
Department of Electrical and Computer Engineering

The University of Texas at Austin

EE 306, Fall 2017

Yale Patt, Instructor

Stephen Pruett, Siavash Zangeneh, Aniket Deshmukh, Zachary Susskind, Meiling Tang, Jiahan Liu

Exam 2, November 15, 2015

Name:

Problem 1 (20 points):

Problem 2 (20 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space

provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!



Name:

Problem 1. (20 points):

Part a. (5 points): Construct the symbol table for the following LC-3 assembly language program:

Symbol Table:

Symbol Address

.ORIG x4500

LD R2,BOBO

LD R3,SAM

AGAIN ADD R3,R3,R2

ADD R2,R2,#-1

BRnzp SAM

BOBO .STRINGZ "Why are you asking me this?"

SAM BRnp AGAIN

TRAP x25

.BLKW 5

JOE .FILL x7777

.END

Part b. (5 points): A stack machine executes the following 6 instructions:

Push 5

Push 4

ADD

Push 6

MUL

POP

What value is popped by the last instruction?

Assume the stack is empty, with R6 = xFE00. Before the stack machine executes ”Push 5”, the contents of memory

locations xFDFA to xFDFF are shown. Show the contents of memory and R6 after the six operations above are executed.

Address Before After

xFDFA x0000

xFDFB x0000

xFDFC x0000

xFDFD x0000

xFDFE x0000

xFDFF x0000

R6:

2



Name:

Part c. (5 points): We want to move a number from A to B. List all LC-3 opcodes that can be used to accomplish this in

one instruction when A,B are as specified at the top of each column. We have provided four slots for each column. Use as

many as you need.

A is memory location A is a register R0-R7 A is a register R0-R7 A is memory location

B is a register R0-R7 B is a register R0-R7 B is memory location B is memory location

Part d. (5 points): What is wrong with the following program fragment?

...

...

LD R0, A

SPIN LDI R1,KBSR

BRzp SPIN

STI R0,KBDR

...

...

RET

KBSR .FILL xFE00

KBDR .FILL xFE02

A .FILL x0041

...

...

3



Name:

Problem 2. (20 points): Since ASCII codes consist of 8 bits each, we can store two ASCII codes in one word of LC-3

memory. If a user types 2n characters on the keyboard, followed by the <ENTER>key, the subroutine PACK on the next

page will store the corresponding ASCII codes into n sequential memory locations, two per memory location, starting at

location A.

You may assume that a user never enters an odd number of characters.

Part a. (15 points): Your job: Fill in the blanks in the program.

Part b. (5 points): If a user types the string Please help! followed by the <ENTER> key, what does the program do?

4



Name:

.ORIG x7020

PACK ST R7, SAVER7

ST R6, SAVER6

ST R4, SAVER4

ST R3, SAVER3

LEA R6, A ; R6 is the pointer

AND R4, R4, #0

ADD R4, R4, #8 ; R4 is our counter

AND R3, R3, #0

LEA R0, PROMPT

TRAP x22

POLL

BRzp POLL

LD R0, NEG_LF

ADD R0, R7, R0

ADD R4, R4, #0

BRz NOSHIFT

SHIFT ADD R7, R7, R7

ADD R4, R4, #-1

BRp SHIFT

ADD R3, R7, #0

BRnzp POLL

NOSHIFT ADD R3, R3, R7

ADD R6, R6, #1

ADD R4, R4, #8

BRnzp POLL

DONE LD R7, SAVER7

LD R6, SAVER6

LD R4, SAVER4

LD R3, SAVER3

LEA R0, A ; Returns a pointer to the characters

RET

KBSR .FILL xFE00

KBDR .FILL xFE02

NEG_LF .FILL xFFF6

PROMPT .STINGZ "Please enter a string: "

A .BLKW #5

SAVER7 .BLKW #1

SAVER6 .BLKW #1

SAVER4 .BLKW #1

SAVER3 .BLKW #1

.END

5



Name:

Problem 3. (20 points): Many cities, like New York City, Stockholm, Konigsberg, etc. consist of several areas, connected

by bridges. The figure below shows a map of FiveParts, a city made up of five areas A,B,C,D,E, with the areas connected

by 9 bridges as shown.

A

B

C
E

D

The following program prompts the user to enter two areas, and then stores the number of bridges from the first area to the

second in location x4500. Your job: On the next page, design the data structure for the city of FiveParts that the program

below will use to count the number of bridges between two areas.

.ORIG x3000

LEA R0, FROM

TRAP x22

TRAP x20 ; Inputs a char without banner

NOT R1, R0

ADD R1, R1, #1

LEA R0, TO

TRAP x22

TRAP x20

NOT R0, R0

ADD R0, R0, #1

AND R5, R5, #0

LDI R2, HEAD

SEARCH BRz DONE

LDR R3, R2, #0

ADD R7, R1, R3

BRz FOUND_FROM

LDR R2, R2, #1

BRnzp SEARCH

FOUND_FROM ADD R2, R2, #2

NEXT_BRIDGE LDR R3, R2, #0

BRz DONE

LDR R4, R3, #0

ADD R7, R0, R4

BRnp SKIP

ADD R5, R5, #1 ; Increment Counter

SKIP ADD R2, R2, #1

BRnzp NEXT_BRIDGE

DONE STI R5, ANSWER

HALT

HEAD .FILL x3050

ANSWER .FILL x4500

FROM .STRINGZ "FROM: "

TO .STRINGZ "TO: "

.END

6



Name:

Your job is to provide the contents of the memory locations that are needed to specify the data structure for the city of

FiveParts, which is needed by the program on the previous page. We have given you the HEAD pointer for the data

structure and in addition, five memory locations and the contents of those five locations. We have also supplied more than

enough sequential memory locations after each of the five to enable you to finish the job. Use as many of these memory

locations as you need.

x4000

x4001

x4002

x4003

x4004

x4005

x4006

x0041

x0042

x0043

x0044

x0045

x4100

x4101

x4102

x4103

x4104

x4105

x4106

x3100

x3101

x3102

x3103

x3104

x3105

x3106

xA243

xA244

xA245

xA246

xA247

xA248

xA249

xBBBB

xBBBC

xBBBD

xBBBE

xBBBF

xBBC0

xBBC1

x3050

7



Name:

Problem 4. (20 points): We wish to use the unused opcode 1101 to add a new instruction to the LC-3 ISA. This requires

four new states in the state machine (shown below) and additions to the data path (shown on the next page).

R

[IR[15:12]]

32

1101

MIO.EN = 1
R.W = READ

LD.MDR = 

LD.MAR = 

R

LD.IR = 

13

MARMUX = ADDER
Gate.MARMUX = 1

LD.MAR = 1

Gate.PC = 

Gate.MDR = 

Gate.ALU = 

LD.CC = 1 

To State 18

Gate.ALU = 1 

SR1MUX = 

ALUK = 

TEMPMUX = 

LD.REG = 0 

LD.TEMP = 1

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

ADD2MUX = PCoffset9
ADDR1MUX = PC

Part a. (5 points): Fill in the missing information in the four states. You can assume all control signals not shown are 0.

A table of relevant control signals is included in your exam packet.

Part b. (10 points): What does the new instruction do (in 15 words or fewer)?

Part c. (5 points): Identify the fields of the new instruction. Be sure you indicate clearly the correct bits for each field.

15 11 8 0123456712 10 9

1101

8



Name:

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

S

TEMP

EXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16 16
16

16

16

1616

16

16

16

1616

16

ALU
B A

G

LD.TEMP

ateALU

16

S

TEMPMUX

2’
s 

co
m

p
le

m
en

t

R2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

ALUK

9



Name:

Problem 5. (20 points): Information about members of an extended family is stored in a tree. The first two words in each

node are pointers to the oldest child and the next younger sibling. That is, the children of a parent are ordered according

to age. We use the 3rd word in each node to represent the year the person was born.

Initial R0

1930

1955 1958 1962

1985 1987 2000

10



Name:

Part a. (15 points): The following recursive subroutine counts the number of family members who are born before 1960.

R0 is a pointer to the root of a tree. R1 is the output count. Assume the main program initializes R1 to 0 and R6 to the

stack pointer before calling the subroutine. The stack does not overflow during the execution of the subroutine. Fill in the

missing instructions.

.ORIG x4000

COUNT ADD R6, R6, #-1

ADD R6, R6, #-1

ADD R0, R0, #0

LD R7, NEG_VALUE

ADD R7, R2, R7

BRzp SKIP

ADD R1, R1, #1

SKIP ADD R2, R0, #0

LDR R0, R2, #0

ADD R0, R2, #0

RESTORE

ADD R6, R6, #1

ADD R6, R6, #1

RET

NEG_VALUE .FILL #-1960

Part b. (5 points): Can we speed up the subroutine by eliminating visits to unnecessary nodes in the tree? How (in 20

words or fewer)?

11



Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO(0), LOAD(1)

LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)

LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)

LD.TEMP/1: NO(0), LOAD(1)

Gate.MARMUX/1: NO(0), YES(1)

Gate.MDR/1: NO(0), YES(1)

Gate.PC/1: NO(0), YES(1)

Gate.ALU/1: NO(0), YES(1)

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(00), offset6(01), PCoffset9(10), PCoffset11(11)

MARMUX/1: IR7.0(0), ADDER(1)

SR1MUX/2: 11.9(00), 8.6(01), SP(10)

TEMPMUX/1: OP2(0), TEMP(1)

ALUK/2: ADD(00), AND(01), NOT(10), PASSA(11)

MIO.EN/1: NO(0), YES(1)

R.W/1: RD(0), WR(1)

12



Logic
 BEN


P

Z

N


IR[11:9]


(c)


IR[11:9]


111


DR


DRMUX


110


IR[11:9]


(b)
(a)


IR[8:6]


110


SR1MUX


SR1


13



R

R R

R R

To 18

To 18

To 18

To 8
(See figure C.7)

RTI

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−PC+off9

PC<−MDR

MAR<−PC+off9

MDR<−M[MAR]

RR

MAR<−MDR

MAR<−PC+off9

MDR<−M[MAR]

MAR<−MDR

MAR<−B+off6

MAR<−PC+off9

MAR<−B+off6

MAR<−PC+off9

MDR<−SR

DR<−MDR
set CC M[MAR]<−MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<−M[MAR]

[IR[15:12]]

To 49
(See figure C.7)

28

30

2

10

NOTES

16

R7<−PC
MDR<−M[MAR]

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

set CC
DR<−NOT(SR)9

NOT

14
DR<−PC+off9

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 1101

To 13

33

35

MAR<−ZEXT[IR[7:0]]
15

TRAP

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

PC<−BaseR
R7<−PC

14



MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2

OUT

SR1

OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

15



16






