. FILL x100

. BLKW #1

. END

S N <X

Before this code executes, two things happen: (a) anotlgram loads a value into W, and (b) a breakpoint is set at the
address DONE.

Then the run switch is hit and the program starts executingfoi® the computer stops due to the breakpoint, several
interrupts occur and their corresponding service routaresexecuted. Finally, the LC-3 stops due to the breakpdiet.
examine the memory shown, and R6, the supervisor stackeyoint

Memory
x2FF8 x0601
x2FF9 x0601
x2FFA x0500
x2FFB x0504
x2FFC x0204
x2FFD x0201
xX2FFE x8004
X2FFF x8002
x3000 x8010
x3001 x8012

R6 [X3000]

Question: What does the user program write to the monitor? How do yowkihat?

The user progy am writes "G 7 £y the Mom’{ok
Z()Qél}ﬂ 0‘4 'H\& (ﬁ(’LQW\ S'-l-ack, ‘7(:)(?004 O\VU‘ ‘PfR:XQOOZ
vight budsve e Qast wsty iMerMrTL was faken. TRoalore, usd

inj—qu ‘]’ Y(-&mv‘r\f ‘l’o ”@Rr U ,: ‘vwl- -"l\(‘oyanc/\ I's V\oJ- ‘I'o«kﬂh sincCe
2 bif wm PSR ic nat se

Name: §O /U\’L‘-O n

Problem 8. (20 points):

Your job in this problem will be to add the missing instructsoto a program that detects palindromes. Recall a palin-
drome is a string of characters that are identical when rea feft to right or from right to left. For example, racecar
and 112282211. In this program, we will have no spaces andpitat letters in our input string — just a string of lower
case letters.

The program will make use of both a stack and a queue. The stibes for accessing the stack and queue are shown
below. Recall that elements are PUSHed (added) and POPped\ed) from the stack. Elements are ENQUEUEd
(added) to the back of a queue, and DEQUEUEd (removed) frerfrdimt of the queue.

. ORI G x3050 . ORI G x3080

PUSH ADD R6, R6, #-1 ENQUEUE ADD R5, R5, #1
STR RO, R6, #0 STR RO, R5, #0
RET RET

POP LDR RO, R6, #0 DEQUEUE LDR RO, R4, #0
ADD R6, R6, #1 ADD R4, R4, #1
RET RET

STACK . BLKW #20 QUEUE . BLKW #20
. END . END

The program is carried out in two phases. Phase 1 enables tousput a character string one keyboard character at a

time. The character string is terminated when the user t{ipeenter key (line feed). In Phase 1, the ASCII code of each

character input is pushed on a stack, and its negative valinsérted at the back of a queue. Inserting an element at the
back of a queue we call enqueuing.

In Phase 2, the characters on the stack and in the queue argnexiaby removing them, one by one from their re-
spective data structures (i.e., stack and queue). If tiregsis a palindrome, the program stores a 1 in memory location
RESULT. If not, the program stores a zero in memory locati@SRLT. The PUSH and POP routines for the stack as
well as the ENQUEUE and DEQUEUE routines for the queue are/siielow. You may assume the user never inputs
more than 20 characters.

The program for detecting palindromes (with some instargimissing) are on the next page.

Your job, as stated earlier, is to fill in the missing instructions.

- fo [wtion

PHASE1

PHASE2

TRUE

FALSE

RESULT
ENTER
PROVPT

. ORI G X3000

LEA R4, QUEUE
LEA R5, QUEUE
ADD R5, R5, #-1
LEA R6, ENQUEUE
LD R1, ENTER
AND R3, R3, #0

LEA R PRomp T

TRAP x22
TRAP x20

App Kz, Ro, R|

BRz PHASE2

JSR PUSH

NOoT RO,RO

ADD RO, RO, #I

JSR ENQUEUE
ADD R3, R3, #1
BRnzp PHASE1L

JSR POP

ADp RI,RO HO

JSR DEQUEUE

ADD R1,
BRnp FALSE

RO, R1

ADD R3,R3,H -I

Rz TROE

BRnzp PHASE2

AND RO, RO, #O0
ADD RO, RO, #1
ST RO, RESULT

HALT

AND RO, RO, #0
ST RO, RESULT

HALT

. BLKW #1

. FILL x-0A

Initialize SP

.STRIN&Z "Enter an input string:

. END

10

Name; g) (M7Z/O Vl

Problem 9. (25 points):

Recall Problem 5 on Midterm 2. Dr. Patt liked that type of gewb so much, we are going to try it again. We have a pro-
gram with some missing instructions, and we have a tableistimg of some information and some missing information

associated with five specific clock cycles of the programécetion. Your job is to complete both!

Part a: As on the second midterm, insert the missing instructionBérprogram and the missing information in the table.
Cycle numbering starts at 1. That s, cycle 1 is the first clogile of the processing of LD RO,A. Note that we have not
said anything about the number of clock cycles a memory adeées. You do have enough information to figure that out

for yourself. Note that we are asking for the value of the stggis DURING each clock cycle.

. ORI G x3000
LD RO, A
LD R1, B

NOT R1,
ADD R1,

R1
R1, #1

AND R2, R2, #0

AGAI' N

ADD R2,RZ, |

APD Ro,R\, KD

BRn DONE
BRnzp AGAIN
DONE ST R2, C
HALT
A .FILL #5
B .FILL :[:f Z
C . BLKW #1
. END
Cycle | State -
Nﬁmber Number Information
Z|toRES: 1| DRMUX[TRTITA] GateMDR{ T]
|27 woce o caemv—g—] caerq—5
LD.MDR: MDR: IR:
16 35 X220 A X200 A
R[]
l LD.REG:[1 | MDR: DRMUX:[TRC1T-Q
50 BUS: | %0001 XIAAL | GaeMor[— 5]
- L PC: IR: GateALU:[1]
BUS: [%0003 X1040 | Gawerc 5]
(22| 2 ADDRIMUX:[_|2C | ADDR2MUX: [/Poffs (0
LD.PC:[1] PC:| x3008 | PCMUX:| ADDER

11

Name: g) /('A—L'.O N

Part b: What is stored in C at the end of execution for the specific apds given in memory locations A and B?

&3

Part c: Actually, the program was written by an Aggie, so as expediedlid not get it quite right. Almost, but not quite!
Your final task on this problem is to examine the code, figurevduat the Aggie was trying to do, point out where he
messed up, and how you would fix it. It is not necessary to variecode, just explain briefly how you would fix it.

What was the Aggie trying to do?

vylyy to o(l'v(d& A)’J @, }PUJ~ Vgg(,\/-,l WA (—
‘U—\Vowr AW G Ys ‘H\x remm/\o{()’

How did the Aggie mess up?

Ou\eru\Jr ls a\wo\gs owgf ‘99[

How would you fix his program?

. -~ , , [/
Sublyad | betore ﬁwiwﬂ‘*‘i\’»\’m"”
OR: Mavea “ApD RZ,TZZ,%H ” —Lo -qu inshru (Ll'nh
G:P('QY HiZ2 Kn Done ¢ anol bﬂn[“'Q “anzP AGA”\/M

(VOTE‘. MVQ aye W\o\\«» VG\(J NAS WeYs -fov ”u’s <1/(UU’("°V]

12

MAR <- PC

PC <- PC +
[INT]

To 49

35

IR <- MDR

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

To8
(See figure C.7)

2

10 11
@AR<—PC+Oﬁ9 @AR<—PC+O
* 24 * 29

MDR<—M[MARD @DR<—M[MARDD

R R R

R
6

MAR<-B+0ff6
Y 26 \i 31
(MAR<—MDR) (MAR<—MDR>

DR<-PC+o0ff9
set CC

To 18

DR<-MDR
set CC

To 18 To 18

13

(See figure C.7)

MAR<-B+0ff6

To 18

PC<-BaseR

[IR[11]]

To 18

R7<-PC
PC<-PC+offll

20
R7<-PC
PC<-BaseR

7

3
MAR<-PC+0ff9

NOTES

B+0off6 : Base + SEXT[offset6]
PC+0ff9 : PC + SEXT{offset9]
PC+o0ffll : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5

MAR<-SP
[FSR[15]]

-

A

R
¥ 38
PC<—MDFD

| MAR, SP<—SP+1
1

30
J 40

To4s

)

RMD
R

e

=

-

)
w
5
L
jw)

51

=
l

To18

Figure C.7

SP<-SP+1
[PSR[15]]

<M

42
R

Saved_SSP<-SP
SP<—Saved_USP

To18

49

Vector<—INTV
PSR[10:8]<—Priority
MDR<—PSR
PSR[15)<-0
[PSR[15]]

| IR<—MDR

32

1101 0
BEN<—IR<11>N+IR<10>-Z+IR<9=-P
[IR[15:12

1
1 FI T T 1T \\\
N / / / bivr vai I
Vector<—x00) Se Fgue G2 37
MDR<-PSR | MAR, SP<—SP—)
PSR[15]<-0 Y

Saved USP<—SP
SP<—Saved_SSP

13

Vector=—x01
MDR<—PSR

\J 41
PSR[15]<-0 nt Write)
43

[PSRI[15]] .
/ |
,{ \ MDR<—PC—1

To 37 To4s

r 47

(MAR, sP<-sP-1)

4
— Write

I

|
ui]
-
3 [f &

Y

@AH:—XG‘I ’VecioD
i 52

MDR<-M
R

Y
PC<—MDR

@

N\

To18

LC-3 state machine showing interrupt control

14

GateMARMUX —/\

> MARMUX

A A
16 16

16

LD.PC ﬁg

GatePC

7y A /

Fo/ POMUX \
A A A

16

16

| zExT]

A
[7:0]

ADDR2MUX

2

/TN

ADDR1MUX

[10:0]
{4~ sExT]
[8:0]

o)

[5:0]

P e}

[4:0]

16

3

DR —4>

LD.REG —>

3
SR2 —4>

REG
FILE

SR2 SR1

OuT OuUT

<173LSR1

16

16

16

l?[ﬁ[?ooo

IR

16

/\— GateMDR

<—LD.IR

< LD.MDR

CONTROL
f ? A A A
R
N|Z|P
LOGIC

MAR <t+—LD.MAR

Y
SRZMUX;

16
Y

Y

16

ALUK

LD.CC

B V A
ALU

16

GateALU

R <t

MEMORY

MEM.EN

<1—|_% ADDR. CTL.

RW
\

LOGIC

)(2|

7]

5 |AAAA

IR[11:9] %\

IR[11:9] —>

IR[8:6]

110 —=

SR1MUX

110 DR
111 —=
DRMUX
(@)
IR[11:9]
L~
N —= Logic
7 —=

16

BEN

(b)

SR1

Table C.1 Data Path Control Signals

Signal Name Signal Values
LD.MAR/1: NO, LOAD
LD.MDR/1: NO, LOAD
LD.IR/1: NO, LOAD
LD.BEN/1: NO, LOAD
LD.REG/1: NO, LOAD
LD.CC/1: NO, LOAD
LD.PC/1: NO, LOAD
LD.Priv/1: NO, LOAD
LD.SavedSSP/1: NO, LOAD
LD.SavedUSP/1: NO, LOAD
LD.Vector/1: NO, LOAD
GatePC/1: NO, YES
GateMDR/1: NO, YES
GateALU/1: NO, YES
GateMARMUX/1: NO, YES
GateVector/1: NO, YES
GatePC-1/1: NO, YES
GatePSR/1: NO, YES
GateSP/1: NO, YES
PCMUX/2: PC+1 ;select pc+1
BUS ;select value from bus
ADDER ;select output of address adder
DRMUX/2: 11.9 ;destination IR[11:91]
R7 ;destination R7
SP ;destination Re
SRIMUX/2: 11.9 ;source IR[11:91
8.6 ;source IR[8:61
SP ;source Ré6
ADDRIMUX/1: PC, BaseR
ADDR2MUX/2: ZERO ;select the value zero
offset6 ;select SEXTLIRL5:011
PCoffset9 ;select SEXTLIRL8:011
PCoffsetll ;select SEXTLIRL10:011
SPMUX/2: SP+1 ;select stack pointer+1
SP-1 ;select stack pointer—1
Saved SSP ;select saved Supervisor Stack Pointer
Saved USP ;select saved User Stack Pointer
MARMUX/1: 7.0 ;select ZEXTLIRL7:011
ADDER ;select output of address adder
VectorMUX/2: INTV
Priv.exception
Opc.exception
PSRMUX/1: individual settings, BUS
ALUK/2: ADD, AND, NOT, PASSA
MIO.EN/1: NO, YES
R.W/1: RD, WR
Set.Priv/1: 0 ;Supervisor mode
1 ;User mode

“app—c"

2004/5/21 — page 572 — #8

ADD
ADD
AND"
AND"

' BR
JMP
JSR
JSRR
LD
LD
LDR"
LEA
NOT
RET
RTI
ST
sTI
STR
TRAP

reserved

Figure A.2

A.3 The Instruction Set

i5 14 13 12 11109 8 7 6 5 4 3 2 1 0

T T I T T T T 1 T T
0001 DR SRt 0] 00 SR2

1 1] 1 | [l !] | S|

T T T T T T T T T T T
0001 DR SR1 1 imm5

1] 1 1 1 I I I 1 1 i

T T T T T T T T T T
0101 DR SR1 0| 00 SR2

1 1 ! 1 1 I L I 1 1

T T T T i T T T T T T
0101 DR SR1 1 imm5

]] 1 | 1 | 1 i] 1 !

T T T T T T T T T T T
0000 z|p PCoffset9

1] 1 1 1] 1 i L 1 L

il T T T T T T i T j T T
1100 000 BaseR 000000

1 1 I ! I]] 1 1 1 | i

T T T T 1 T T T T T T T T
0100 PCoffset11

| | i 1 1 i 1 1 i 1 ! I 1

I] T T T T T 1 T T T T
0100 00 Base 000000

1 1 i i 1 | | 1 I 1 1

1 T] T T T T T T T T { T
0010 DR PCoffset9

i 1 | i 1 1] I] I 1 1 1

T T T T T 1 1 T T T T T T
1010 DR 1 PCoffset9

| i [1 I 1 1 1 1] 1 1 -1

T T T T I T T T T T T T
0110 DR Base offset6

] 1 1 1 1 1 1 i i | |]

T T T T T T T T T T T T T
1110 DR PCoffset9

1 1 1 I | 1 £ |] 1]] |

T T] T T T T T i T 1 T
1001 DR SR 111111

l I] |) ! ! 1 1 1 | [}

T T T T / T i T T T T T T
1100 000 111 000000

i] i i] I 1 L i | | !

T T T T T T i T T T I T T T
1000 000000000000

i 1 1 1 i] i] I i I i { 1

3 T T T T T T T T T 1 T T
0011 SR PCoffset9

1] 1 i 1 1 I] i l I 1 1

T T T] T T T T T T T 1
1011 SR PCoffset9

1] 1] 1 [- 1 | I 1 | 1 i

T [T T T T T ¥ i T T
0111 SR BaseR offset6

1 1 | | i 1 1 H] i 1 !

T T T T T T T T T T 1 T T
1111 0000 trapvect8

t |] | 1 1 1 1 i 1 1 I 1

T) T T T T T T T T T T T T
1101

] 1 | 1 i]] I I 1 1 1 I 1

Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes

The Standard ASCII Table

ASCII ASCII ASCII ASCII
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Dec
nul 0 00 sp 32 20 @ 64 40 N 96
soh 1 01 ! 33 21 A 65 41 a 97
stx 2 02 " 34 22 B 66 42 b 98
etx 3 03 # 35 23 C 67 43 [} 99
eot 4 04 3 36 24 D 68 44 d 100
eng 5 05 % 37 25 B 69 45 e 101
ack 6 06 & 38 26 E- 70 46 £ 102
bel 7 07 ! 39 27 G 71 47 g 103
bs 8 08 (40 28 H 72 48 h 104
ht 9 09) 41 29 I. 73 49 i 105
1f 10 0A ® 42 2A J 74 4A 5 106
vt 11 0B + 43 2B K 75 4B k 107
£f 12 0oC ! 44 2C L 76 ac 1 108
cr 13 oD - 45 2D M 77 4D m 109
80 14 113 N 46 2E N 78 4E n 110
si 15 oF / 47 2F 0 79 4F o 111
dle 16 10 0 48 30 P 80 50 P 112
del 17 11 1 49 31 0 81 51 q 113
de2 18 12 2 50 32 R 82 52 r 114
de3 19 13 3 51 33] 83 53 s 115
dc4 20 14 4 52 34 T 84 54 £ 116
nak 21 15 5 53 35 U 85 55 u 117
syn 22 16 6 54 36 v 86 56 v 118
etb 23 17 7 55 37 W 87 57 w 119
can 24 18 8 56 38 X 88 58 x 120
em 25 19 9 57 39 Y 89 59 v 121
sub 26 1A : 58 3A Z 90 5A 4 122
esc 27 1B | ; 59 3B [91 5B | { 123
fg 28 1C < 60 3C \ 92 5C } 124
gs 29 1D = 61 3D 1 93 5D } 125
rs 30 1E > 62 3E - 94 5E ~ 126
us 31 1F ? 63 3F _ 95 5F del 127

Tabie A.2 . ervice Routines

Trap Vector Assembler Name Description

x20 GETC’ Read a single character from the keyboard. The character is hot echoed onto the
console. Its ASCII code is copied into RO. The high eight bits of RO are cleared.

x21 ouT Write a character in ROL7:01 to the console display.

x22 PUTS Write a string of ASCII characters to the console display. The characters are contained

in consecutive memory locations, one character per memory location, starting with
the address specified in RO. Writing terminates with the occurrence of x0000 in a
memory location. :

X23 IN : Print a prampt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into RO.
The high eight bits of RO are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in RO. The ASCII code contained in bits [7:0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location containing the last character to be written.) Writing terminates with the
occurrence of x0000 in.a memory location.

x25 HALT ’ Halt execution and print a message on the console.

Table A3 Register Assignments

Address [/0 Register Name /0 Register F unction

xFEQO Keyboard status register Also known as KBSR. The ready bit (bit [151) indicates if
: the keyboard has received-a new character.

xFE02 Keyboard data register Also known as KBDR. Bits [7:0] contain the last
character typed on the keyboard.

xFEQ4 Display status register Also known as DSR. The ready bit (bit [151) indicates if
the display device is ready to receive another character
to print on the screen.

xFEO6 - Display data register Also known as DDR. A character written in the fow byte
of this register will be displayed on the screen.

xFFFE Machine control register Also known as MCR. Bit [151is the clock enable bit.
When cleared, instruction processing stops.

