Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2015

Yale Patt, Instructor

Stephen Pruett, Siavash Zangeneh, Kamyar Mirzazad, Estak€éd, Ali Fakhrzadegan, Zheng Zhao,
Steven Flolid, Nico Garofano, Sabee Grewal, William Hoehigeesh Jain, Matthew Normyle

Exam 2, November 11, 2015

Name:

Problem 1 (20 points):
Problem 2 (15 points):
Problem 3 (15 points):
Problem 4 (25 points):
Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (supaorting work that is required) are contained in thecgpa
provided.

Note: Please be sure your name is recorded on each sheetexfaine

| will not cheat on this exam.

Signature

GOOD LUCK!

Name:

Problem 1. (20 points):

Part a. (5 points): Part of the state of the computer is as follows:

R3: x3000 Mem[x4000]: x1234
R4: x4000 Mem[x4001]: x2345
R5: x5000 Mem[x4002]: x3456

Mem[x4003]: x4567

Then, LDR R5,R4,#2 is executed.

After this instruction is executed, R5 conta|ns

Part b. (5 points): The program below adds the absolute value ahtieger in A to the absolute value of the integerin B,
and stores the sum in C. We decide to use the subroutine ABfkéecets input the contents of RO, and return its absolute
value in RO.

. ORI G x3000

LD RO, A

JSR ABS

ADD R4, RO, #0
LD RO, B

JSR ABS

ADD RO, R4, RO
ST RO, C

HALT

. BLKW 1

. BLKW 1

. BLKW 1

O w>

ABS ADD R4, RO, #0
BRzp DONE
SKIP NOT R4, R4
ADD RO, R4, #1
DONE RET
. END

Why will the above program not work correctly? Please answ@0 words or fewer.

Name:

Part c. (5 points): The following program is assembled, loaded lt€-3 memory, and executed.

. ORI G x3000
LD RO, A
LD R1, B
ADD RO, R1, RO
ST RO, B
A . STRINGZ "%
B . FILL xFOOO
. END

Does the program halt? If yes, explain what causes the progwehalt. If no, explain why the program doesn't halt.
Please answer in 20 words or fewer.

Partd. (5 points): Create the Symbol Table for this piece of cods #m Aggie wrote one night when he was drunk.

. ORI G x4000
LEA R1, X
AGAIN ADD R2, R1, R1
ST R2, X
ADD R2, R1, R1
ST R2, Y
BRz AGAI N
HALT
PROWPT . STRIN&Z "EE306 ROCKS!"
X . BLKW 10
Y .BLKW1
Z . FILL xAEQO
. END

Symbol| Address

Name:

Problem 2. (15 points): We want to add a new instruction to the LC-3, gshre unused opcode 1101. It will have the
following format:

15 12 11 9 8 0
T T T T L — T

T
1101 BaseR offset
| |

To implement this instruction we add four new states, shoalowa.

32
BEN <- IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

AN

13
SRIMUX = IR[11:9]
ALUK = PASSA
GateALU =1
LD.MAR =1
60
R MIO.EN =1
LD.MDR =1
R.W = READ
R
62
GateMDR =1
LD.CC=1
i 61

[zl]
7

To State 18 To State 22

We show in each state the control signals that are neededpiernment the processing for that clock cycle. All control
signals not shown in a state are assumed to be 0.

Note that from state 61, we branch either to state 18 or state 2

What does this new instruction do? Be concise, but comphegeur answer.

Name:

Problem 3. (15 points): We want to support 8 input keyboards instead dfdldo this we need 8 ready bits in KBSR,
and 8 separate KBDRs. We will use the 8 audnbered bits in the KBSR as ready bits for the 8 keyboaishawn
below. We will set the other 8 bits in the KBSR to 0.

15 13 11 9 7 5 3 1

The 8 memory-mapped keyboard data registers and theirsgoneling ready bits are as follows:

FEO4: KBSR

FEO06: KBDR1, Ready bitis KBSR[1]
FEO8: KBDR2, Ready bitis KBSR[3]
FEOA: KBDR3, Ready bitis KBSR[5]
FEOC: KBDR4, Ready bitis KBSR[7]
FEOE: KBDR5, Ready bitis KBSR[9]
FE10: KBDR6, Ready bitis KBSR[11]
FE12: KBDR7, Ready bitis KBSR[13]
FE14: KBDRS8, Ready bitis KBSR[15]

We wish to write a program that polls the keyboards and loadMSCII code typed by the highest priority keyboard into
RO. That is, if someone had previously typed a key on keybbavee want to load the ASCII code in KBDR1 into RO.
If no key was typed on keyboard 1, but a key had been typed olodaey 2, we want to load the ASCII code in KBDR2
into RO. ...and so on. That is, KB1 has higher priority than2K#&hich has higher priority than KB3, which has higher
priority than KB4, etc. KB8 has the lowest priority.

The following program will do the job AFTER you fill in the misg instructions:

. ORI G X3000

LD RO, KBDR1
POLL LDl R1, KBSR

BRz PCLL

AND R2, R2, #0

ADD R2, R2, #2

AGAI N
BRNp FOUND
ADD RO, RO, #2
BRnp AGAIN
HALT
FOUND
HALT
KBSR .FILL xFEO04
KBDRL .FILL xFEO6
. END

Your job: fill in the missing instructions.

Name:

Problem 4. (25 points):
You are given a linked list, consisting of at most 20 elemgadgsshown below.

‘ . . x0000

x4000| e

Note the listhead is at location x4000.

We want to reverse the nodes of the linked list. For the abioked list, the result would be:

x4000 4 x0000 o °
A B C

The program on the following page (with missing instructiditied in) does the job, using subroutines PUSH and POP.

Your job: fill in the missing instructions.

Name:

. ORI G X3000

LEA R6, BASE

LD RO, START
PHASEL LDR RO, RO, #0

JSR PUSH

BRnzp PHASE1L
PHASE2 LD RIl, START
AGAIN JSR POP

BRnp DONE

BRnzp AGAI N
DONE AND RO, RO, #0

HALT

START . FI'LL x4000
STACK . BLKW #20

BASE . FI LL

PUSH
STR RO, Re6, #0
RET

PCP AND R5, R5, #0
LD RO, BASE
ADD RO, RO, R6
BRz EMPTY
LDR RO, R6, #0
ADD R6, R6, #1
RET

EMPTY ADD R5, R5, #1
RET

. END

Name:

Problem 5. (25 points): Consider the following program:

. ORI G x3000
LD RO, A
LD R1, B
BRz DONE

BRnzp AGAI N
DONE ST RO, A
HALT

A .FILL xO

A . FILL x0
B . FILL x0001
. END

The program uses only RO and R1. Note the boxes to indicateniaging instructions. Note also that one of the instruc
tions in the program must be labeled AGAIN and that label issinig.

After execution of the program, the contents of A is x1800.

PROBLEM IS CONTINUED ON THE NEXT PAGE!!!

Name:

During execution, we examined the computer during eachkatgcle, and recorded some information for certain clock
cycles, producing the table shown below. The table is odleyehe cycle numberin which the information was collected.
Note that each memory access takes 5 clock cycles.

Cycle | State
Number| Number

R Y s UL m—" VL m—

Control Signals

(DREG: | 1| DR [000 | GaeMDR[—]
GateALU] | GateMARMUX[|

o | g DwAR [Ak [SaeA_]
L s R — L —

1% wee [AR Pomux [

101 15

Part a: Fill in the missing instructions in the program, and comgliste program by labeling the appropriate instruction
AGAIN. Also, fill in the missing information in the table.

Part b: Given values for A and B, what does the program do?

MAR <- PC

PC <- PC +
[INT]

To 49

35

IR <- MDR

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

To8
(See figure C.7)

2

10 11
@AR<—PC+Oﬁ9 @AR<—PC+O
* 24 * 29

MDR<—M[MARD @DR<—M[MARDD

R R R

R
6

MAR<-B+0ff6
Y 26 \i 31
(MAR<—MDR) (MAR<—MDR>

DR<-PC+o0ff9
set CC

To 18

DR<-MDR
set CC

To 18 To 18

10

(See figure C.7)

MAR<-B+0ff6

To 18

PC<-BaseR

[IR[11]]

To 18

R7<-PC
PC<-PC+offll

20
R7<-PC
PC<-BaseR

7

3
MAR<-PC+0ff9

NOTES

B+0off6 : Base + SEXT[offset6]
PC+0ff9 : PC + SEXT{offset9]
PC+o0ffll : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5

GateMARMUX —/\

> MARMUX

A A
16 16

16

LD.PC ﬁg

GatePC

7y A /

Fo/ POMUX \
A A A

16

16

| zExT]

A
[7:0]

ADDR2MUX

2

/TN

ADDR1MUX

[10:0]
{4~ sExT]
[8:0]

o)

[5:0]

P e}

[4:0]

16

3

DR —4>

LD.REG —>

3
SR2 —4>

REG
FILE

SR2 SR1

OuT OuUT

<173LSR1

16

16

16

l?[ﬁ[?ooo

IR

16

/\— GateMDR

<—LD.IR

< LD.MDR

CONTROL
f ? A A A
R
N|Z|P
LOGIC

MAR <t+—LD.MAR

Y
SRZMUX;

16
Y

Y

16

ALUK

LD.CC

B V A
ALU

16

GateALU

R <t

MEMORY

MEM.EN

<1—|_% ADDR. CTL.

RW
\

LOGIC

)(2|

7]

= | AAARA

IR[11:9] %\

IR[11:9] —>

IR[8:6]

110 —=

SR1MUX

110 DR
111 —=
DRMUX
(@)
IR[11:9]
L~
N —= Logic
7 —=

12

BEN

(b)

SR1

Table C.1 Data Path Control Signals

Signal Name Signal Values
LD.MAR/1: NO, LOAD
LD.MDR/1: NO, LOAD
LD.IR/1: NO, LOAD
LD.BEN/1: NO, LOAD
LD.REG/1: NO, LOAD
LD.CC/1: NO, LOAD
LD.PC/1: NO, LOAD
LD.Priv/1: NO, LOAD
LD.SavedSSP/1: NO, LOAD
LD.SavedUSP/1: NO, LOAD
LD.Vector/1: NO, LOAD
GatePC/1: NO, YES
GateMDR/1: NO, YES
GateALU/1: NO, YES
GateMARMUX/1: NO, YES
GateVector/1: NO, YES
GatePC-1/1: NO, YES
GatePSR/1: NO, YES
GateSP/1: NO, YES
PCMUX/2: PC+1 ;select pc+1
BUS ;select value from bus
ADDER ;select output of address adder
DRMUX/2: 11.9 ;destination IR[11:91]
R7 ;destination R7
SP ;destination Re
SRIMUX/2: 11.9 ;source IR[11:91
8.6 ;source IR[8:61
SP ;source Ré6
ADDRIMUX/1: PC, BaseR
ADDR2MUX/2: ZERO ;select the value zero
offset6 ;select SEXTLIRL5:011
PCoffset9 ;select SEXTLIRL8:011
PCoffsetll ;select SEXTLIRL10:011
SPMUX/2: SP+1 ;select stack pointer+1
SP-1 ;select stack pointer—1
Saved SSP ;select saved Supervisor Stack Pointer
Saved USP ;select saved User Stack Pointer
MARMUX/1: 7.0 ;select ZEXTLIRL7:011
ADDER ;select output of address adder
VectorMUX/2: INTV
Priv.exception
Opc.exception
PSRMUX/1: individual settings, BUS
ALUK/2: ADD, AND, NOT, PASSA
MIO.EN/1: NO, YES
R.W/1: RD, WR
Set.Priv/1: 0 ;Supervisor mode
1 ;User mode

“app—c"

2004/5/21 — page 572 — #8

ADD
ADD
AND"
AND"

' BR
JMP
JSR
JSRR
LD
LD
LDR"
LEA
NOT
RET
RTI
ST
sTI
STR
TRAP

reserved

Figure A.2

A.3 The Instruction Set

i5 14 13 12 11109 8 7 6 5 4 3 2 1 0

T T I T T T T 1 T T
0001 DR SRt 0] 00 SR2

1 1] 1 | [l !] | S|

T T T T T T T T T T T
0001 DR SR1 1 imm5

1] 1 1 1 I I I 1 1 i

T T T T T T T T T T
0101 DR SR1 0| 00 SR2

1 1 ! 1 1 I L I 1 1

T T T T i T T T T T T
0101 DR SR1 1 imm5

]] 1 | 1 | 1 i] 1 !

T T T T T T T T T T T
0000 z|p PCoffset9

1] 1 1 1] 1 i L 1 L

il T T T T T T i T j T T
1100 000 BaseR 000000

1 1 I ! I]] 1 1 1 | i

T T T T 1 T T T T T T T T
0100 PCoffset11

| | i 1 1 i 1 1 i 1 ! I 1

I] T T T T T 1 T T T T
0100 00 Base 000000

1 1 i i 1 | | 1 I 1 1

1 T] T T T T T T T T { T
0010 DR PCoffset9

i 1 | i 1 1] I] I 1 1 1

T T T T T 1 1 T T T T T T
1010 DR 1 PCoffset9

| i [1 I 1 1 1 1] 1 1 -1

T T T T I T T T T T T T
0110 DR Base offset6

] 1 1 1 1 1 1 i i | |]

T T T T T T T T T T T T T
1110 DR PCoffset9

1 1 1 I | 1 £ |] 1]] |

T T] T T T T T i T 1 T
1001 DR SR 111111

l I] |) ! ! 1 1 1 | [}

T T T T / T i T T T T T T
1100 000 111 000000

i] i i] I 1 L i | | !

T T T T T T i T T T I T T T
1000 000000000000

i 1 1 1 i] i] I i I i { 1

3 T T T T T T T T T 1 T T
0011 SR PCoffset9

1] 1 i 1 1 I] i l I 1 1

T T T] T T T T T T T 1
1011 SR PCoffset9

1] 1] 1 [- 1 | I 1 | 1 i

T [T T T T T ¥ i T T
0111 SR BaseR offset6

1 1 | | i 1 1 H] i 1 !

T T T T T T T T T T 1 T T
1111 0000 trapvect8

t |] | 1 1 1 1 i 1 1 I 1

T) T T T T T T T T T T T T
1101

] 1 | 1 i]] I I 1 1 1 I 1

Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes

The Standard ASCII Table

ASCII ASCII ASCII ASCII
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Dec
nul 0 00 sp 32 20 @ 64 40 N 96
soh 1 01 ! 33 21 A 65 41 a 97
stx 2 02 " 34 22 B 66 42 b 98
etx 3 03 # 35 23 C 67 43 [} 99
eot 4 04 3 36 24 D 68 44 d 100
eng 5 05 % 37 25 B 69 45 e 101
ack 6 06 & 38 26 E- 70 46 £ 102
bel 7 07 ! 39 27 G 71 47 g 103
bs 8 08 (40 28 H 72 48 h 104
ht 9 09) 41 29 I. 73 49 i 105
1f 10 0A ® 42 2A J 74 4A 5 106
vt 11 0B + 43 2B K 75 4B k 107
£f 12 0oC ! 44 2C L 76 ac 1 108
cr 13 oD - 45 2D M 77 4D m 109
80 14 113 N 46 2E N 78 4E n 110
si 15 oF / 47 2F 0 79 4F o 111
dle 16 10 0 48 30 P 80 50 P 112
del 17 11 1 49 31 0 81 51 q 113
de2 18 12 2 50 32 R 82 52 r 114
de3 19 13 3 51 33] 83 53 s 115
dc4 20 14 4 52 34 T 84 54 £ 116
nak 21 15 5 53 35 U 85 55 u 117
syn 22 16 6 54 36 v 86 56 v 118
etb 23 17 7 55 37 W 87 57 w 119
can 24 18 8 56 38 X 88 58 x 120
em 25 19 9 57 39 Y 89 59 v 121
sub 26 1A : 58 3A Z 90 5A 4 122
esc 27 1B | ; 59 3B [91 5B | { 123
fg 28 1C < 60 3C \ 92 5C } 124
gs 29 1D = 61 3D 1 93 5D } 125
rs 30 1E > 62 3E - 94 5E ~ 126
us 31 1F ? 63 3F _ 95 5F del 127

Tabie A.2 . ervice Routines

Trap Vector Assembler Name Description

x20 GETC’ Read a single character from the keyboard. The character is hot echoed onto the
console. Its ASCII code is copied into RO. The high eight bits of RO are cleared.

x21 ouT Write a character in ROL7:01 to the console display.

x22 PUTS Write a string of ASCII characters to the console display. The characters are contained

in consecutive memory locations, one character per memory location, starting with
the address specified in RO. Writing terminates with the occurrence of x0000 in a
memory location. :

X23 IN : Print a prampt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into RO.
The high eight bits of RO are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in RO. The ASCII code contained in bits [7:0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location containing the last character to be written.) Writing terminates with the
occurrence of x0000 in.a memory location.

x25 HALT ’ Halt execution and print a message on the console.

Table A3 Register Assignments

Address [/0 Register Name /0 Register F unction

xFEQO Keyboard status register Also known as KBSR. The ready bit (bit [151) indicates if
: the keyboard has received-a new character.

xFE02 Keyboard data register Also known as KBDR. Bits [7:0] contain the last
character typed on the keyboard.

xFEQ4 Display status register Also known as DSR. The ready bit (bit [151) indicates if
the display device is ready to receive another character
to print on the screen.

xFEO6 - Display data register Also known as DDR. A character written in the fow byte
of this register will be displayed on the screen.

xFFFE Machine control register Also known as MCR. Bit [151is the clock enable bit.
When cleared, instruction processing stops.

