Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2011

Yale Patt, Instructor

Faruk Guvenilir, Milad Hashemi, Jennifer Davis, Garreti@sg
Ben Lin, Taylor Morrow, Stephen Pruett, Jee Ho Ryoo TAs
Final Exam, December 9, 2011

Name:

Part A:

Problem 1 (10 points):
Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:
Problem 6 (20 points):
Problem 7 (20 points):

Problem 8 (20 points):

Problem 9 (20 points): Total (130 points):

Note: Please be sure that your answers to all questions (supaorting work that is required) are contained in thecgpa
provided.

Note: Please be sure your name is recorded on each sheetexfaine

I will not cheat on this exam.

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Name:

Problem 1. (10 points):

Part a. (5 points): Construct the output of the truth table for théRBhown.

A B C

Q00O

} A B C Out
Z} 0 0 O
0 0 1
2 0 1 0
Out 0 1 1
8} - 1 0 0
1 0 1
} 1 1 0
1 1 1
R
.

Name:

Part b. (5 points): In the transistor circuit below, all transistén the path to the power supply are shown. None of the
transistors in the path to ground are shown.

Your job:
1. Draw the missing transistor circuit in the box.

£

I OuT

Name:

Problem 2. (10 points): The following program is assembled and stondtié LC-3’s memory. The PC is initially set to
x3000. The program is run until the computer halts.

Your job: What is contained in location B after the computeps?

. ORI G x3000
AND RO, RO, #0
NOT Ri1, RO
ADD R5, RO, #3
ADD RO, RO, #1
ADD RO, RO, RO
ADD RO, RO, RO
ADD RO, RO, RO
NOT R3, RO
AND R1,R3, Rl

A ADD RO, RO, RO
ADD RO, RO, RO
ADD RO, RO, RO
ADD RO, RO, RO
NOT R3, RO
AND R1,R3, Rl
ADD R5, R5, #-1
BRp A
ST RLB
TRAP x25

B .BLKW1

What is the value in location B?

Name:

Problem 3. (10 points): This problem involves a new 16-bit floating palata type, specified as follows:

Exponent

Fraction

To add two floating point values, we first make sure their hjnpaoints line up (they have the same exponents).

The assembly program shown below, after the missing instne have been filled in, compares the exponents of two
floating point numbers that have been previously loadedlodations A and B. If the exponents are the same, R5 is set
to 0 before the RET is taken. If the exponents are differebtigset to 1 before the RET is taken.

Your job: Fill in the missing instructions.

.ORIG x3000
ST RO, SaveR0
ST R1, SaveR0

LD R2, MASK
AND R5, R5, #0

LD RO, A
LD R1, B

ADD

NOT R1, R1
Rl, R1

BRz DONE

ADD R5, R5, #1
DONE LD RO, SaveR0O

LD R1, SaveR1l

RET
MASK
A . BLKW #1
B . BLKW #1
SaveRO . BLKW #1
SaveR1l . BLKW #1

. END

Name:

Problem 4. (10 points):

GateMARMUX—/\ GatePG

16 16 16 16

>/ MARMUX

A A
3 16 16 REG
4

FILE 1
3

LD.REG—>| l<—4-DR IR[11:9
SR2 SR1 o
3 3 IR[8:6
‘ SR2—4>{ QUT OUT [<—4SR1 L
ZEXT 110

ADDRIMUX {6 -

A i
]
[7:0] 47/——\ ~

\
SRIMUX
7 16 16 16
16 A6 16 Al6

0 16
+ Y

8:0
li8:9 E=id _@ﬂ

ADDR2MUX

[10:0]

[5:0] i 2

7 SEXT— CONTROL

cégL Yy W

R

r—={ R | v y

1 Lo.cc—=|N[z[P AN AYU A

16 ALUK

‘
\/—GateALU

1. What opcodes use IR[11:9] as inputs to SR1J?

2. Where does the control signal of this mux come from? Beifipec

3. What opcodes use this input to the MARMUX?P

Name:

Problem 5. (10 points): The modulo operator (A mod B) is the remaindex gets when dividing A by B. For example,

10 mod 5is 0,12 mod 7 is 5.

The program below is supposed to perform A mod B, where A is3ih00 and B is in x3101. The result should be stored
at location x3200. However, the programmer made a seriostakd, so the program does not work. You can assume that
A and B are both positive integers.

. ORI G x3000 ;
LD R3, L2 ;
LDR RO, R3, #0 ;
LDR R1, R3, #1 ;
NOT' R2, R1 ;
ADD R2, R2, #1 ;

RO .

RO

3

ine 1

L1 ADD RO,
BRzp L1
ADD RO,

O©Coo~NOULA WNIT

, Rl ;

HALT ;11
L2 . FI'LL x3100 ;12
L3 . FI'LL x3200 ; 13
. END ; 14

Part A. After the instruction at line 6 has executed, what are theaamis of RO,R1,and R2? NOTE: the correct answer in
each case is one of the following: A, -A, B, -B, 0, 1, -1.

RO: R1: R2:

Part B. There is a bug in the program. The instruction at |ine should be

Name:

Problem 6. (20 points): A free list is a collection of blocks of consdeatmemory locations of various sizes that are
not being used by currently executing programs. A free $isiarmally organized as a linked list, where each element in
the linked list is associated with a single block of memorgcEelement consists of three words: the address of the next
element in the linked list, the number of consecutive menfmegtions in this block, and the starting address of thelbloc
R1 contains the address of a memory location that pointsetdittst node in the free list.

R1: xC000 xC000: x8000 x8000: xA000 XxA000: x0000
x8001: x0100 xA001: x0010
x8002: x6000 xA002: x7050

The free list above consists of two nodes, one of size x10(cising M[x6000] to M[x60FF] and one of size x10 com-
prising locations M[x7050] to M[x705F].

A procedure MALLOC is used to provide blocks of storage togreans that request them.

If Program A needs n words of memory, it loads n into R2 and doé&SR to MALLOC. MALLOC finds the first block

in the free list that can satisfy the request, loads theistpaddress of the block into RO, updates the free list tocttte
fact that those n words are no longer available, and does aRMRf MALLOC can't find a block that can satisfy the
request, x0000 is returned in RO. If the block that supplredri-words consisted of exactly n-words (a perfect fit), then
no words from that block are still available and so the noderisoved from the free list.

On the next page is the procedure MALLOC. Your job: Add thegimg instructions.

Name:

MALLCC

NEXT_NODE

ST Rl
ST RS,
ST R4
ST RS,
AND RO,
ADD R3,

LDR R4,

SAVE_R1
SAVE_R3
SAVE_R4
SAVE_R5

RO, #0

R3, #1

BRz RETURN

LDR RS,
ADD RS,

BRz PERFECT_FIT
BRp FRAGVENT

PERFECT_FI' T

BRnzp NEXT_NODE

LDR RO,

R4, #2

FRAGVENT

STR R4,
BRnzp

LDR RO,
STR R5,

R1, #0
RETURN
R4, #2
R4, #1

RETURN

SAVE_R1
SAVE_R3
SAVE_R4
SAVE_R5

STR R1,

LD RS,
LD R4,
LD RS,
LD Ri,
RET

. BLKW 1
. BLKW 1
. BLKW 1
. BLKW 1

R4, #2

SAVE_R5
SAVE_R4
SAVE_R3
SAVE_R1

Name:

Problem 7. (20 points): During the processing of an LC-3 program by thgagath we have been using in class, the
computer stops due to a breakpoint set at x3000. The corgénéstain registers and memory locations at that time are
as follows:

R2 through R7: x0000
M x3000] : x1263
M x3003] : x0000

The LC-3 is restarted and executes exactly four instrustidio accomplish this, a number of clock cycles are required.
In 15 of those clock cycles, the bus must be utilized. Thesthblow lists those 15 clock cycles in sequential order,@lon
with the values that are gated onto the LC-3 bus in each.

BUS
1st: | x3000
2nd: | x1263
3rd: | xO009A
4th: | x3001
5th: | xA000
6th:

Tth:
8th:
9th:
10th:
11th:
12th:
13th: | x3003
14th: | x1263
15th: | x009D

Part a: Fill in the missing entries above.

Part b: What are the four instructions that were executed?

Part c: What are the contents of RO and R1 after the four instrustexecute?

RO: R1:

10

Name:

Problem 8. (20 points): Let’'s use the unused opcode to implement a nstruiction, as shown below:

15 12 11 9 8 6 5 3 2
—

T T T T T T T
1101 Regl Reg2 000 Reg3
1 1 1 1 1

To accomplish this, we will need a small addition to the datéhpshown below in boldface:

16
16
REG y
FILE 2's Complemen
SR2 SR1 ,,16
OUT OuT

TEMP |<— LD.TEMP
SEXT(R@40) —4g (16 16—t

Yy v

\ 4
From Control—=\SR2MUX \ALUMUX /<'—AL UMUX

16

\ 4
B A
ALUK 724;\ ALU

16
GateALU

16

The following five additional states are needed to contreldhta path to carry out the work of this instruction.

32
BEN <- IR[11] & N + IR[10] & Z + IR[9] & P State C
[IR[15:12]]
ﬂ BUS <- TEMP + Reg3 ‘
//////J\\\\\\ e
1101
State D
State 13
o\
MAR <- Reg2
lz =0 l Z=1
State A
_ To State 18 To State -
RC MDR <- M[MAR]
R State B

[TEMP <- —(MDR) j—

Note: State B loads the negative of the contents of MDR into TEMP.

11

Name:

Part a: Complete the table below by identifying the values of thetoa signals needed to carry out the work of each state.

Note: For a particular state, if the value of a control sigihas not matter, fill it with an X.

=)
@ = (=)
o o
x| X Slo|a|2] 3 |3 4|z
olg|2|Qlulad|S|<| S |S| ¢ |uW
L2219k lgg/8 5 |53 o2
S| ©| ©| =4
818(2|2(8|68|6|6| » |2| =2 |5|
State 13
State A
State B
State C
State D
LD. PC 0: load not enabl ed SR1MUX 00: Source IR 11:9]
1: | oad enabl ed 01: Source | R[8:6]
10: Source R6
LD. MAR 0: load not enabl ed
1: | oad enabl ed ALUMUX 0: Choose SR1
1. Choose TEMP
LD. MDR 0: load not enabled
1: | oad enabl ed ALUK 00: ADD
01: AND
LD. CC 0: load not enabled 10: NOT
1: | oad enabl ed 11: Pass input A
LD. TEMP 0: load not enabled M O. EN 0: MO not enabled
1: | oad enabl ed 1: MO enabl ed
Gat ePC 0: do not pass signal R W 0: Read
1: pass signal 1. Wite
Gat eMDR 0: do not pass signal
1: pass signal
Gat eALU 0: do not pass signal

1: pass signal

Part b: What does the new instruction do?

12

Name:

Problem 9. (20 points): Consider a two player game where the playerd thirk quickly each time it is their turn to
make a move. Each player has a total allotted amount of timreatce all his/her moves. Two clocks display the remaining
time for each player. While a player is thinking of his/hervaphis clock counts down. If time runs out, the other player
wins. As soon as a player makes his/her move, he hits a butttioh serves to stop counting down his clock and start
counting down the other player’s clock.

The program on the next page implements this mechanism. HEie pnogram keeps track of the time remaining for
each player by decrementing the proper counter once pendeghbile the player is thinking. When a player’s counter
reaches zero, a message is printed on the screen declagingrther. When a player hits the button, an interrupt is taken
The interrupt service routine takes such action as to erthblenain program (after returning from the interrupt) torsta
decrementing the other counter.

The interrupt vector for the button is x35. The priority Iée€the button is #2. Assume that the operating system has set
the Interrupt Enable bit of the button to enable it to intptrtAssume the main program runs at priority #1 and executes
in user mode.

Part a: In order for the interrupt service routine to be executegwkhe button is pushed, what memory location must
contain what value?

Address Value:

Part b: Assume a player hits the button while the instruction & i is being executed. What two values (in hex) will
be pushed on the stack?

Part c: Fill in the missing instructions in the user program.

Part d: This program has a bug that will only occur if an interruptdaken at an inappropriate time. Write down the line
number of an instruction such that if the button is presseienhat instruction is executing, unintended behaviot wil
result.

Line Number;

How could we fix this bug?

13

Name:

; Interrupt Service Routine
. ORI G x1550
NOT RO, RO
RTI
. END

; User Program
. ORI G x3000

AND RO, RO, #0 ; Line 1
LD R1, TIME ; Line 2
LD R2, TIME ; Line 3
NEXT
BRn P2_DEC ; Line 6
ADD R1, R1, #-1 ; Line 7
LEA RO, P2W NS ; Line 9
BRnzp END ; Line 10
P2 DEC ADD R2, R2, #-1 ; Line 11
LEA RO, P1W NS ; Line 13
END PUTS ; Line 14
HALT ; Line 15
COUNT LD R3, SECOND ; Line 16
LOOP ADD R3, R3, #-1 ; Line 17
BRp LOOoP ; Line 18
TI VE .FILL #300
SECOND . FI LL #25000 ;1 second

PIWNS . STRINGZ "Player 1 Wns.
P2W NS . STRINGZ "Pl ayer 2 Wns.
. END

14

MAR <- PC

PC <- PC +
[INT]

To 49

35

IR <- MDR

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

To8
(See figure C.7)

2

10 11
@AR<—PC+Oﬁ9 @AR<—PC+O
* 24 * 29

MDR<—M[MARD @DR<—M[MARDD

R R R

R
6

MAR<-B+0ff6
Y 26 \i 31
(MAR<—MDR) (MAR<—MDR>

DR<-PC+o0ff9
set CC

To 18

DR<-MDR
set CC

To 18 To 18

15

(See figure C.7)

MAR<-B+0ff6

To 18

PC<-BaseR

[IR[11]]

To 18

R7<-PC
PC<-PC+offll

20
R7<-PC
PC<-BaseR

7

3
MAR<-PC+0ff9

NOTES

B+0off6 : Base + SEXT|[offset6]
PC+0ff9 : PC + SEXT{offset9]
PC+offll : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5

GateMARMUX —/\

> MARMUX

A A
16 16

16

LD.PC ﬁg

GatePC

7y A /

o/ POMUX \
A A A

16

16

| zExT]

A
[7:0]

ADDR2MUX

2

/TN

ADDR1MUX

[10:0]
{4~ sExT]
[8:0]

o)

[5:0]

P e}

[4:0]

16

3

DR —4>

LD.REG —>

3
SR2 —4>

REG
FILE

SR2 SR1

OuT OuUT

<173LSR1

16

16

16

l?[ﬁ[?ooo

IR

16

/\— GateMDR

<—LD.IR

< LD.MDR

CONTROL
f ? A A A
R
N|Z|P
LOGIC

MAR <t+—LD.MAR

Y
SRZMUX;

16
Y

Y

16

ALUK

LD.CC

B V A
ALU

16

GateALU

R <t

MEMORY

MEM.EN

<1—|_% ADDR. CTL.

RW
\

LOGIC

)(2

7]

S |AAAA

IR[11:9] ——

110
111 —=

DRMUX
(@)

IR[11:9]

DR

IR[11:9]
IR[8:6]

110

W
SR1MUX

Logic

17

BEN

[E—

(b)

SR1

