Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2013

Yale Patt, Instructor

Ben Lin, Mochamad Asri, Ameya Chaudhari, Nikhil Garg, Lauf@uckert,
Jack Koenig, Saijel Mokashi, Sruti Nuthalapathi, SparstgBai, Jiajun Wang
Exam 2, November 13, 2013

Name:

Problem 1 (20 points):
Problem 2 (20 points):
Problem 3 (20 points):
Problem 4 (20 points):
Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (supaorting work that is required) are contained in thecgpa
provided.

Note: Please be sure your name is recorded on each sheetexfaine

I will not cheat on this exam.

Signature

GOOD LUCK!

Name:

Problem 1. (20 points):
Part a. (5 points):

A student is debugging his program. His program does not hagess to memory locations x0000 to x2FFF. Why that
is the case we will discuss before the end of the semestertefimeis "privileged memory” but not something for you to
worry about today.

He sets a breakpoint at x3050, and then starts executingdigegm. When the program stops, he examines the contents
of several memory locations and registers, then hits sisigle. The simulator executes one instruction and then sktgs
again examines the contents of the memory locations ansiteegi They are as follows:

| | Before | After |

PC x3050 | x3051
RO X2F5F | XFFFF
RI x4200 | x4200
R2 x0123 | x0123
R3 x2323 | x2323
R4 x0010 | x0010
R5 x0000 | x0000
R6 x1000 | x1000
R7 x0522 | x0522
M[x3050] | x6??? | x622?
M[x4200] | x5555| x5555
M[x4201] | XFFFF | xFFFF

Complete the contents of location x3050

x3050 PO [[[[[[][]]]]

Part b. (5 points):
A student is writing a program and needs to subtract the odsitef R1 from the contents of R2, and put the result in R3.
Instead of writing:

NOT R3, R1
ADD R3,R3, #1
ADD R3,R3, R2

he writes:

NOT R3, R1
. FILL x16E1
ADD R3,R3, R2

He assembles the program and attempts to execute it. Dosslihr@act execute correctly? Why or why not?

Circle one: YES/NO. Explain in not more than fifteen words.

Name:

Part c. (5 points):
An assembly language program contains the following suiireuwhich the LC-3 assembler stores in memory, starting
at location x3070.

Construct the symbol table entries for the subroutikiént: | am asking you to ONLY construct the symbol table
entriesfor thissubroutine, and nothing more.

I NPUT ST R7 SAVERY
LD R1, M NUS
LEA R5, BUFFER
LD RO, LF
TRAP x21
LEA RO, PROWPT
TRAP x22
LD RO, LF
TRAP x21
AGAIN TRAP x20
STR RO, R5, #0
ADD RO, RO, R1
BRz NEXT
ADD R5, R5, #1
BRnzp AGAI N
NEXT LD R7, SAVER7
RET
SAVER7 . BLKW 1
MNUS .FILL xFFDD
BUFFER . BLKW x21
PROWT .STRIN&Z "Type a word, then type #"
LF . FILL x0A

| Label | Address

Name:

Part d. (5 points):
An Aggie (always an Aggie!) modified the service routine ttiegt operating system executes as a result of a user program
executing the TRAP x20 instruction. The modification cotssis inserting three lines of code into the trap serviceiraut

1. Adding the following instruction to the beginning of thergice routine:
LD R2, MASK

2. Inserting the instruction AND R0O,R1,R2 in the place shdmthe original service routine:

AGAIN LD Ri1, KBSR
AND RO, RL, R2
BRzp AGAI N
LDl RO, KBDR

3. Inserting the following pseudo-op immediately after RET
MASK . FILL x7FFF

The complete TRAP service routine after adding the threegés:

ST Rl1, SaveRl
ST R2, SaveR2

LD R2, MASK

AGAIN LD RIL, KBSR
AND RO, RL, R2
BRzp AGAI N
LDl RO, KBDR

LD R1, SaveRl
LD R2, SaveR2

RET
MASK . FILL X7FFF
KBSR . FI LL xFEOO
KBDR . FILL xFEO2

SaveRl .BLKW1
SaveR2 . BLKW 1

Your job: Answer the question: Will the trap service routstdl work, and explain why or why not in fifteen words or
fewer.

Name:

Problem 2. (20 points):

The following program pushes elements onto a stack with J38HPand pops elements off of the stack with JISR POP.

DONE
STACK
STACK_BASE

PUSH

POP

. FILL

. ORI G X3000
LEA R6, STACKBASE

TRAP x20 ; GETC

TRAP x21 ; QUT

ADD R1, RO, ;X0A is ASCII code for line feed,
;X-0A is the negative of x0A

X- 0A

BRz Y
JSR PUSH
BRnzp X

LEA
NOT
ADD
ADD
BRz
JSR POP
TRAP x21
BRnzp Y

, STACK_BASE
R2
R2, #1
R2, R6

E

BRRR

3

TRAP x25
.BLKW 5
XOFFF

; HALT

ADD R6, R6, #-1
STR RO, R6, #0
RET

LDR RO,
ADD R,
RET

, #0

R6
R6, #1

. END

What will appear on the screen if a user, sitting at a keybdgpd the three keys a, b, c, followed by th&nter> key?

What will happen if a user, sitting at a keyboard, typed tlghekeys a, b, c, d, e, f, g, h, followed by tkeEnter> key?
(Please, no more than fifteen words in the box.)

Name:

Problem 3. (20 points):

An aggressive young engineer decides to build and sell th8 Liglit is told that if he wants to succeed, he really needs a
SUBTRACT instruction. Given the unused opcode 1101, heddsdio specify the SUBTRACT instruction as follows:

15 12 11 9 8 6 5 3 2 0
T I I I T T I I I T T
1101 DR SR1 000 SR2

The instruction is defined as: DR SR2 - SR1, and the condition codes are set.
To accomplish this, the engineer needs to add three stathe state machine and a mux and register A to the data path.
The modified state machine is shown below and the modifiedp#dteis shown on the next page. The mux is controlled
by a new control signal SR2SEL which selects one of its twocssi

SR2SEL/1: SR20UT, REGISTER

Your job:

For the state machine shown below, fill in the empty boxes thighcontrol signals that are needed in order to implement
the SUBTRACT instruction.

For the data path, fill in the value in register A.

State 13
(" SRIMUX = IR[8:6] N

ALUK =
GateALU =1
18 LD.REG =1
DRMUX = IR[11:9]
N
‘ State A
("~ SRIMUX = IR[11:9] N
To 49 ALUK = ADD
(See figure C.7) SR2SEL ::
R R 35 LD.REG =1
IR <— MDR ‘ ‘
32 L DRMUX = IR[11:9]

State B
("~ SRIMUX = IR[11:9] N

ALUK = E

SR2SEL = SR20UT

o[| -1

GateALU =1
DRMUX = IR[11:9]

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

772NN

GateMARMUX—\ GatePC
16
A7/MARMUX '—D-Pcﬂf
+1 3 REG
©oe 2 DRZ“= EILE
74«>/ PCMUX
LD.REG—>|
L 16 10 SR2 SR1
3 3
@E SR24> OUT OUT <SRl
A
) A
[7:0] + {6 {6
6
[} 2SEL
ADDR2MUX ADDR1IMUX SR2S
-
2
[.
16 (16 (16 %6 16
[10:0] 0 T ,
» SEXT SEXT 116
[4:0] \
8:0
1B e —@uy
[5:0] fpgeee 6
y SEXT|——
CONTROL 2 B A
ALUK ALU
11
R
IR —LD.R N|Z|Pj<—LD.CC 16
16 LOGIC
\/GateALU
16
/\— GateMDR
MDR |<—LD.MDR | MAR ki—LD.MAR
<—MIO.EN y RW MOEN | \neuT | T";'b(JT'P'U}' ";
|
4 N $. [KBDR [DR 1
|
ADDR. CTL. ‘ el r_
R < MEMORY LOGIC : {j : _DEE\
o || e L B o
MEM.EN

INMUX

Iy YY)

Name:

Problem 4. (20 points):

In class we talked about stacks, which are LIFO (Last In,tFnst) mechanisms that allow us to push (insert) and pop
(remove) elements from the top. Another data structure isealq. It operates as a FIFO (First In, First Out) mechanism.
Elements are removed from the front and inserted in the meach like the way a queue works in our daily lives.

Our queue is implemented as a linked list. Each element stensi two words: a pointer to the next element that entered
the queue and a value. We need two pointers, one to the fragheafueue which we use to remove elements, and one to
the last element of the queue which we use to add another eteftee last element points to NULL (x0000).

The figure below shows a queue with three elements, the fifsttise second is B, the last is C. M[x3100] contains the
address of the front of the queue. M[x3101] contains the esltlof the last element of the queue.

Pointer to the Pointer to the
first element last element
x3100 | x4200 x3101 | x4150
x4200 x4000 x4150
x4000 ———p{ x4150 — P x0000 __|_
x4201 A x4001 B x4151 C =

Last element
in the queue

First element
in the queue

If we add an element D and we remove the elements A and B, theedaeks like this:

Pointer to the Pointer to the
first element last element
x3100 | x4150 x3101 | x3400
x4150 x3400
x3400 ——p x0000 __|_
x4151 C x3401 D =

Last element
in the queue

First element
in the queue

Name:

Your job: Complete the subroutines to dequeue (remove)rtite €lement of the queue and enqueue (insert) a new ele

ment to the back of the queue. After the DEQUEUE subroutiexéxuted, R3 should contain the address of the element
that was just dequeued; before the ENQUEUE subroutine isuéed, R3 should contain the address of the new element
to be enqueued. You do NOT have to worry about the case whayutiige is(or becomes) empty; that is, you can assume
the queue will always have at least one element before aadafy operation.

DEQUEUE ST RO, A

LDl R3, B
LD RO, A
RET

A . BLKW 1

B .FILL x3100

ENQUEUE ST RO, C

LDl RO, D
LD RO, C
RET

C . BLKW 1

D .FILL x3101

Name:

Problem 5. (20 points):

During the execution of an L3 program, an instruction in the program starts executirgaek cycle T and requires 15
cycles to complete.

The table below list\LL five clock cycles during the processing of this instructiomiet require use of the bus. The
table shows for each of those clock cycles: which clock gytble state of the state machine, the value on the bus, and the

important control signals that are active during that cloggle.

Note: In class on Monday, | gave an example where it took 18kecbycles for memory to read or write. Part (d) of this

problem asks you how many clock cycles it takes for memorgé&mror write in this example.

| Cycle | State] Bus | Important Control Signals For This Cycle

T 18 | x3010| LD.MAR =1, LD.PC =1, PCMux=PC + 1, GatePC =1
T+4

T+6 x3013

T+10 X4567

T+14 x0000| LD.REG=1,LD.CC=1, GateMDR =1, DR =001

a. Fill in the missing entries in the table.

b. What is the instruction being processed?

c. Where in memory is that instruction?

d. How many clock cycles does it take memory to read or write?

e. There is enough information above for you to know the aatstef three memory locations. What are they and

what are their contents?

| Memory address| Contents

10

MAR <- PC

PC <- PC +
[INT]

To 49

35

IR <- MDR

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

To8
(See figure C.7)

2

10 11
@AR<—PC+Oﬁ9 @AR<—PC+O
* 24 * 29

MDR<—M[MARD @DR<—M[MARDD

R R R

R
6

MAR<-B+0ff6
Y 26 \i 31
(MAR<—MDR) (MAR<—MDR>

DR<-PC+o0ff9
set CC

To 18

DR<-MDR
set CC

To 18 To 18

11

(See figure C.7)

MAR<-B+0ff6

To 18

PC<-BaseR

[IR[11]]

To 18

R7<-PC
PC<-PC+offll

20
R7<-PC
PC<-BaseR

7

3
MAR<-PC+0ff9

NOTES

B+0off6 : Base + SEXT[offset6]
PC+0ff9 : PC + SEXT{offset9]
PC+o0ffll : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5

GateMARMUX —/\

> MARMUX

A A
16 16

16

LD.PC ﬁg

GatePC

7y A /

Fo/ POMUX \
A A A

16

16

| zExT]

A
[7:0]

ADDR2MUX

2

/TN

ADDR1MUX

[10:0]
{4~ sExT]
[8:0]

o)

[5:0]

P e}

[4:0]

16

3

DR —4>

LD.REG —>

3
SR2 —4>

REG
FILE

SR2 SR1

OuT OuUT

<173LSR1

16

16

16

l?[ﬁ[?ooo

IR

16

/\— GateMDR

<—LD.IR

< LD.MDR

CONTROL
f ? A A A
R
N|Z|P
LOGIC

MAR <t+—LD.MAR

Y
SRZMUX;

16
Y

Y

16

ALUK

LD.CC

B V A
ALU

16

GateALU

R <t

MEMORY

MEM.EN

<1—|_% ADDR. CTL.

RW
\

LOGIC

)(2|

7]

5 AAAA

IR[11:9] %\

IR[11:9] —>

IR[8:6]

110 —=

SR1MUX

110 DR
111 —=
DRMUX
(@)
IR[11:9]
L~
N —= Logic
7 —=

13

BEN

(b)

SR1

Table C.1 Data Path Control Signals

Signal Name Signal Values
LD.MAR/1: NO, LOAD
LD.MDR/1: NO, LOAD
LD.IR/1: NO, LOAD
LD.BEN/1: NO, LOAD
LD.REG/1: NO, LOAD
LD.CC/1: NO, LOAD
LD.PC/1: NO, LOAD
LD.Priv/1: NO, LOAD
LD.SavedSSP/1: NO, LOAD
LD.SavedUSP/1: NO, LOAD
LD.Vector/1: NO, LOAD
GatePC/1: NO, YES
GateMDR/1: NO, YES
GateALU/1: NO, YES
GateMARMUX/1: NO, YES
GateVector/1: NO, YES
GatePC-1/1: NO, YES
GatePSR/1: NO, YES
GateSP/1: NO, YES
PCMUX/2: PC+1 ;select pc+1
BUS ;select value from bus
ADDER ;select output of address adder
DRMUX/2: 11.9 ;destination IR[11:91]
R7 ;destination R7
SP ;destination Re
SRIMUX/2: 11.9 ;source IR[11:91
8.6 ;source IR[8:61
SP ;source Ré6
ADDRIMUX/1: PC, BaseR
ADDR2MUX/2: ZERO ;select the value zero
offset6 ;select SEXTLIRL5:011
PCoffset9 ;select SEXTLIRL8:011
PCoffsetll ;select SEXTLIRL10:011
SPMUX/2: SP+1 ;select stack pointer+1
SP-1 ;select stack pointer—1
Saved SSP ;select saved Supervisor Stack Pointer
Saved USP ;select saved User Stack Pointer
MARMUX/1: 7.0 ;select ZEXTLIRL7:011
ADDER ;select output of address adder
VectorMUX/2: INTV
Priv.exception
Opc.exception
PSRMUX/1: individual settings, BUS
ALUK/2: ADD, AND, NOT, PASSA
MIO.EN/1: NO, YES
R.W/1: RD, WR
Set.Priv/1: 0 ;Supervisor mode
1 ;User mode

“app—c"

2004/5/21 — page 572 — #8

ADD
ADD
AND"
AND"

' BR
JMP
JSR
JSRR
LD
LD
LDR"
LEA
NOT
RET
RTI
ST
sTI
STR
TRAP

reserved

Figure A.2

A.3 The Instruction Set

i5 14 13 12 11109 8 7 6 5 4 3 2 1 0

T T I T T T T 1 T T
0001 DR SRt 0] 00 SR2

1 1] 1 | [l !] | S|

T T T T T T T T T T T
0001 DR SR1 1 imm5

1] 1 1 1 I I I 1 1 i

T T T T T T T T T T
0101 DR SR1 0| 00 SR2

1 1 ! 1 1 I L I 1 1

T T T T i T T T T T T
0101 DR SR1 1 imm5

]] 1 | 1 | 1 i] 1 !

T T T T T T T T T T T
0000 z|p PCoffset9

1] 1 1 1] 1 i L 1 L

il T T T T T T i T j T T
1100 000 BaseR 000000

1 1 I ! I]] 1 1 1 | i

T T T T 1 T T T T T T T T
0100 PCoffset11

| | i 1 1 i 1 1 i 1 ! I 1

I] T T T T T 1 T T T T
0100 00 Base 000000

1 1 i i 1 | | 1 I 1 1

1 T] T T T T T T T T { T
0010 DR PCoffset9

i 1 | i 1 1] I] I 1 1 1

T T T T T 1 1 T T T T T T
1010 DR 1 PCoffset9

| i [1 I 1 1 1 1] 1 1 -1

T T T T I T T T T T T T
0110 DR Base offset6

] 1 1 1 1 1 1 i i | |]

T T T T T T T T T T T T T
1110 DR PCoffset9

1 1 1 I | 1 £ |] 1]] |

T T] T T T T T i T 1 T
1001 DR SR 111111

l I] |) ! ! 1 1 1 | [}

T T T T / T i T T T T T T
1100 000 111 000000

i] i i] I 1 L i | | !

T T T T T T i T T T I T T T
1000 000000000000

i 1 1 1 i] i] I i I i { 1

3 T T T T T T T T T 1 T T
0011 SR PCoffset9

1] 1 i 1 1 I] i l I 1 1

T T T] T T T T T T T 1
1011 SR PCoffset9

1] 1] 1 [- 1 | I 1 | 1 i

T [T T T T T ¥ i T T
0111 SR BaseR offset6

1 1 | | i 1 1 H] i 1 !

T T T T T T T T T T 1 T T
1111 0000 trapvect8

t |] | 1 1 1 1 i 1 1 I 1

T) T T T T T T T T T T T T
1101

] 1 | 1 i]] I I 1 1 1 I 1

Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes

The Standard ASCII Table

ASCII ASCII ASCII ASCII
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Dec
nul 0 00 sp 32 20 @ 64 40 N 96
soh 1 01 ! 33 21 A 65 41 a 97
stx 2 02 " 34 22 B 66 42 b 98
etx 3 03 # 35 23 C 67 43 [} 99
eot 4 04 3 36 24 D 68 44 d 100
eng 5 05 % 37 25 B 69 45 e 101
ack 6 06 & 38 26 E- 70 46 £ 102
bel 7 07 ! 39 27 G 71 47 g 103
bs 8 08 (40 28 H 72 48 h 104
ht 9 09) 41 29 I. 73 49 i 105
1f 10 0A ® 42 2A J 74 4A 5 106
vt 11 0B + 43 2B K 75 4B k 107
£f 12 0oC ! 44 2C L 76 ac 1 108
cr 13 oD - 45 2D M 77 4D m 109
80 14 113 N 46 2E N 78 4E n 110
si 15 oF / 47 2F 0 79 4F o 111
dle 16 10 0 48 30 P 80 50 P 112
del 17 11 1 49 31 0 81 51 q 113
de2 18 12 2 50 32 R 82 52 r 114
de3 19 13 3 51 33] 83 53 s 115
dc4 20 14 4 52 34 T 84 54 £ 116
nak 21 15 5 53 35 U 85 55 u 117
syn 22 16 6 54 36 v 86 56 v 118
etb 23 17 7 55 37 W 87 57 w 119
can 24 18 8 56 38 X 88 58 x 120
em 25 19 9 57 39 Y 89 59 v 121
sub 26 1A : 58 3A Z 90 5A 4 122
esc 27 1B | ; 59 3B [91 5B | { 123
fg 28 1C < 60 3C \ 92 5C } 124
gs 29 1D = 61 3D 1 93 5D } 125
rs 30 1E > 62 3E - 94 5E ~ 126
us 31 1F ? 63 3F _ 95 5F del 127

Tabie A.2 . ervice Routines

Trap Vector Assembler Name Description

x20 GETC’ Read a single character from the keyboard. The character is hot echoed onto the
console. Its ASCII code is copied into RO. The high eight bits of RO are cleared.

x21 ouT Write a character in ROL7:01 to the console display.

x22 PUTS Write a string of ASCII characters to the console display. The characters are contained

in consecutive memory locations, one character per memory location, starting with
the address specified in RO. Writing terminates with the occurrence of x0000 in a
memory location. :

X23 IN : Print a prampt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into RO.
The high eight bits of RO are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in RO. The ASCII code contained in bits [7:0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location containing the last character to be written.) Writing terminates with the
occurrence of x0000 in.a memory location.

x25 HALT ’ Halt execution and print a message on the console.

Table A3 Register Assignments

Address [/0 Register Name /0 Register F unction

xFEQO Keyboard status register Also known as KBSR. The ready bit (bit [151) indicates if
: the keyboard has received-a new character.

xFE02 Keyboard data register Also known as KBDR. Bits [7:0] contain the last
character typed on the keyboard.

xFEQ4 Display status register Also known as DSR. The ready bit (bit [151) indicates if
the display device is ready to receive another character
to print on the screen.

xFEO6 - Display data register Also known as DDR. A character written in the fow byte
of this register will be displayed on the screen.

xFFFE Machine control register Also known as MCR. Bit [151is the clock enable bit.
When cleared, instruction processing stops.

