
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2011
Yale Patt, Instructor
Faruk Guvenilir, Milad Hashemi, Jennifer Davis, Garrett Galow,
Ben Lin, Taylor Morrow, Stephen Pruett, Jee Ho Ryoo TAs
Final Exam, December 9, 2011

Name:

Part A:

Problem 1 (10 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:

Problem 6 (20 points):

Problem 7 (20 points):

Problem 8 (20 points):

Problem 9 (20 points): Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of theexam.

I will not cheat on this exam.

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Name:

Problem 1. (10 points):

Part a. (5 points): Construct the output of the truth table for the PLA shown.

A B C

A B C Out
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Out

2

Name:

Part b. (5 points): In the transistor circuit below, all transistors in the path to the power supply are shown. None of the
transistors in the path to ground are shown.

Your job:
1. Draw the missing transistor circuit in the box.

OUT

A

B

C D

3

Name:

Problem 2. (10 points): The following program is assembled and stored in the LC-3’s memory. The PC is initially set to
x3000. The program is run until the computer halts.

Your job: What is contained in location B after the computer stops?

.ORIG x3000
AND R0,R0,#0
NOT R1,R0
ADD R5,R0,#3
ADD R0,R0,#1
ADD R0,R0,R0
ADD R0,R0,R0
ADD R0,R0,R0
NOT R3,R0
AND R1,R3,R1

A ADD R0,R0,R0
ADD R0,R0,R0
ADD R0,R0,R0
ADD R0,R0,R0
NOT R3,R0
AND R1,R3,R1
ADD R5,R5,#-1
BRp A
ST R1,B
TRAP x25

B .BLKW 1

What is the value in location B?

4

Name:

Problem 3. (10 points): This problem involves a new 16-bit floating point data type, specified as follows:

FractionSign Exponent

To add two floating point values, we first make sure their binary points line up (they have the same exponents).

The assembly program shown below, after the missing instructions have been filled in, compares the exponents of two
floating point numbers that have been previously loaded intolocations A and B. If the exponents are the same, R5 is set
to 0 before the RET is taken. If the exponents are different, R5 is set to 1 before the RET is taken.

Your job: Fill in the missing instructions.

.ORIG x3000
ST R0,SaveR0
ST R1,SaveR0

LD R2, MASK
AND R5, R5, #0
LD R0,A
LD R1,B

NOT R1, R1
ADD R1,R1,#1

BRz DONE
ADD R5,R5,#1

DONE LD R0,SaveR0
LD R1,SaveR1

RET

MASK

A .BLKW #1
B .BLKW #1
SaveR0 .BLKW #1
SaveR1 .BLKW #1

C

.END
5

Name:

Problem 4. (10 points):

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

PCLD.PC

16

+

16

16

[7:0]

[4:0]

GateALU

1616

16

16LOGIC

2

2

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

+1

ZEXT

SR2MUX

110

IR[8:6]

IR[11:9]
1

SR1MUX

3

2

1. What opcodes use IR[11:9] as inputs to SR1?

2. Where does the control signal of this mux come from? Be specific!

3. What opcodes use this input to the MARMUX?

6

Name:

Problem 5. (10 points): The modulo operator (A mod B) is the remainder one gets when dividing A by B. For example,
10 mod 5 is 0, 12 mod 7 is 5.
The program below is supposed to perform A mod B, where A is in x3100 and B is in x3101. The result should be stored
at location x3200. However, the programmer made a serious mistake, so the program does not work. You can assume that
A and B are both positive integers.

.ORIG x3000 ; Line 1
LD R3, L2 ; 2
LDR R0, R3, #0 ; 3
LDR R1, R3, #1 ; 4
NOT R2, R1 ; 5
ADD R2, R2, #1 ; 6

L1 ADD R0, R0, R2 ; 7
BRzp L1 ; 8
ADD R0, R0, R1 ; 9
ST R0, L3 ; 10
HALT ; 11

L2 .FILL x3100 ; 12
L3 .FILL x3200 ; 13

.END ; 14

Part A. After the instruction at line 6 has executed, what are the contents of R0,R1,and R2? NOTE: the correct answer in
each case is one of the following: A, -A, B, -B, 0, 1, -1.

R0: R1: R2:

Part B. There is a bug in the program. The instruction at line should be

7

Name:

Problem 6. (20 points): A free list is a collection of blocks of consecutive memory locations of various sizes that are
not being used by currently executing programs. A free list is normally organized as a linked list, where each element in
the linked list is associated with a single block of memory. Each element consists of three words: the address of the next
element in the linked list, the number of consecutive memorylocations in this block, and the starting address of the block.
R1 contains the address of a memory location that points to the first node in the free list.

R1: xC000 xC000: x8000 x8000: xA000 xA000: x0000
x8001: x0100 xA001: x0010
x8002: x6000 xA002: x7050

The free list above consists of two nodes, one of size x100 comprising M[x6000] to M[x60FF] and one of size x10 com-
prising locations M[x7050] to M[x705F].

A procedure MALLOC is used to provide blocks of storage to programs that request them.

If Program A needs n words of memory, it loads n into R2 and doesa JSR to MALLOC. MALLOC finds the first block
in the free list that can satisfy the request, loads the starting address of the block into R0, updates the free list to reflect the
fact that those n words are no longer available, and does a JMPR7. If MALLOC can’t find a block that can satisfy the
request, x0000 is returned in R0. If the block that supplied the n-words consisted of exactly n-words (a perfect fit), then
no words from that block are still available and so the node isremoved from the free list.

On the next page is the procedure MALLOC. Your job: Add the missing instructions.

8

Name:

MALLOC ST R1, SAVE_R1
ST R3, SAVE_R3
ST R4, SAVE_R4
ST R5, SAVE_R5

AND R0, R0, #0
NOT R3, R2
ADD R3, R3, #1

NEXT_NODE LDR R4, R1, #0
BRz RETURN
LDR R5, R4, #1
ADD R5, R3, R5
BRz PERFECT_FIT
BRp FRAGMENT

BRnzp NEXT_NODE
PERFECT_FIT LDR R0, R4, #2

STR R4, R1, #0
BRnzp RETURN

FRAGMENT LDR R0, R4, #2
STR R5, R4, #1

STR R1, R4, #2

RETURN LD R5, SAVE_R5
LD R4, SAVE_R4
LD R3, SAVE_R3
LD R1, SAVE_R1
RET

SAVE_R1 .BLKW 1
SAVE_R3 .BLKW 1
SAVE_R4 .BLKW 1
SAVE_R5 .BLKW 1

9

Name:

Problem 7. (20 points): During the processing of an LC-3 program by the data path we have been using in class, the
computer stops due to a breakpoint set at x3000. The contentsof certain registers and memory locations at that time are
as follows:

R2 through R7: x0000
M[x3000]: x1263
M[x3003]: x0000

The LC-3 is restarted and executes exactly four instructions. To accomplish this, a number of clock cycles are required.
In 15 of those clock cycles, the bus must be utilized. The table below lists those 15 clock cycles in sequential order, along
with the values that are gated onto the LC-3 bus in each.

BUS

1st: x3000

2nd: x1263

3rd: x009A

4th: x3001

5th: xA000

6th:

7th:

8th:

9th:

10th:

11th:

12th:

13th: x3003

14th: x1263

15th: x009D

Part a: Fill in the missing entries above.

Part b: What are the four instructions that were executed?

Part c: What are the contents of R0 and R1 after the four instructions execute?

R0: R1:

10

Name:

Problem 8. (20 points): Let’s use the unused opcode to implement a new instruction, as shown below:

15 12 11 9 8 6 5 3 2 0

1101 000Reg1 Reg2 Reg3

To accomplish this, we will need a small addition to the data path, shown below in boldface:

SR2MUX

TEMP LD.TEMP

16

REG
FILE

SR2
OUT

SR1
OUT

16

16

2’s Complement

16

16
2

ALUK

16

16

ALUMUXFrom Control

16SEXT(IR[4:0])

ALUMUX

16
16

ALU
B A

GateALU

The following five additional states are needed to control the data path to carry out the work of this instruction.

R

32

1101

R

MDR <− M[MAR]

State A

State 13

State B

TEMP <− −(MDR)

set CC

[Z]

To State 18 To State 23

State C

State D

Z = 0 Z = 1

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

MAR <− Reg2

BUS <− TEMP + Reg3

Note: State B loads the negative of the contents of MDR into TEMP.

11

Name:

Part a: Complete the table below by identifying the values of the control signals needed to carry out the work of each state.

Note: For a particular state, if the value of a control signaldoes not matter, fill it with an X.

L
D

.P
C

L
D

.M
A

R

L
D

.M
D

R

L
D

.C
C

L
D

.T
E

M
P

G
at

eP
C

G
at

eM
D

R

G
at

eA
L

U

S
R

1
M

U
X

[1
:0

]

A
L

U
M

U
X

A
L

U
K

[1
:0

]

M
IO

.E
N

R
.W

State 13

State A

State B

State C

State D

LD.PC 0: load not enabled SR1MUX 00: Source IR[11:9]
1: load enabled 01: Source IR[8:6]

10: Source R6
LD.MAR 0: load not enabled

1: load enabled ALUMUX 0: Choose SR1
1: Choose TEMP

LD.MDR 0: load not enabled
1: load enabled ALUK 00: ADD

01: AND
LD.CC 0: load not enabled 10: NOT

1: load enabled 11: Pass input A

LD.TEMP 0: load not enabled MIO.EN 0: MIO not enabled
1: load enabled 1: MIO enabled

GatePC 0: do not pass signal R.W 0: Read
1: pass signal 1: Write

GateMDR 0: do not pass signal
1: pass signal

GateALU 0: do not pass signal
1: pass signal

Part b: What does the new instruction do?

12

Name:

Problem 9. (20 points): Consider a two player game where the players must think quickly each time it is their turn to
make a move. Each player has a total allotted amount of time tomake all his/her moves. Two clocks display the remaining
time for each player. While a player is thinking of his/her move, his clock counts down. If time runs out, the other player
wins. As soon as a player makes his/her move, he hits a button,which serves to stop counting down his clock and start
counting down the other player’s clock.

The program on the next page implements this mechanism. The main program keeps track of the time remaining for
each player by decrementing the proper counter once per second while the player is thinking. When a player’s counter
reaches zero, a message is printed on the screen declaring the winner. When a player hits the button, an interrupt is taken.
The interrupt service routine takes such action as to enablethe main program (after returning from the interrupt) to start
decrementing the other counter.

The interrupt vector for the button is x35. The priority level of the button is #2. Assume that the operating system has set
the Interrupt Enable bit of the button to enable it to interrupt. Assume the main program runs at priority #1 and executes
in user mode.

Part a: In order for the interrupt service routine to be executed when the button is pushed, what memory location must
contain what value?

Address: Value:

Part b: Assume a player hits the button while the instruction at line 16 is being executed. What two values (in hex) will
be pushed on the stack?

Part c: Fill in the missing instructions in the user program.

Part d: This program has a bug that will only occur if an interrupt istaken at an inappropriate time. Write down the line
number of an instruction such that if the button is pressed while that instruction is executing, unintended behavior will
result.

Line Number:

How could we fix this bug?

13

Name:

; Interrupt Service Routine
.ORIG x1550
NOT R0, R0
RTI
.END

; User Program
.ORIG x3000
AND R0, R0, #0 ; Line 1
LD R1, TIME ; Line 2
LD R2, TIME ; Line 3

NEXT

BRn P2_DEC ; Line 6

ADD R1, R1, #-1 ; Line 7

LEA R0, P2WINS ; Line 9
BRnzp END ; Line 10

P2_DEC ADD R2, R2, #-1 ; Line 11

LEA R0, P1WINS ; Line 13

END PUTS ; Line 14
HALT ; Line 15

COUNT LD R3, SECOND ; Line 16
LOOP ADD R3, R3, #-1 ; Line 17

BRp LOOP ; Line 18

TIME .FILL #300
SECOND .FILL #25000 ; 1 second
P1WINS .STRINGZ "Player 1 Wins."
P2WINS .STRINGZ "Player 2 Wins."

.END

14

R

R R

R R

To 18

To 18

To 18

To 8
(See figure C.7)

RTI

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−PC+off9

PC<−MDR

MAR<−PC+off9

MDR<−M[MAR]

RR

MAR<−MDR

MAR<−PC+off9

MDR<−M[MAR]

MAR<−MDR

MAR<−B+off6

MAR<−PC+off9

MAR<−B+off6

MAR<−PC+off9

MDR<−SR

DR<−MDR
set CC M[MAR]<−MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<−M[MAR]

[IR[15:12]]

To 49
(See figure C.7)

28

30

2

10

NOTES

16

R7<−PC
MDR<−M[MAR]

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

set CC
DR<−NOT(SR) 9

NOT

14

set CC
DR<−PC+off9

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 1101

To 13

33

35

MAR<−ZEXT[IR[7:0]]
15

TRAP

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

PC<−BaseR
R7<−PC

15

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2

OUT

SR1

OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

16

Logic
 BEN

P

Z

N

IR[11:9]

(c)

IR[11:9]

111

DR

DRMUX

110

IR[11:9]

(b)
(a)

IR[8:6]

110

SR1MUX

SR1

17

