Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2017

Yale Patt, Instructor

Stephen Pruett, Siavash Zangeneh, Aniket Deshmukh, Zachary Susskind, Meiling Tang, Jiahan Liu
Exam 2, November 15, 2015

Name:

Problem 1 (20 points):
Problem 2 (20 points):
Problem 3 (20 points):
Problem 4 (20 points):
Problem 5 (20 points):_

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!

Name:

Problem 1.

(20 points):

Part a. (5 points): Construct the symbol table for the following LC-3 assembly language program:

Symbol Table:

Symbol

Address

AGAIN

BOBO
SAM

JOE

.ORIG x4500
LD R2, BOBO
LD R3, SAM

ADD R3,R3,R2

ADD R2,R2,#-1

BRnzp SAM

.STRINGZ "Why are you asking me this?"
BRnp AGAIN

TRAP x25

.BLKW 5

LEFILL x7777

.END

Part b. (5 points): A stack machine executes the following 6 instructions:

What value is popped by the last instruction?

Push 5
Push 4
ADD
Push 6
MUL
POP

Assume the stack is empty, with R6 = xFE0O. Before the stack machine executes “Push 57, the contents of memory
locations xXFDFA to xFDFF are shown. Show the contents of memory and R6 after the six operations above are executed.

Address | Before After
xFDFA | x0000

xFDFB | x0000

xFDFC | x0000

xFDFD | x0000

xFDFE | x0000

xFDFF | x0000

R6:

Name:

Part c. (5 points): We want to move a number from A to B. List all LC-3 opcodes that can be used to accomplish this in
one instruction when A,B are as specified at the top of each column. We have provided four slots for each column. Use as
many as you need.

A is memory location | A is a register RO-R7 | A is a register RO-R7 | A is memory location

B is aregister RO-R7 | B is aregister RO-R7 | B is memory location | B is memory location

Part d. (5 points): What is wrong with the following program fragment?

LD RO, A
SPIN LDI R1,KBSR

BRzp SPIN

STI RO, KBDR

RET

KBSR .FILL xFEOO
KBDR .FILL xFEO2
A .FILL x0041

Name:

Problem 2. (20 points): Since ASCII codes consist of 8 bits each, we can store two ASCII codes in one word of LC-3
memory. If a user types 2n characters on the keyboard, followed by the <ENTER>key, the subroutine PACK on the next
page will store the corresponding ASCII codes into n sequential memory locations, two per memory location, starting at
location A.

You may assume that a user never enters an odd number of characters.

Part a. (15 points): Your job: Fill in the blanks in the program.

Part b. (5 points): If a user types the string Please help! followed by the <ENTER> key, what does the program do?

Name:

PACK

POLL

SHIFT

NOSHIFT

DONE

KBSR
KBDR
NEG_LF
PROMPT
A
SAVER7
SAVERG
SAVER4
SAVER3

.ORIG x7020

ST R7, SAVER7
ST R6, SAVERG
ST R4, SAVER4
ST R3, SAVER3
LEA R6, A ; R6 is the pointer
AND R4, R4, #0
ADD R4, R4, #8 ; R4 is our counter
AND R3, R3, #0
LEA RO, PROMPT
TRAP x22

BRzp POLL

LD RO, NEG_LF
ADD RO, R7, RO
ADD R4, R4, #0
BRz NOSHIFT

ADD R7, R7, R7
ADD R4, R4, #-1
BRp SHIFT

ADD R3, R7, #0
BRnzp POLL

ADD R3, R3, R7
ADD R6, R6, #1
ADD R4, R4, #8
BRnzp POLL

LD R7, SAVER7
LD R6, SAVERG
LD R4, SAVER4
LD R3, SAVER3
LEA RO, A ; Returns a pointer to the characters
RET

.FILL xFEOO
.FILL xFEO2
.FILL xFFF6

.STINGZ

"Please enter a string: "

.BLKW #5
.BLKW #1
.BLKW #1
.BLKW #1
.BLKW #1

.END

Name:

Problem 3. (20 points): Many cities, like New York City, Stockholm, Konigsberg, etc. consist of several areas, connected
by bridges. The figure below shows a map of FiveParts, a city made up of five areas A,B,C,D.E, with the areas connected

by 9 bridges as shown.

The following program prompts the user to enter two areas, and then stores the number of bridges from the first area to the
second in location x4500. Your job: On the next page, design the data structure for the city of FiveParts that the program

below will use to count the number of bridges between two areas.

SEARCH

FOUND_FROM
NEXT_BRIDGE

SKIP

DONE

HEAD
ANSWER
FROM
TO

.ORIG x3000

LEA RO, FROM

TRAP x22
TRAP x20
NOT R1, RO
ADD R1, RI,
LEA RO, TO
TRAP x22
TRAP x20
NOT RO, RO
ADD RO, RO,
AND R5, R5,

ILDI R2, HEAD

BRz DONE
LDR R3, R2Z,
ADD R7, RI,

#1

#1

#0

#0
R3

BRz FOUND_FROM

LDR R2, R2,

BRnzp SEARCH

ADD R2, R2Z,
LDR R3, R2Z,
BRz DONE

LDR R4, R3,
ADD R7, RO,
BRnp SKIP

ADD R5, RS,
ADD R2, R2Z,

BRnzp NEXT_BRIDGE

#1

#2
#0

#0
R4

#1
#1

STI R5, ANSWER

HALT
.FILL x3050
.FILL x4500

.STRINGZ "FROM:

.STRINGZ "TO:

.END

; Inputs a char without banner

14

Increment Counter

Name:

Your job is to provide the contents of the memory locations that are needed to specify the data structure for the city of
FiveParts, which is needed by the program on the previous page. We have given you the HEAD pointer for the data
structure and in addition, five memory locations and the contents of those five locations. We have also supplied more than
enough sequential memory locations after each of the five to enable you to finish the job. Use as many of these memory

locations as you need.

x4000
x4001
x4002
x4003
x4004
x4005
x4006

x4100
x4101
x4102
x4103
x4104
x4105
x4106

x3100
x3101
x3102
x3103
x3104
x3105
x3106

x0041

x0043

x0045

x3050

XA243
XA244
XA245
XA246
XA247
XA248
XA249

xBBBB
xBBBC
xBBBD
XBBBE
XBBBF
xBBCO
xBBC1

x0042

x0044

Name:

Problem 4. (20 points): We wish to use the unused opcode 1101 to add a new instruction to the LC-3 ISA. This requires
four new states in the state machine (shown below) and additions to the data path (shown on the next page).

32
BEN <- IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]
1101
i |
ADDRIMUX = PC - ~
ADD2MUX = PCoffset9 LD.TEMP =1
MARMUX = ADDER Gate.PC =
Gate. MARMUX =1 Gate.MDR =
LD.MAR =1
Gate.ALU :S
_
e MIO.EN = 1 N
R.W = READ 4 Gate.ALU = 1
LD.MDR = ALUK =
R(
LD.MAR = S TEMPMUX = S
LD.IR = SRIMUX = S
N / LD.REG =0
R 9 LD.CC=1

To State 18

Part a. (5 points): Fill in the missing information in the four states. You can assume all control signals not shown are 0.
A table of relevant control signals is included in your exam packet.

Part b. (10 points): What does the new instruction do (in 15 words or fewer)?

Part c. (5 points): Identify the fields of the new instruction. Be sure you indicate clearly the correct bits for each field.
15 1211109 8 7 6 5 4 3 2 1 0
I R e I N
1101
| | |

Name:

GateMARMUX GatePC
16
i
) 1
+
16 /16 2 ! DR734(> REG
F+/ PCMUX FILE
T 4 1 LD.REG —>
- ° ’ SR27341> SR2 - SR1 <»73LSR1
IZEEI ouT OouT
P\
[7:0] + E 16 16
1
ADDR2MUX ADDRIMUX
: /
i \ f 16 =
()]
16 16 A16 %6 16 g
[10:0] 0 16 s
SEXT -
[8:0] [4:0] Y 9
’ SR2MU gl,
[50) i 16
TEMP |<-—LD.TEMP
CONTROL ¥
? ? i I TEMPMUX
T R v
R LDIR N|Z|P—LD.CC 2 B AU A
ALUK
16 LOGIC 16
GateALU
16
GateMDR
MDR LD.MDR| | MAR LD.MAR
MIO.EN RW MIOEN | \npuT | _:
: . b [eor] i
ADDR. CTL. : '
R<-| MEMORY LOGIC | —>{ KBSR] |
2 [0 oo X
MEM.EN

_4“1“

INMUX

Name:

to age. We use the 3rd word in each node to represent the year the person was born.

Problem 5. (20 points): Information about members of an extended family is stored in a tree. The first two words in each
node are pointers to the oldest child and the next younger sibling. That is, the children of a parent are ordered according

Initial RO
@
®
° L
1930
® 0—1
[
1955 1958
o 1 o1
R s s
1985 1987 -

10

1962

!
n

2000

Name:

Part a. (15 points): The following recursive subroutine counts the number of family members who are born before 1960.
RO is a pointer to the root of a tree. R1 is the output count. Assume the main program initializes R1 to O and R6 to the
stack pointer before calling the subroutine. The stack does not overflow during the execution of the subroutine. Fill in the
missing instructions.

.ORIG x4000
COUNT ADD R6, R6, #-1

ADD R6, R6, #-1

ADD RO, RO, #0

LD R7, NEG_VALUE

ADD R7, R2, R7

BRzp SKIP

ADD R1, R1, #1
SKIP ADD R2, RO, #0

LDR RO, R2, #0

ADD RO, R2, #0

RESTORE

ADD R6, R6, #1

ADD R6, R6, #1
RET
NEG_VALUE .FILL #-1960

Part b. (5 points): Can we speed up the subroutine by eliminating visits to unnecessary nodes in the tree? How (in 20
words or fewer)?

11

Data Path Control Signals

Signal Name

Signal Values

LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.TEMP/1: NO(0), LOAD(1)
Gate. MARMUX/1: NO(0), YES(1)
Gate.MDR/1: NO(0), YES(1)
Gate.PC/1: NO(0), YES(1)
Gate.ALU/1: NO(0), YES(1)
ADDRIMUX/1: PC(0), BaseR(1)
ADDR2MUX7/2: ZERO(00), offset6(01), PCoffset9(10), PCoffset11(11)
MARMUX/1: IR7.0(0), ADDER(1)
SRIMUX/2: 11.9(00), 8.6(01), SP(10)
TEMPMUX/1: OP2(0), TEMP(1)
ALUK/2: ADD(00), AND(01), NOT(10), PASSA(11)
MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

12

IR[11:9] %\

110 DR
111 —=
DRMUX
(@)
IR[11:9]
I
N —= Logic
7 —=

IR[11:9] ——

IR[8:6]

110 —=

SR1MUX

13

BEN

(b)

SR1

(See figure C.7)

BEN<-IR[11] & N + IR[10] & Z + IR[9] &
[IR[15:12]]

To 8
(See figure C.7)

LDI STI

To 18

To 18

10 11

@IAR<—PC+0§9 G/IAR<—PC+0%

* 24 * 29

C@IDR<—M[MA§| @DR<—M[MA§D

<

/ 6 A\ 31

2
MAR<—MDI9 CMAR<—MD@ G/IAR<—PC+(%

NOTES

B+off6 : Base + SEXT[offset6]
PC+0off9 : PC + SEXT{offset9]
PC+0off11 : PC + SEXT[offset1{l

—

*OP2 may be SR2 or SEXT[immb5]

To 18

14

GateMARMUX —/\

GatePC

16
>/ MARMUX LD.PC—>[PC v
i
7y i
1
16 16 5 - DR7Ll>3 REG
747/ PCMUX\ FILE
1 1 i LD.REG —>
° 16 ° SR2 SRf
3 3
IZEE SR2 —4> OUT OuT <+—4—SR1
/
[7:0] + 16 16
/ YA\ \
\
ADDR2MUX ADDR1MUX
2 /
' A ? 16
16 16 16 16 16
[10:0] 0 16
< SEXT SEXT
[4:0] |
[8:0] %
‘ SEXT SR2MUX/
[5:0] [ﬁ [ﬁ ‘f‘ ¢ 16
$—“»{ SEXT |—— Y Y
- SEXT] CONTROL 2 B AYU A/
f f I W) ALUK
R
R l<—LD.IR N|Z|P|<—LD.cc 16
16 LOGIC
GateALU
16
/\— GateMDR
< LD.MDR| | MAR ki—LD.MAR
<—MIO.EN \ RW MIOEN | \npuT | ':
A I
J A % Y 47 | | KBDR I !
ADDR. CTL. ! !
R < MEMORY LOGIC | _D@E :
| |
L M .
MEM.EN +—— ;/

5 |AAAA

15 14 13 12 11 10 9 7 6 5 4 3 2
+ | | | | | | | | 1 |
ADD 0001 DR SR1 |0]| oo SR2
1 1 L 1 L 1 L L 1 L
+ | I 1 | 1 T T 1 T T T
ADD 0001 DR SR1 |1 imms
1 1 1 1 1 1 L L 1 1 L
+ | I | I | | I | I |
AND 0101 DR SR1 |0]| oo SR2
1 1 1 1 1 1 1 1 1 1
+ | | | | | | | | I I |
AND 0101 DR SR1 |1 imms
1 1 1 1 1 1 1 1 1 1 1
1 | | | | T T T T T T
BR 0000 z |p PCoffset9
1 | 1 1 | 1 | | 1 | 1
1 I I I I | I I I 1 I I
JMP 1100 000 BaseR 000000
1 | | | | 1 1 1 | 1 | 1
1 I I I T | I T I I 1 I I
JSR 0100 PCoffset11
1 | | | | 1 | | 1 | | | 1
| | 1 1 I | I 1 I I 1
JSRR 0100 00 BaseR 000000
1 L 1 1 L 1 L L 1 L L
e | | | | | | | I I | | I |
LD 0010 DR PCoffsetd
| 1 1 1 1 1 1 1 1 1 1 1 1
3 | | | | | 1 | | I | | I |
LDI 1010 DR | PCoffsetd
1 | 1 1 1 | 1 1 | 1 1 | |
ofe 1 | | | | | I I I | I I
LDR 0110 DR BaseR offset6
1 1 1 | | | 1 | | 1 | 1
| | T 1 T T T 1 1 | 1 | |
LEA 1110 DR PCoffsetd
1 | | | 1 1 | 1 | | 1 | |
+ T T T T T T T T T 1 T T
NOT 1001 DR SR 111111
1 1 1 1 1 | 1 1 1 1 1 L
I 1 1 1 1 1 1 1 1 1 1 1
RET 1100 000 111 000000
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
RTI 1000 000000000000
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 | | T T T T T T T T T T
ST 0011 SR PCoffsetd
1 1 1 | 1 | 1 1 1 L 1 1 L
1 I I | T T T T T T T T
STI 1011 SR PCoffsetd
1 1 L 1 L 1 L 1 1 L 1 1 L
1 I 1 | | 1 T I T I I
STR 0111 SR BaseR offset6
1 1 1 L L 1 L 1 L 1 1 L
T 1 T I T T T T T T T T T
TRAP 1111 0000 trapvect8
1 1 1 L 1 1 1 | 1 1 1 1 L
| | | | T T | | I T T T T T
reserved 1101
1 L 1 L 1 1 L 1 1 1 1 1 L 1
Figure A.2 Format of the entire LC-2 instruction set. Note: + indicates instructions that

modify condition codes

16

The Standard ASCII Table

ASCII ASCII ASCII ASCII
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Dec
nul 0 00 sp 32 20 @ 64 40 N 96
soh 1 01 ! 33 21 A 65 41 a 97
stx 2 02 " 34 22 B 66 42 b 98
etx 3 03 # 35 23 C 67 43 [} 99
eot 4 04 3 36 24 D 68 44 d 100
eng 5 05 % 37 25 B 69 45 e 101
ack 6 06 & 38 26 E- 70 46 £ 102
bel 7 07 ! 39 27 G 71 47 g 103
bs 8 08 (40 28 H 72 48 h 104
ht 9 09) 41 29 I. 73 49 i 105
1f 10 0A ® 42 2A J 74 4A 5 106
vt 11 0B + 43 2B K 75 4B k 107
£f 12 0oC ! 44 2C L 76 ac 1 108
cr 13 oD - 45 2D M 77 4D m 109
80 14 113 N 46 2E N 78 4E n 110
si 15 oF / 47 2F 0 79 4F o 111
dle 16 10 0 48 30 P 80 50 P 112
del 17 11 1 49 31 0 81 51 q 113
de2 18 12 2 50 32 R 82 52 r 114
de3 19 13 3 51 33] 83 53 s 115
dc4 20 14 4 52 34 T 84 54 £ 116
nak 21 15 5 53 35 U 85 55 u 117
syn 22 16 6 54 36 v 86 56 v 118
etb 23 17 7 55 37 W 87 57 w 119
can 24 18 8 56 38 X 88 58 x 120
em 25 19 9 57 39 Y 89 59 v 121
sub 26 1A : 58 3A Z 90 5A 4 122
esc 27 1B | ; 59 3B [91 5B | { 123
fg 28 1C < 60 3C \ 92 5C } 124
gs 29 1D = 61 3D 1 93 5D } 125
rs 30 1E > 62 3E - 94 5E ~ 126
us 31 1F ? 63 3F _ 95 5F del 127

Tabie A.2 . ervice Routines

Trap Vector Assembler Name Description

x20 GETC’ Read a single character from the keyboard. The character is hot echoed onto the
console. Its ASCII code is copied into RO. The high eight bits of RO are cleared.

x21 ouT Write a character in ROL7:01 to the console display.

x22 PUTS Write a string of ASCII characters to the console display. The characters are contained

in consecutive memory locations, one character per memory location, starting with
the address specified in RO. Writing terminates with the occurrence of x0000 in a
memory location. :

X23 IN : Print a prampt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into RO.
The high eight bits of RO are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in RO. The ASCII code contained in bits [7:0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location containing the last character to be written.) Writing terminates with the
occurrence of x0000 in.a memory location.

x25 HALT ’ Halt execution and print a message on the console.

Table A3 Register Assignments

Address [/0 Register Name /0 Register F unction

xFEQO Keyboard status register Also known as KBSR. The ready bit (bit [151) indicates if
: the keyboard has received-a new character.

xFE02 Keyboard data register Also known as KBDR. Bits [7:0] contain the last
character typed on the keyboard.

xFEQ4 Display status register Also known as DSR. The ready bit (bit [151) indicates if
the display device is ready to receive another character
to print on the screen.

xFEO6 - Display data register Also known as DDR. A character written in the fow byte
of this register will be displayed on the screen.

xFFFE Machine control register Also known as MCR. Bit [151is the clock enable bit.
When cleared, instruction processing stops.

