
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2015
Yale Patt, Instructor
Stephen Pruett, Siavash Zangeneh, Kamyar Mirzazad, Esha Choukse, Ali Fakhrzadegan, Zheng Zhao,
Steven Flolid, Nico Garofano, Sabee Grewal, William Hoenig, Adeesh Jain, Matthew Normyle
Exam 2, November 11, 2015

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (15 points):

Problem 4 (25 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of theexam.

I will not cheat on this exam.

Signature

GOOD LUCK!

Name:

Problem 1. (20 points):

Part a. (5 points): Part of the state of the computer is as follows:

R3: x3000 Mem[x4000]: x1234
R4: x4000 Mem[x4001]: x2345
R5: x5000 Mem[x4002]: x3456

Mem[x4003]: x4567

Then, LDR R5,R4,#2 is executed.

After this instruction is executed, R5 contains

Part b. (5 points): The program below adds the absolute value of theinteger in A to the absolute value of the integer in B,
and stores the sum in C. We decide to use the subroutine ABS to take as input the contents of R0, and return its absolute
value in R0.

.ORIG x3000
LD R0, A
JSR ABS
ADD R4, R0, #0
LD R0, B
JSR ABS
ADD R0, R4, R0
ST R0, C
HALT

A .BLKW 1
B .BLKW 1
C .BLKW 1

ABS ADD R4, R0, #0
BRzp DONE

SKIP NOT R4, R4
ADD R0, R4, #1

DONE RET
.END

Why will the above program not work correctly? Please answerin 20 words or fewer.

2

Name:

Part c. (5 points): The following program is assembled, loaded into LC-3 memory, and executed.

.ORIG x3000
LD R0, A
LD R1, B
ADD R0, R1, R0
ST R0, B

A .STRINGZ "%"
B .FILL xF000

.END

Does the program halt? If yes, explain what causes the program to halt. If no, explain why the program doesn’t halt.
Please answer in 20 words or fewer.

Part d. (5 points): Create the Symbol Table for this piece of code that an Aggie wrote one night when he was drunk.

.ORIG x4000
LEA R1, X

AGAIN ADD R2, R1, R1
ST R2, X
ADD R2, R1, R1
ST R2, Y
BRz AGAIN
HALT

PROMPT .STRINGZ "EE306 ROCKS!"
X .BLKW 10
Y .BLKW 1
Z .FILL xAE00

.END

Symbol Address

3

Name:

Problem 2. (15 points): We want to add a new instruction to the LC-3, using the unused opcode 1101. It will have the
following format:

15 12 11 9 8 0

1101 BaseR offset

To implement this instruction we add four new states, shown below.

R

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

32

1101

LD.MAR = 1
GateALU = 1

SR1MUX = IR[11:9]
ALUK = PASSA

R

LD.CC = 1

To State 18 To State 22

[Z]

LD.MDR = 1
MIO.EN = 1

R.W = READ

GateMDR = 1

13

0 1

60

62

61

We show in each state the control signals that are needed to implement the processing for that clock cycle. All control
signals not shown in a state are assumed to be 0.

Note that from state 61, we branch either to state 18 or state 22.

What does this new instruction do? Be concise, but complete in your answer.

4

Name:

Problem 3. (15 points): We want to support 8 input keyboards instead of 1. To do this we need 8 ready bits in KBSR,
and 8 separate KBDRs. We will use the 8 odd-numbered bits in the KBSR as ready bits for the 8 keyboards, as shown
below. We will set the other 8 bits in the KBSR to 0.

15 13 11 9 7 5 3 1

KBSR

The 8 memory-mapped keyboard data registers and their corresponding ready bits are as follows:

FE04: KBSR
FE06: KBDR1, Ready bit is KBSR[1]
FE08: KBDR2, Ready bit is KBSR[3]
FE0A: KBDR3, Ready bit is KBSR[5]
FE0C: KBDR4, Ready bit is KBSR[7]
FE0E: KBDR5, Ready bit is KBSR[9]
FE10: KBDR6, Ready bit is KBSR[11]
FE12: KBDR7, Ready bit is KBSR[13]
FE14: KBDR8, Ready bit is KBSR[15]

We wish to write a program that polls the keyboards and loads the ASCII code typed by the highest priority keyboard into
R0. That is, if someone had previously typed a key on keyboard1, we want to load the ASCII code in KBDR1 into R0.
If no key was typed on keyboard 1, but a key had been typed on keyboard 2, we want to load the ASCII code in KBDR2
into R0. ...and so on. That is, KB1 has higher priority than KB2, which has higher priority than KB3, which has higher
priority than KB4, etc. KB8 has the lowest priority.

The following program will do the job AFTER you fill in the missing instructions:

.ORIG X3000
LD R0, KBDR1

POLL LDI R1, KBSR
BRz POLL
AND R2, R2, #0
ADD R2, R2, #2

AGAIN

BRnp FOUND
ADD R0, R0, #2

BRnp AGAIN
HALT

FOUND

HALT
KBSR .FILL xFE04
KBDR1 .FILL xFE06

.END

Your job: fill in the missing instructions.

5

Name:

Problem 4. (25 points):
You are given a linked list, consisting of at most 20 elements, as shown below.

...
...

...

x4000
A CB

x0000

Note the listhead is at location x4000.

We want to reverse the nodes of the linked list. For the above linked list, the result would be:

...
...

...

x4000
A CB

x0000

The program on the following page (with missing instructions filled in) does the job, using subroutines PUSH and POP.

Your job: fill in the missing instructions.

6

Name:

.ORIG X3000
LEA R6, BASE
LD R0, START

PHASE1 LDR R0, R0, #0

JSR PUSH
BRnzp PHASE1

PHASE2 LD R1, START

AGAIN JSR POP

BRnp DONE

BRnzp AGAIN

DONE AND R0, R0, #0

HALT

START .FILL x4000
STACK .BLKW #20

BASE .FILL

PUSH

STR R0, R6, #0
RET

POP AND R5, R5, #0
LD R0, BASE
ADD R0, R0, R6
BRz EMPTY
LDR R0, R6, #0
ADD R6, R6, #1
RET

EMPTY ADD R5, R5, #1
RET

.END

7

Name:

Problem 5. (25 points): Consider the following program:

.ORIG x3000
LD R0, A
LD R1, B
BRz DONE

BRnzp AGAIN
DONE ST R0, A

HALT

A .FILL x0

A .FILL x0___
B .FILL x0001

.END

The program uses only R0 and R1. Note the boxes to indicate twomissing instructions. Note also that one of the instruc-
tions in the program must be labeled AGAIN and that label is missing.

After execution of the program, the contents of A is x1800.

PROBLEM IS CONTINUED ON THE NEXT PAGE!!!

8

Name:

During execution, we examined the computer during each clock cycle, and recorded some information for certain clock
cycles, producing the table shown below. The table is ordered by the cycle number in which the information was collected.
Note that each memory access takes 5 clock cycles.

101 15

Control Signals

77

181

0

57

LD.MAR: PCMUX:

DR:

ALUK:

GatePC:

DR:

LD.REG:

PCMUX:

LD.REG:

GatePC:LD.PC:

LD.MAR:

LD.MAR:

LD.MAR:

LD.REG:

LD.PC:

GateALU:

GateMDR:

BEN

GateMDR:

LD.REG: 1 000

LD.PC:

GateALU: GateMARMUX:

LD.CC:

22

1

ADDR2MUX:ADDR1MUX:

State
Number

Cycle
Number

Part a: Fill in the missing instructions in the program, and complete the program by labeling the appropriate instruction
AGAIN. Also, fill in the missing information in the table.

Part b: Given values for A and B, what does the program do?

9

R

R R

R R

To 18

To 18

To 18

To 8
(See figure C.7)

RTI

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−PC+off9

PC<−MDR

MAR<−PC+off9

MDR<−M[MAR]

RR

MAR<−MDR

MAR<−PC+off9

MDR<−M[MAR]

MAR<−MDR

MAR<−B+off6

MAR<−PC+off9

MAR<−B+off6

MAR<−PC+off9

MDR<−SR

DR<−MDR
set CC M[MAR]<−MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<−M[MAR]

[IR[15:12]]

To 49
(See figure C.7)

28

30

2

10

NOTES

16

R7<−PC
MDR<−M[MAR]

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

set CC
DR<−NOT(SR) 9

NOT

14

set CC
DR<−PC+off9

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 1101

To 13

33

35

MAR<−ZEXT[IR[7:0]]
15

TRAP

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

PC<−BaseR
R7<−PC

10

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2

OUT

SR1

OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

11

Logic
 BEN

P

Z

N

IR[11:9]

(c)

IR[11:9]

111

DR

DRMUX

110

IR[11:9]

(b)
(a)

IR[8:6]

110

SR1MUX

SR1

12

“app-c” — 2004/5/21 — page 572 — #8

Table C.1 Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO, LOAD

LD.MDR/1: NO, LOAD

LD.IR/1: NO, LOAD

LD.BEN/1: NO, LOAD

LD.REG/1: NO, LOAD

LD.CC/1: NO, LOAD

LD.PC/1: NO, LOAD

LD.Priv/1: NO, LOAD

LD.SavedSSP/1: NO, LOAD

LD.SavedUSP/1: NO, LOAD

LD.Vector/1: NO, LOAD

GatePC/1: NO, YES

GateMDR/1: NO, YES

GateALU/1: NO, YES

GateMARMUX/1: NO, YES

GateVector/1: NO, YES

GatePC-1/1: NO, YES

GatePSR/1: NO, YES

GateSP/1: NO, YES

PCMUX/2: PC+1 ;select pc+1

BUS ;select value from bus

ADDER ;select output of address adder

DRMUX/2: 11.9 ;destination IR[11:9]

R7 ;destination R7

SP ;destination R6

SR1MUX/2: 11.9 ;source IR[11:9]

8.6 ;source IR[8:6]

SP ;source R6

ADDR1MUX/1: PC, BaseR

ADDR2MUX/2: ZERO ;select the value zero

offset6 ;select SEXT[IR[5:0]]

PCoffset9 ;select SEXT[IR[8:0]]

PCoffset11 ;select SEXT[IR[10:0]]

SPMUX/2: SP+1 ;select stack pointer+1

SP−1 ;select stack pointer−1

Saved SSP ;select saved Supervisor Stack Pointer

Saved USP ;select saved User Stack Pointer

MARMUX/1: 7.0 ;select ZEXT[IR[7:0]]

ADDER ;select output of address adder

VectorMUX/2: INTV

Priv.exception

Opc.exception

PSRMUX/1: individual settings, BUS

ALUK/2: ADD, AND, NOT, PASSA

MIO.EN/1: NO, YES

R.W/1: RD, WR

Set.Priv/1: 0 ;Supervisor mode

1 ;User mode

