Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2011

Yale Patt, Instructor

Earuk Guvenilir, Milad Hashemi, Jennifer Davis, Garrett Gaiow,
Ben Lin, Taylor Morrow, Stephen Pruett, and Jee Ho Ryoo, TAs
Exam 1, September 28, 2011

* Name: SD l/U](;GV\

Problem 1 (30 points): 3o

Problem 2 (20 points):

Problem 3 (15 points): I§

Problem 4 (15 points):__{ f

Problem 5 (20 points): Zo
joo

Total (100 points):

‘Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided. '

Note: Please be sure your name is recorded on each sheet of the exam.
I will not cheat on this exam.

ol

Signature T

GOOD LUCK!

Naine: §‘3\ OLEOW

Problem 1. (30 points):
Part a. (5 points): A function is described by the truth table shown on the left below. Your job: Complete the logic
implementation shown on the right by adding the appropriate connections.

A B C QOut

0 0 0 1

0 0 1 1

0 1 0 0

o 1 1 0

1 0 0 1

1 0 1 0
I 1 0 0

1 1 1 1

Part b. (5 points): We have talked about binary, decimal, and hexadecimal. In this problem we are talking about octal,
i.., base-8 representation, Two 3-digil octal numbers arc added, and the result, in octal, is 603. One of the numbers

is 374. The other number is: 2 C") —?_ _;,__Q__?E?EZ_]-_

2
05
Part ¢. (5 points): The same 8-bit {one byte) code can represent a number of different values, depending on the data type.
For each of the data types in the table below, what is the value of the code 010000007

ASCH (=
2’'s Complement Integer || 4 é o
Unsigned Integer & ‘;/

Name: SOIL ‘[zrb/\

Partd. (5 points): We are just about ready to start writing programs that wiil execute on the LC-3, One of the instructions
the LC-3 can execute is the ADD instruction, which adds two 16-bit 2's complement integers, Suppose the two integers
we wish 1o add are

01xxxxx111000xxx
10xxxxx001L100xxx

where some of the bits have not been identified, and so are represented by x.

Can the sum of the two integers {with x replaced by 0 or 1) ever result in an overflow?

If yes, give an example, If no, explain why not in 20 words or fewer.

fl’ FK;S(ﬁlxbel ?lc»pVSALf* ?5 ,L)S‘ gV ﬂxﬂ!;;:ﬁ,?lr?ﬂe-
N ée,/‘ Cﬁ\mno'i‘ o€ %é“‘»’

Part e. (5 points): Assume a new 8-bit floating point data type, where bit[7] is the sign, bits{6:4] represent the exponent
in an excess code, and bits[3:Q] represent the fraction bits. The number 3 1/8 is represented exactly as:

oLogLool - 1.001= 73 ’/8
. !
What is the bias of the gxcess code? %‘ , “ [OO/ Py l

[+ Lxtess = 4

)
K Excess=3

Part f. (5 points): In class we showed the first few states of the finite state machine that is required for processing
instructions of a computer program written for LC-3, In the first state, the computer does two things, represented as:

MAR <-- PC
PC <«-- PC+1

Why does the microarchictecture put the contents of the PC into the MAR?

S’o H-:L ey -L-uo-l.;bn "H\o_ -l» PR ”u (0(?,
Ckeco M Ceton be -pci—ctv,ol .

Why does the microarchitecture increment the PC?

To point {e e ne,,(P s haelea o
‘9& f{ti‘\;‘/@rl Py Fﬂf‘-"‘”;"ﬁ""‘ for fle M."’C-L

ny y‘r‘/-g/r, rff,'}n ch le-

S lodn

Problem 2. (20 points): The transistor circuit shown below produces the accompanying truth table. The inputs to some
of the gates of the transistors are not specified. Also, the outputs for some of the input combinations of the truth table are
not specified.

Your job: Comgl)lctc both specifications. i.., all transistors will have their gates properly labeled with either A, B, or C,
and all rows of the truth table will have a 0 or 1 specified as the output.

Note that this is not a problematic circuit. For every input combination, either the output is connected to ground
{i.e., OUT=0) or to the positive end of the battery (i.e., OUT=1).

P =
o

J |
Aq_l B—d A ‘(ﬂ: OuUT
c~d2 |

OUT

s | [= OO | OO |
— e OO =~ | OO
—_ D | O=1C =[O |0

Q:”)Q;o,_.,_."‘“‘

d—f s

e Salle

Problem 3. (15 points): Most word processors will correct simple errors in spelling and grammar. Your job is to specify
a finite state machine that will capitalize the personal pronoun I in certain instances if it is entered as a lower case i.

For example, i think i’m in love will be corrected to I think I'm in love.

Input to your finite state machine will be any sequence of characters from a standard keyboard. Your job is to replace the i
with an L if

the i is the first character input or is preceded by a *space*, and
the i is followed by a *space* or by an *apostrophe*.

Shown below is a finite state machine with some of the inputs and some of the outputs unspecified. Your job is to complete
the specification.

Inputs are from the set {i, A, S, O}, where A represents an apostrophe,
S represents a space,
O represents any character other than i, apostrophe, or *space*.

The output Z corresponding to each state is 0 or 1, where 0 means “do nothing,”
1 means “change the most recent i to an I.”

Note: this exercise in developing a finite state machine word processor is only a first step since a lot of “i to I” will not fix
the problem. For example, '

i" am —> I’ am, i’abcd —> I"abed, and i’i —>> I’i are all bad!

But itis a first step!
S “
et S o
i
Initial
State
AOQ

A N
A0 O A0

Name: j\o L} Jrfdn

Problem 4. (15 points): A finite state machine is connected to a 23 by 2 bit memory as shown below:

]

Combinational

Zl -

Logic
z2
z0
82
S1
50

Al2]
All}
Al0]

3 Master-Slave
Flip-Flops

Memory

D[1]
D[0]

The contents of the memory are shown below to the left. The next state transition table is shown below to the right.

Address || Content
Af2:0] D[1:0]
000 11
001 10
010 01
0t1 10
100 01
101 00
110 00
111 01

Current State Next State
5[2:0] D[1:0] { D{1:0} | D[1:0] | D[1:0]
00 01 10 11
000 001 010 110 10
001 100 000 011 110
010 010 100 11 010
011 001 100. 100 0t0
100 110 011 011 111
101 100 010 100 110
110 00! 110 100 010
1301 000 101 111 101

The output Z0, Z1, Z2 is the current state of the finite state machine. That is, Z0=80, Z1=51, Z2=82.

The cycle time of the finite state machine is long enough so that during a single cycle, the following happens: the output
of the finite state machine accesses the memory and the data supplied by the memory is input to the combinational logic
which determines the next state of the machine.

Part a: Complete the table below:

Part b: What will the state of the FSM be just before the
end of cycle 100? Why?

OH,, %Lﬁvre, G a &Of’

Shbes. |
Everg Evtn (ycle S{~te i/

E{/ﬂ C)clol C;},c[ﬁ#)Sff?«R | OO

-
AN

Cycles State Data
Cycle 0 000 i1
Cycle 1 / a0 C |
Cycle 2 Ol 1O
Cycle 3 / C O o

Name; S'O LU L{‘BN

Problem 5. (20 points): Recall the 22 by 16-bit memory from problem 6 of problem set 3. It is reproduced below. Recalt
that each of the four muxes on the diagram have 4-bit input sources and a 4-bit output, and that each 4-bit source is the
output of a single 4-bit memory cell.

A[1:0]
2} D,[15:12] D [11:8] D[7:4] D[3:0]
00 [~
;4 PR R VRRNRE. 4 [PR,

01 _"IWE)

1OWE|}

11
Wt

&

11 14 01 &0

A[1:0] | A[1:0]

11 10 01 00 111001 0D

A[1:0] A[1:0}

D[15:12] D[11:8]) D{7:4) D[3:0]

Part a: Unfortunately, the memory was wired by an engineering student from an un-named university, and he got the
inputs to some of the muxes mixed up. That is, instead of the 4 bits from a memory cell going to the correct 4-bit in-
put of the mux, the 4 bits all went to one of the other 4-bit sources of that mux. The resuit was, as you can imagine, a mess.

To figure out the mix-up in the wiring, the following sequence of memory accesses was performed:

Read/Write | MDR | MAR
Write x134B 0l
Write xFCA2 10
Write xBEEF 11
Write x072A 00
Read xF34F 10

Read x1CAB 0l

Read x0E2A 00

Note: On a write, MDR is loaded before the access. On a read, MDR is loaded as a result of the access.

Your job is to identify the mix-up in the wiring. Show which memory cells were wired to which mux inputs by fill-
ing in their corresponding addresses in the blanks provided. Note that one address has already been supplied for you.

A,.AC{,“ [P $~
fyiir g 74 3o

Name: 5@ [U ic(p m

Part b: After rewiring the muxes correctly and initializing all memory cells to xF, the following sequence of accesses
was performed. Note that some of the information about each access has been left out.

Your job: Fill in the blanks.

Read/Write MDR MAR
Write x7124% | 00
Write x8FAF 11

Read x72A3 | ©

Read xFFFF 10

Write x732D | L1
Read xFFEF | 01
Write x37A% | ok
Read x37Aa3 | 01
Read x£32D | L1

Show the contents of the memory cells by putting the hex digit that is stored in each after all the accesses have been
performed.

D[15:12] D[11:8) D[7.4} D[3.0]
Address '

13 2] 4] .3
][4

01

11

R
T F
7

)
™
7| 177 W

The Standard ASCII Table

ASCII ASCII ASCII ASCII
Character De¢ Hex | Character Dec Hex | Character Dec Hex | Character Dec Hex
nul 0 00 sp 32 20 @ 64 40 N 96 60
soh 1 01 ! 33 21 | & 65 41 a 97 6l
sEx 2 02 " 34 22 B 66 42 b 98 &2
erx 3 03 # 35 23 C 67 43 c 99 &3
eot 4 04 % 36 24 D 68 44 d 100 64
eng 5 05 % 37 25 E- 69 45 a8 101 &5
ack) 073 & 38 26 F - 70 46 £ 102 66
bel 7 o7 ! 39 27 G 71 a7 g 103 67
be 8 08 (40 28 | B 72 48 h 104 68
ht 9 09 | 41 29 1. 73 49 i 105 69
1z 10 DA * 42 2A | o 74 4A 3 106 o
vt 11 0B + 43 2B X 75 4B k 107 &8
fihal 12 oc ! 44 2C L 76 4C 1 108 6C
cr 13 o0 - 45 2D M 77 4D m 109 D
so 14 OQE . 46 2E | N 78 4E ([n 110 6E
si 15 OF / 47 2F (o} 79 4F < 111 &F
die 16 16 0 48 30 P 80 50 © 112 70
del 17 13 1 49 31 o) 81 51 a 113 71
dc2 18 i2 2 50 32 R 82 52 r 114 72
de3 19 13 3 51 33 8 83 53 s 115 73
dca 20 14 4 52 34 | T 84 54 t 116 74
nak 21 15 5 53 35 u 85 55 u 117 75
syn 22 16 1 54 36 v B& 56 v 118 7e
etb 23 17 7 55 37 W 87 57 w 119 77
can 24 18 8 56 38 X 38 58 X 120 78
em 25 19 S 57 39 Y g9 59 ¥ 121 79
sub 26 1A : 58 3A | @ 90 SA | =z 122 7A
esc 27 1B : 59 3B { 91 5B { 123 7B
f£s 28 1C < 60 3C 5\ 92 5C | 124 7C
gs 29 1P = 6l 3D 1 93 5D } 125 7D
rs 30 1E > 62 3E | * 94 SE | ~ 126 7E
us 31 1F ? 63 - 98 5F del 127 7F

