
 Department of Electrical and Computer Engineering
 The University of Texas at Austin

 ECE 306 Fall 2023
 Instructor: Yale N. Patt
 TAs: Chester Cai, Sophia Jiang, Ali Mansoorshahi, Jaeyoung Park, Anna Guo, Asher
 Nederveld, Edgar Turcotte, Nadia Houston, Varun Arumugam,
 Final Exam
 Dec. 8th, 2023

 Name and EID: ___

 Part A:

 Problem 1 (10 points): _______

 Problem 2 (10 points): _______

 Problem 3 (10 points): _______

 Problem 4 (10 points): _______

 Problem 5 (10 points): _______

 Part A Total: _______________

 Part B:

 Problem 6 (20 points): _______

 Problem 7 (20 points): _______

 Problem 8 (20 points): _______

 Problem 9 (20 points): _______

 Part B Total: _______________

 Total (130 points): ______________

 Note: Please be sure that your answers to all questions (and all supporting work that is
 required) are contained in the space provided.

 Note: Please be sure your name is recorded on each sheet of the exam.

 Please read the following sentence, and if you agree, sign where requested:
 I have not given nor received any unauthorized help on this exam.

 Signature: ___

 GOOD LUCK!
 (Have a good winter break)

 Name: ___________________________________

 Question 1 (10 Points): Shown below is a transistor circuit with three inputs (A, B, C) and one
 output (Z). Also shown is the truth table for this circuit. The outputs of the truth table are not
 shown.

 Your job : Complete the truth table. Every input combination produces an output of either 0 or 1.

 A B C Z

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

 1

 Name: ___________________________________

 Question 2 (10 Points): We wish to implement a new instruction that swaps 2 values, one in a
 register and one in memory. The instruction’s format is shown below. SR1 contains a value to be
 swapped and SR2 contains an address to a location in memory that has the other value to be
 swapped.

 15 12 11 9 8 6 5 0

 1 1 0 1 S R 1 S R 2 0 0 0 0 0 0
 The changes to the datapath are bolded in the diagram below.

 2

 Name: ___________________________________

 Part A: Complete the state machine for the swap instruction below.

 Part B: Fill out the control signals for the states listed in the table below:

 State J GATE.MDR GATE.TEMP LD.TEMP LD.MDR LD.MAR

 41

 43

 3

 Name: ___________________________________

 Question 3 (10 Points): We want to design the state machine for an automatic bird feeder. It
 has two types of feed: millets and sunflower seeds . The system takes 1 bit of input, and outputs
 2 bits. The input and output are described below.

 Sensor Readings (inputs) Bird Feeder Actions (outputs)

 Input Description Out[1] Out[0] Description
 0 Empty 0 0 Do nothing
 1 Not Empty 0 1 Fill with millets

 1 0 Fill with sunflower seeds

 Birds need a varied diet so our bird feeder alternates between sunflower seeds and millet.
 Every hour the feeder will read the sensor. If it is empty, it will fill with the opposite food choice.
 If it is not empty, it will do nothing. The feeder starts empty, and should be filled with millet.

 Part A: Complete the finite state machine below that allows the bird feeder to operate as
 described. The 2-bit number on the top-right corner of each state is the state number for that
 state.

 4

 Name: ___________________________________

 Part B: Complete the truth table corresponding to the state machine from part A.

 State[1] State[0] Input Out[1] Out[0] Next State[1] Next State[0]

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

 1 1 0

 1 1 1

 Part C: Draw the logic gate implementation for Out[1]. Use only AND, OR, and NOT gates.

 5

 Name: ___________________________________

 Question 4 (10 Points): What value is stored in the location labeled RESULT when the
 following program terminates?

 .ORIG x3000
 AND R1, R1, #0
 LEA R0, LABEL1

 LOOP LDR R0, R0, #0
 BRz DONE
 LDR R2, R0, #1
 ADD R1, R1, R2
 BRnzp LOOP

 DONE ST R1, RESULT
 HALT

 RESULT .BLKW #1
 LABEL1 .FILL x6000

 .END

 .ORIG x6000
 .FILL x5010
 .FILL x0300
 .END
 .ORIG x5010
 .FILL x4020
 .FILL xFFFF
 .END
 .ORIG x4020
 .FILL x0000
 .FILL x0007
 .END

 What kind of data structure does this program operate on?

 6

 Name: ___________________________________

 Question 5 (10 Points): A student wrote a program to multiply two positive numbers X and Y,
 and store the product in memory location x4002. M[x4000] contains the value X. M[x4001]
 contains the value Y. Unfortunately she spends too much time watching football, so there is a
 bug in her code.

 .ORIG x3000
 LDI R1, X
 LDI R2, Y
 AND R0, R0, #0

 LOOP ADD R0, R0, R2
 ADD R1, R1, #-1
 BRz LOOP
 STI R0, RESULT
 HALT

 X .FILL x4000
 Y .FILL x4001
 RESULT .FILL x4002

 .END

 Your job: Circle the instruction causing the bug, and replace it in the box below with the correct
 instruction.

 7

 Name: ___________________________________

 Question 6 (20 Points): You are given a program that takes 2 inputs from memory and stores
 the result of execution in an unknown memory location. During the execution of the program, we
 took 7 snapshots of the LC-3 microarchitecture. The first snapshot was taken during the first
 clock cycle of the program execution. Subsequent snapshots are shown in the table below in
 the order in which they are taken. Each snapshot contains the state number, the value on the
 bus during the clock cycle, and the control signals necessary to execute the state.

 Part A: Fill in the blanks in the code and table. Use X if a control signal value doesn’t matter.
 .ORIG x3000
 LD R0, OUTPUT
 LDR R1, R0 #16 ;INPUT 1
 BRz DONE
 LDR R2, R0, #18 ;INPUT 2

 LOOP JSR SUBTRACT
 ADD R1, R0, #0
 BRzp LOOP
 ADD R1, R0, R2

 DONE STI R1, OUTPUT
 HALT

 OUTPUT .FILL ________
 SUBTRACT NOT R0, R2

 ADD R0, R0, #1
 ADD R0, R1, R0
 RET
 .END

 (The first row of the table has been given to you as an example.)

 State BUS Control Signals

 18 x3000 LD.MAR = 1, GatePC = 1, LD.PC = 1, PCMUX = PC+1

 6 x4257 LD.MAR = 1, ALUK = ____________, SR1MUX =____________

 6 x4259 LD.MAR = 1, ALUK = ____________, SR1MUX =____________

 9 xFFF5 LD.REG = 1, DR = IR[11:9], ALUK = NOT, SR1MUX = IR[8:6]

 21 ______ LD.REG = 1, DRMUX = _________, ADDR2MUX = ___________

 16 - LD.MDR = ____, MIO.EN = ____, R.W = ____, LD.MAR = _____

 ______ - LD.BEN = ______, J = ____________________, IRD = 1

 Part B : Given the above table, and the fact that the RET instruction was executed 7 times, what
 were the inputs if R1 has value x0000 when the program terminates?

 Input 1: __________ Input 2: __________

 8

 Name: ___________________________________

 Question 7 (20 Points): An programmer did a poor job implementing some important features
 in the operating system. Thankfully, he did manage to implement TRAPs. The table below
 shows how the memory in the system region is configured at the start of the program. Recall the
 exception vector for privilege mode exception is x00, for illegal opcode is x01, and for access
 control violation is x02.

 Memory Address Data Comments

 …

 x0100 x1500

 x0101 x1510

 x0102 x1520

 …

 x1500 x8000

 …

 x1510 x8000

 …

 x1520 xD025

 …

 Table below shows the user program to be executed. The user program starts executing at
 x3000 with priority 0.

 Memory Address Data Assembly Comments

 x3000 x5020 AND R0, R1, #0 ; Start of User Program

 x3001 x103F ADD R0, R0, #-1

 x3002 xA003 C LDI R0, A

 x3003 x07FE BRzp C

 x3004 xA002 LDI R0, B

 x3005 xF025 TRAP x25

 x3006 x0E00 A .FILL x0E00

 x3007 x0E01 B .FILL x0E01

 9

 Name: ___________________________________

 Part A: During the first 300 cycles of executing this program, what exception(s) occur if any?
 Assume that each memory access takes 5 cycles. Also, use the state diagram and the datapath
 that handles interrupts and exceptions.

 Part B: What is in memory locations x2FFC~x2FFF after 300 cycles of execution?

 Memory Address Content

 x2FFC

 x2FFD

 x2FFE

 x2FFF

 Part C: Suppose the operating system engineering changes the access control violation service
 routine as follows.

 ST R0, SAVE_R0
 LDR R0, R6, #0
 ADD R0, R0, #1
 STR R0, R6, #0
 LDR R0, R0, #-1
 ST R0, LABEL
 LD R0, SAVE_R0

 LABEL .BLKW #1
 RTI

 SAVE_R0 .BLKW #1

 He hopes to fix the exception by executing the faulting instruction in privileged mode.
 Unfortunately, the code above does not do what he wishes for the user program on the previous
 page. Why?

 10

 Name: ___________________________________

 Question 8 (20 Points): A binary tree is a common data structure, used to represent (among
 other things) family trees and organization charts. A binary tree consists of nodes, connected
 by links as shown in the example below.

 If this tree were an organization chart, C would be the CEO and o and e employees who report
 directly to him. If the tree were a family tree, C would be the patriarch.

 Each link connects a "parent" node to one of its possible "child" nodes . For example, node o
 has two children nodes, m and p. Node r has no children. Every node except one has a single
 parent. The node that does not have a parent is called the " root ." Each node can have up to
 two children. The children are the roots of subtrees. For example, the entire tree has a root
 (node C), a left subtree (consisting of nodes o, m, p, u, t) and a right subtree (consisting of node
 e and r). Node o is the root of a subtree having a left subtree (consisting of node m) and a right
 subtree (consisting of nodes p, u, and t).

 Unlike a linked list which has only one order in which all the nodes of the link list can be visited,
 the nodes of a tree can be visited in several different orders. One of the orders is called
 "pre-order traversal," in which the root is visited first, then all the nodes of its left subtree, then
 all the nodes of its right subtree. In the tree above the pre-order traversal visits C then o, m, p,
 u, t, e, and r in that order.

 If we identify the data of each node as the ASCII code of a typed character, each node in the
 tree above occupies three words of LC-3 memory as shown below: a link to the left child, a link
 to the right child, and the data (ascii code). If the node does not have a left (or right) subtree, the
 corresponding link is x0000.

 11

 Name: ___________________________________

 Below is a program which prints all the characters in the tree in the order described above. For
 each node it visits, it keeps track of the right child (if there is one), and then follows the
 left child. When it visits a node with no left child, the program goes through the right
 children in reverse order. Assume the tree is already in memory with the root at address
 x4000.

 Your Job: Fill in the missing instructions .

 .ORIG x3000
 LD R6, STACK
 LD R1, ____________

 LOOP ___________________
 TRAP x21 ; OUT
 LDR R0, R1, #1
 BRz SKIP

 SKIP LDR R1, R1, #0
 BR___ LOOP
 LD R2, ____________
 ADD R0, R2, R6
 BRz DONE

 BR___ LOOP

 DONE HALT

 TREE_ROOT .FILL x4000
 DONE_VAL .FILL x0200 ;xFE00+x0200=x0000
 STACK .FILL xFE00

 .END

 12

 Name: ___________________________________

 Question 9 (20 Points): In this question, we modify how JSR/JSRR and RET works in LC3.
 JSR/JSRR will use the stack as the linkage instead of R7 by pushing the return PC onto the
 stack. Similarly, RET will load the PC with the value popped from the top of the stack.

 In memory, there are 10 subroutines to print the 10 digits. For example, the subroutine to print
 the number “5” consists of the following instructions:

 Print5 LD R0 Label5
 OUT
 RET

 Label5 .FILL x35
 Since each subroutine requires 4 memory locations, the starting address of each subroutine is
 always 4 greater than the starting address of the previous subroutine. The starting address of
 the subroutine Print0 is x5000. Therefore, the starting address of the subroutine Print1 is x5004,
 the starting address of the subroutine Print2 is x5008, and so on.

 A student wishes to surprise Dr. Patt by printing our course number “306” with a program that
 does not use any JSR/JSRR instructions nor I/O trap service routines in the main program.
 Your Job : Fill in the blanks in the main program, so that executing this program will result in
 printing the digits “306” on the console, and then halt the machine .

 Hint: What happens when a RET is executed without a JSR being executed beforehand?
 .ORIG x3000
 LD R6, ______
 LD R0, ______
 ADD _______________________
 STR R0, R6, #0
 LD R0, ______
 ADD _______________________
 STR R0, R6, #0
 LD R0, ______
 ADD _______________________
 STR R0, R6, #0
 LD R0, ______
 ADD _______________________
 STR R0, R6, #0
 RET

 HALT
 SP_INIT .FILL xFE00

 .END
 13

