
Department of Electrical and Computer Engineering

The University of Texas at Austin

EE 306, Fall 2017

Yale Patt, Instructor

Stephen Pruett, Siavash Zangeneh, Aniket Deshmukh, Zachary Susskind, Meiling Tang, Jiahan Liu

Final Exam, December 16, 2017

Name:

Part A:

Problem 1 (10 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:

Problem 6 (20 points):

Problem 7 (20 points):

Problem 8 (20 points):

Problem 9 (20 points): Part B (80 points):

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space

provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!

(HAVE A GREAT SEMESTER BREAK)

Name:

Part A, Problem 1. (10 points):

Part a. (5 points): We want to move a number from A to B. List all LC-3 opcodes that can be used to accomplish this in

one instruction when A,B are as specified at the top of each column. We have provided four slots for each column. Use as

many as you need.

A is memory location A is a register R0-R7 A is a register R0-R7 A is memory location

B is a register R0-R7 B is a register R0-R7 B is memory location B is memory location

Part b. (5 points): After an LC-3 instruction is decoded, it must be processed using the various paths in the data path.

Show all paths in the data path that are used to process LEA after the instruction has been decoded by drawing a heavy

line over each such path. For example, note the heavy line from the IR, through the sign-extended 9-bit value, and into

the mux. Recall that LEA does not set the condition codes.

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16 16
16

16

16

1616

16

16

16

1616

16

ALU
B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

2

Name:

Part A, Problem 2. (10 points):

Consider the following semi-nonsense assembly language program:

line 1: .ORIG x8003

line 2: AND R1,R1,#0

line 3: ADD R0,R1,#5

line 4: ST R1,B

line 5: LD R1,A

line 6: BRz SKIP

line 7: ST R0,B

line 8: SKIP TRAP x25

line 9: A .BLKW #7

line 10: B .FILL #5

line 11: BANNER .STRINGZ "We are done!"

line 12: C .FILL x0

line 13: .END

A separate module will store a value in A before the above program executes.

Part a. Construct the symbol table.

Part b. Show the result of assembly of lines 5 through 7 above. Note: the instruction at line 8 has already been assembled

for you.

Symbol Address x8006

x8007

x8008

x8009 1 1 1 1 0 00 0 0 10100 0 1

Part c. Note that two different things could cause location B to contain the value 5: the contents of line 7 or the contents

of line 10. Explain the difference between line 7 causing the value 5 to be in location B and line 10 causing the value 5 to

be in location B.

3

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0

Name:

Part A, Problem 3. (10 points): Memory locations x5000 to x5FFF contain 2’s complement integers. What does the

following program do?

.ORIG x3000

LD R1, ARRAY

LD R2, LENGTH

AND R3, R3, #0

AGAIN LDR R0, R1, #0

AND R0, R0, #1

BRz SKIP

ADD R3, R3, #1

SKIP ADD R1, R1, #1

ADD R2, R2, #-1

BRp AGAIN

HALT

ARRAY .FILL x5000

LENGTH .FILL x1000

.END

Please write your answer in the box below. Your answer must contain at most 15 words. Any words after the first 15 will

NOT be considered in grading this problem.

4

Name:

Part A, Problem 4. (10 points): The logic circuit shown below has one input X, one output Z, and two state variables,

s1 and s0. The circuit operates synchronously, controlled by a CLK signal, implementing a state machine.

X
Z

S0

S1

CLK

Combinational Logic

S1 S0 X Z S1’ S0’

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Part a. How many states in this state machine

Part b. Fill in the truth table for each of the eight input combinations.

Part c. Draw the state machine (also known as a state diagram).

5

Name:

Part A, Problem 5. (10 points):

The PC is loaded with x3000, and the instruction at address x3000 is executed. In fact, execution continues and four more

instructions are executed. The table below contains the contents of various registers at the end of execution for each of the

five (total) instructions.

Your job: complete the table.

PC MAR MDR IR R0 R1 R2

Before execution starts x3000 —— —— —— x0000 x0000 x0000

After the 1st instruction finishes x2207 x0001

After the 2nd instruction finishes xD635 x2007

After the 3rd instruction finishes x0601

After the 4th instruction finishes x1481

After the 5th instruction finishes x1241

6

Name:

Part B, Problem 6. (20 points): Let’s revisit Programming Lab 4, where you were asked to examine/search the nodes in

a binary tree, looking for a professor’s name. The search would have been done much faster if the tree had been a sorted

binary tree.

First, what do we mean by a sorted binary tree: For every node A, ALL nodes in node A’s left subtree must come before

node A, and ALL nodes in node A’s right subtree must come after node A.

If the binary tree is sorted, we can search for a match by starting at the root of the tree, and systematically examining

nodes. Each such examination tells us either (a) we have a match, (b) we need to examine the node’s left subtree (because

the node we are looking for comes before the node we are examining), or (c) we need to examine the node’s right subtree

(because the node we are looking for comes after the node we are examining).

The figure below shows, like in Lab 4, our professors, only this time the binary tree is sorted in alphabetical order. Recall

that each node contains four words. The 1st word points to its left subtree, the 2nd word points to its right subtree, the 3rd

word points to the character string containing the professor’s name, and the 4th word points to his/her salary.

x4000

0

0

0

$20,000

$24,000 $18,000

$16,000

n

0

A

l

i

B

e

D

a

n

J

o

e

On the next page, the subroutine SEARCH examines a sorted binary tree, looking for a match. R0 points to the root of

the tree, R1 points to the name we are searching for, stored as a null-terminated character string. If the subroutine finds a

match, it prints the professors’s salary on the monitor. If the subroutine does not find a match, it prints “No Entry” on the

monitor.

You will note that within the subroutine SEARCH, there are calls to two subroutines, COMPARE and PRINT NUM.

COMPARE compares two strings pointed to by R1 and R2. COMPARE puts a 0, 1, or -1 in R3 depending on whether the

two strings are identical, the string pointed to by R2 comes after the string pointed to by R1, or the the string pointed to

by R2 comes before the string pointed to by R1. PRINT NUM prints the 2’s complement integer in R0 to the console.

Your job: Fill in the missing instructions in SEARCH.

7

Name:

.ORIG x3500

SEARCH ST R0, SAVER0

ST R2, SAVER2

ST R3, SAVER3

ST R7, SAVER7

ADD R0, R0, #0

AGAIN BRz NOT_FOUND

JSR COMPARE

ADD R3, R3, #0

BRn RIGHT

BR AGAIN

RIGHT

BR AGAIN

FOUND LDR R0, R0, #3

JSR PRINT_NUM

NOT_FOUND LEA R0, NO_ENTRY

TRAP x22

DONE LD R0, SAVER0

LD R2, SAVER2

LD R3, SAVER3

LD R7, SAVER7

RET

NO_ENTRY .STRINGZ "No Entry"

SAVER0 .BLKW #1

SAVER2 .BLKW #1

SAVER3 .BLKW #1

SAVER7 .BLKW #1

.END

8

Name:

Part B, Problem 7. (20 points): In this problem we wish to examine the effects of keyboard interrupts while a main

program is running. The program running is shown below, starting at location x3000. The keyboard interrupt service

routine is also shown below, starting at location x1200.

; Main Program

.ORIG x3000

AND R1, R1, #0

LOOP ADD R1, R1, #1

LD R0, NEG_COUNT

ADD R0, R0, R1

BRn LOOP

AND R1, R1, #0

BR LOOP

NEG_COUNT .FILL #-9

.END

; Interrupt Service Routine

.ORIG x1200

ST R0, SAVER0

ST R1, SAVER1

LDI R0, KBDR ;Set KBSR[15] = 0

LD R0, ASCII

ADD R0, R0, R1

POLL LDI R1, DSR

BRzp POLL

STI R0, DDR

LD R0, SAVER0

LD R1, SAVER1

RTI

ASCII .FILL x30

KBDR .FILL xFE02

DSR .FILL xFE04

DDR .FILL xFE06

SAVER0 .BLKW #1

SAVER1 .BLKW #1

.END

Part a. What is the program starting at x3000 doing? ...in at most 15 words.

Part b. What does the interrupt service routine do? ...also in at most 15 words.

Problem continued on next page.

9

Part c. The partially completed table shows a snapshot of the LC-3 DURING several cycles of the computer’s execution.

You can assume the LC-3 has been properly initialized, that is, IE=1, SP is the user stack, and the interrupt vector table

contains the necessary entries before the main program starts executing in cycle 1. Memory operations take 2 cycles each.

The keyboard is pressed EXACTLY once during the execution of the main program.

Your job: fill in the missing entries in the table.

Information

18

27

18

0

1

7

LD.MDR:

x1200
1

GateALU:

IR:

LD.PC:

LD.MAR:

PCMUX:

LD.IR:

LD.REG:

BUS:

IR:

GateALU:

MDR:

MDR: IR:

GatePC:

GateMDR:

DRMUX:

GateMDR:

MDR:

MDR:
LD.PC:

LD.MDR:

LD.MAR:

PC:

PC:

Cycle
Number Number

State

42

49

LD.REG:

DRMUX:

Part d. The above table shows that the main program was interrupted by someone striking the keyboard sometime be-

tween cycle and cycle

10

Name:

Part B, Problem 8. (20 points): It is easier to identify borders between cities on a map if adjacent cities are colored with

different colors. For example, in a map of Texas, one would not color Austin and Pflugerville with the same color, since

doing so would obscure the border between the two cities.

Shown below is the recursive subroutine EXAMINE. EXAMINE examines the data structure representing a map to see if

any pair of adjacent cities have the same color. Each node in the data structure contains the city’s color and the addresses

of the cities it borders. If no pair of adjacent cities have the same color, EXAMINE returns the value 0 in R1. If at least

one pair of adjacent cities have the same color, EXAMINE returns the value 1 in R1. The main program supplies the

address of a node representing one of the cities in R0 before executing JSR EXAMINE.

.ORIG x4000

EXAMINE ADD R6, R6, #-1

STR R0, R6, #0

ADD R6, R6, #-1

STR R2, R6, #0

ADD R6, R6, #-1

STR R3, R6, #0

ADD R6, R6, #-1

STR R7, R6, #0

AND R1, R1, #0 ; Initialize output R1 to 0

LDR R7, R0, #0

BRn RESTORE ; Skip this node if it has already been visited

LD R7, BREADCRUMB

STR R7, R0, #0 ; Mark this node as visited

LDR R2, R0, #1 ; R2 = color of current node

ADD R3, R0, #2

AGAIN LDR R0, R3, #0 ; R0 = neighbor node address

BRz RESTORE

LDR R7, R0, #1

NOT R7, R7 ; <-- Breakpoint here

ADD R7, R7, #1

ADD R7, R2, R7 ; Compare current color to neighbor’s color

BRz BAD

JSR EXAMINE ; Recursively examine the coloring of next neighbor

ADD R1, R1, #0

BRp RESTORE ; If neighbor returns R1=1, this node should return R1=1

ADD R3, R3, #1

BR AGAIN ; Try next neighbor

BAD ADD R1, R1, #1

RESTORE LDR R7, R6, #0

ADD R6, R6, #1

LDR R3, R6, #0

ADD R6, R6, #1

LDR R2, R6, #0

ADD R6, R6, #1

LDR R0, R6, #0

ADD R6, R6, #1

RET

BREADCRUMB .FILL x8000

.END

11

Name:

Your job is to construct the data structure representing a particular map. Before executing JSR EXAMINE, R0 is set to

x6100 (the address of one of the nodes), and a breakpoint is set at x4012. The table below shows relevant information

collected each time the breakpoint was encountered during the running of EXAMINE.

PC R0 R2 R7

x4012 x6200 x0042 x0052

x4012 x6100 x0052 x0042

x4012 x6300 x0052 x0047

x4012 x6200 x0047 x0052

x4012 x6400 x0047 x0052

x4012 x6100 x0052 x0042

x4012 x6300 x0052 x0047

x4012 x6500 x0052 x0047

x4012 x6100 x0047 x0042

x4012 x6200 x0047 x0052

x4012 x6400 x0047 x0052

x4012 x6500 x0052 x0047

x4012 x6400 x0042 x0052

x4012 x6500 x0042 x0047

Construct the data structure for the particular map that corresponds to the relevant information obtained from the break-

points. Note: We are asking you to construct the data structure as it exists AFTER the recursive subroutine has executed.

x6400

x6401

x6402

x6403

x6404

x6405

x6406

x6100

x6101

x6105

x6106

x6200

x6201

x6202

x6203

x6204

x6205

x6206

x6300

x6301

x6302

x6303

x6304

x6305

x6306

x6500

x6501

x6502

x6503

x6504

x6505

x6506

x6102

x6103

x6104

x0042

x6200

x0052

12

Name:

Problem 9. (20 points):

Up to now, we have only had one output device, the monitor, with xFE04 and xFE06 used to address its two device

registers. We now introduce a second output device, a light that requires a single device register, to which we assign the

address xFE08. Storing a 1 in xFE08 turns the light on, storing a 0 in xFE08 turns the light off.

An Aggie decided to write a program which would control this light by a keyboard interrupt as follows: Pressing the key

0 would turn the light off. Pressing the key 1 would cause the light to flash on and off repeatedly. Shown below is the

Aggie’s code, and his Keyboard interrupt service routine.

The User Program:

.ORIG x3000

0 LEA R7, LOOP

1 LOOP LDI R0, ENABLE

2 LD R1, NEG_OFF

3 ADD R0, R0, R1 ; check if switch is on

4 BRnp BLINK

;

5 AND R0, R0, #0

6 STI R0, LIGHT ; turn light off

7 RET

;

8 BLINK ST R7, SAVE_R7 ; save linkage

9 LDI R0, LIGHT

A ADD R0, R0, #1

B AND R0, R0, #1 ; toggle LIGHT between 0 and 1

C STI R0, LIGHT

D JSR DELAY ; 1 second delay

E LD R7, SAVE_R7

F RET ; <-- Breakpoint here

;

LIGHT .FILL xFE08

ENABLE .FILL x4000

NEG_OFF .FILL x-30

SAVE_R7 .BLKW #1

.END

The Keyboard Interrupt Routine:

.ORIG x1500

0 ADD R6, R6, #-1 ; <-- Breakpoint here

1 STR R0, R6, #0 ; save R0 on stack

2 ADD R6, R6, #-1

3 STR R7, R6, #0 ; save R7 on stack

;

4 TRAP x20

5 STI R0, ENABLE2

;

6 RTI ; <-- Breakpoint here

7 ENABLE2 .FILL x4000

.END

The DELAY subroutine was inserted in his program in order to separate the turning on and off of the light by one second

in order to make the on-off behavior visible to the naked eye. The DELAY subroutine does not modify any registers.

Unfortunately, per usual, the Aggie made a mistake in his program, and things do not work as he intended. So, he decided

to debug his program (see the next page).

13

Name:

He set three breakpoints, at x1500, at x1506, and at x300F. He initialized the PC to x3000, the keyboard IE bit to 1, and

memory location x0180 to x1500.

Then he hit the Run button, which stopped executing when the PC reached x1500. He hit the Run button three more times,

each time the computer stopping when the PC reached a breakpoint. While the program was running, he pressed a key on

the keyboard EXACTLY ONCE.

The table below shows the data in various registers and memory locations each time a breakpoint was encountered. Note:

Assume, when an interrupt is initiated, the PSR is pushed onto the system stack before the PC.

Your Job: complete the table.

Initial Breakpoint 1 Breakpoint 2 Breakpoint 3 Breakpoint 4

PC x3000 x1500 x1506 x1506 x300F

R0 x1234 x0030

R6 x3000

R7 x1234

M[x2FFC] x0000

M[x2FFD] x0000

M[x2FFE] x0000 x300D

M[x2FFF] x0000 x8001

M[x4000] x0031

M[xFE00] x4000

14

Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO(0), LOAD(1)

LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)

LD.REG/1: NO(0), LOAD(1)

LD.PC/1: NO(0), LOAD(1)

Gate.PC/1: NO(0), YES(1)

Gate.MDR/1: NO(0), YES(1)

Gate.ALU/1: NO(0), YES(1)

PCMUX/2: PC+1(00), BUS(01), ADDER(10)

DRMUX/2: IR11.9(00), R7(01), SP(10)

15

16

R

R R

R R

To 18

To 18

To 18

To 8
(See figure C.7)

RTI

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−PC+off9

PC<−MDR

MAR<−PC+off9

MDR<−M[MAR]

RR

MAR<−MDR

MAR<−PC+off9

MDR<−M[MAR]

MAR<−MDR

MAR<−B+off6

MAR<−PC+off9

MAR<−B+off6

MAR<−PC+off9

MDR<−SR

DR<−MDR
set CC M[MAR]<−MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<−M[MAR]

[IR[15:12]]

To 49
(See figure C.7)

28

30

2

10

NOTES

16

R7<−PC
MDR<−M[MAR]

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

set CC
DR<−NOT(SR)9

NOT

14
DR<−PC+off9

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 1101

To 13

33

35

MAR<−ZEXT[IR[7:0]]
15

TRAP

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

PC<−BaseR
R7<−PC

17

18

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2

OUT

SR1

OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

19

Logic
 BEN

P

Z

N

IR[11:9]

(c)

IR[11:9]

111

DR

DRMUX

110

IR[11:9]

(b)
(a)

IR[8:6]

110

SR1MUX

SR1

20

“app-c” — 2004/5/21 — page 572 — #8

Table C.1 Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO, LOAD

LD.MDR/1: NO, LOAD

LD.IR/1: NO, LOAD

LD.BEN/1: NO, LOAD

LD.REG/1: NO, LOAD

LD.CC/1: NO, LOAD

LD.PC/1: NO, LOAD

LD.Priv/1: NO, LOAD

LD.SavedSSP/1: NO, LOAD

LD.SavedUSP/1: NO, LOAD

LD.Vector/1: NO, LOAD

GatePC/1: NO, YES

GateMDR/1: NO, YES

GateALU/1: NO, YES

GateMARMUX/1: NO, YES

GateVector/1: NO, YES

GatePC-1/1: NO, YES

GatePSR/1: NO, YES

GateSP/1: NO, YES

PCMUX/2: PC+1 ;select pc+1

BUS ;select value from bus

ADDER ;select output of address adder

DRMUX/2: 11.9 ;destination IR[11:9]

R7 ;destination R7

SP ;destination R6

SR1MUX/2: 11.9 ;source IR[11:9]

8.6 ;source IR[8:6]

SP ;source R6

ADDR1MUX/1: PC, BaseR

ADDR2MUX/2: ZERO ;select the value zero

offset6 ;select SEXT[IR[5:0]]

PCoffset9 ;select SEXT[IR[8:0]]

PCoffset11 ;select SEXT[IR[10:0]]

SPMUX/2: SP+1 ;select stack pointer+1

SP−1 ;select stack pointer−1

Saved SSP ;select saved Supervisor Stack Pointer

Saved USP ;select saved User Stack Pointer

MARMUX/1: 7.0 ;select ZEXT[IR[7:0]]

ADDER ;select output of address adder

VectorMUX/2: INTV

Priv.exception

Opc.exception

PSRMUX/1: individual settings, BUS

ALUK/2: ADD, AND, NOT, PASSA

MIO.EN/1: NO, YES

R.W/1: RD, WR

Set.Priv/1: 0 ;Supervisor mode

1 ;User mode

