
 Department of Electrical and Computer Engineering
 The University of Texas at Austin

 ECE 306 Fall 2023
 Instructor: Yale N. Patt
 TAs: Chester Cai, Sophia Jiang, Ali Mansoorshahi, Jaeyoung Park, Anna Guo, Asher
 Nederveld, Edgar Turcotte, Nadia Houston, Varun Arumugam,
 Final Exam
 Dec. 8th, 2023

 Name and EID: Solution

 Part A:

 Problem 1 (10 points): _______

 Problem 2 (10 points): _______

 Problem 3 (10 points): _______

 Problem 4 (10 points): _______

 Problem 5 (10 points): _______

 Part A Total: _______________

 Part B:

 Problem 6 (20 points): _______

 Problem 7 (20 points): _______

 Problem 8 (20 points): _______

 Problem 9 (20 points): _______

 Part B Total: _______________

 Total (130 points): ______________

 Note: Please be sure that your answers to all questions (and all supporting work that is
 required) are contained in the space provided.

 Note: Please be sure your name is recorded on each sheet of the exam.

 Please read the following sentence, and if you agree, sign where requested:
 I have not given nor received any unauthorized help on this exam.

 Signature: ___

 GOOD LUCK!
 (Have a good winter break)

 Name: ___________________________________

 Question 1 (10 Points): Shown below is a transistor circuit with three inputs (A, B, C) and one
 output (Z). Also shown is the truth table for this circuit. The outputs of the truth table are not
 shown.

 Your job : Complete the truth table. Every input combination produces an output of either 0 or 1.

 A B C Z

 0 0 0 1

 0 0 1 1

 0 1 0 1

 0 1 1 0

 1 0 0 1

 1 0 1 1

 1 1 0 0

 1 1 1 0

 1

 Name: ___________________________________

 Question 2 (10 Points): We wish to implement a new instruction that swaps 2 values, one in a
 register and one in memory. The instruction’s format is shown below. SR1 contains a value to be
 swapped and SR2 contains an address to a location in memory that has the other value to be
 swapped.

 15 12 11 9 8 6 5 0

 1 1 0 1 S R 1 S R 2 0 0 0 0 0 0
 The changes to the datapath are bolded in the diagram below.

 2

 Name: ___________________________________

 Part A: Complete the state machine for the swap instruction below.

 Part B: Fill out the control signals for the states listed in the table below:

 State J GATE.MDR GATE.TEMP LD.TEMP LD.MDR LD.MAR

 41 41 0 0 0 1 0

 43 47 1 0 1 1 0

 3

 Name: ___________________________________

 Question 3 (10 Points): We want to design the state machine for an automatic bird feeder. It
 has two types of feed: millets and sunflower seeds . The system takes 1 bit of input, and outputs
 2 bits. The input and output are described below.

 Sensor Readings (inputs) Bird Feeder Actions (outputs)

 Input Description Out[1] Out[0] Description
 0 Empty 0 0 Do nothing
 1 Not Empty 0 1 Fill with millets

 1 0 Fill with sunflower seeds

 Birds need a varied diet so our bird feeder alternates between sunflower seeds and millet.
 Every hour the feeder will read the sensor. If it is empty, it will fill with the opposite food choice.
 If it is not empty, it will do nothing. The feeder starts empty, and should be filled with millet.

 Part A: Complete the finite state machine below that allows the bird feeder to operate as
 described. The 2-bit number on the top-right corner of each state is the state number for that
 state.

 4

 Name: ___________________________________

 Part B: Complete the truth table corresponding to the state machine from part A.

 State[1] State[0] Input Out[1] Out[0] Next State[1] Next State[0]

 0 0 0 0 1 1 0

 0 0 1 0 1 0 1

 0 1 0 0 0 1 0

 0 1 1 0 0 0 1

 1 0 0 1 0 0 0

 1 0 1 1 0 1 1

 1 1 0 0 0 0 0

 1 1 1 0 0 1 1

 Part C: Draw the logic gate implementation for Out[1]. Use only AND, OR, and NOT gates.

 5

 Name: ___________________________________

 Question 4 (10 Points): What value is stored in the location labeled RESULT when the
 following program terminates?

 .ORIG x3000
 AND R1, R1, #0
 LEA R0, LABEL1

 LOOP LDR R0, R0, #0
 BRz DONE
 LDR R2, R0, #1
 ADD R1, R1, R2
 BRnzp LOOP

 DONE ST R1, RESULT
 HALT

 RESULT .BLKW #1
 LABEL1 .FILL x6000

 .END

 .ORIG x6000
 .FILL x5010
 .FILL x0300
 .END
 .ORIG x5010
 .FILL x4020
 .FILL xFFFF
 .END
 .ORIG x4020
 .FILL x0000
 .FILL x0007
 .END

 What kind of data structure does this program operate on?

 Linked List

 6

 X0306

 Name: ___________________________________

 Question 5 (10 Points): A student wrote a program to multiply two positive numbers X and Y,
 and store the product in memory location x4002. M[x4000] contains the value X. M[x4001]
 contains the value Y. Unfortunately she spends too much time watching football, so there is a
 bug in her code.

 .ORIG x3000
 LDI R1, X
 LDI R2, Y
 AND R0, R0, #0

 LOOP ADD R0, R0, R2
 ADD R1, R1, #-1
 BRz LOOP
 STI R0, RESULT
 HALT

 X .FILL x4000
 Y .FILL x4001
 RESULT .FILL x4002

 .END

 Your job: Circle the instruction causing the bug, and replace it in the box below with the correct
 instruction.

 BRp LOOP

 BRnp was also an accepted answer because the question states that the inputs were positive.
 However, BRzp is not a valid answer because the [z] would cause an extra iteration of the loop,
 resulting in the wrong answer ((R1+1)*R2 instead of R1*R2)). For instance, X = 2, Y = 3 would
 result in 9 instead of 6.

 7

 Name: ___________________________________

 Question 6 (20 Points): You are given a program that takes 2 inputs from memory and stores
 the result of execution in an unknown memory location. During the execution of the program, we
 took 7 snapshots of the LC-3 microarchitecture. The first snapshot was taken during the first
 clock cycle of the program execution. Subsequent snapshots are shown in the table below in
 the order in which they are taken. Each snapshot contains the state number, the value on the
 bus during the clock cycle, and the control signals necessary to execute the state.

 Part A: Fill in the blanks in the code and table. Use X if a control signal value doesn’t matter.
 .ORIG x3000
 LD R0, OUTPUT
 LDR R1, R0 #16 ;INPUT 1
 BRz DONE
 LDR R2, R0, #18 ;INPUT 2

 LOOP JSR SUBTRACT
 ADD R1, R0, #0
 BRzp LOOP
 ADD R1, R0, R2

 DONE STI R1, OUTPUT
 HALT

 OUTPUT .FILL x4247
 SUBTRACT NOT R0, R2

 ADD R0, R0, #1
 ADD R0, R1, R0
 RET
 .END

 (The first row of the table has been given to you as an example.)

 State BUS Control Signals

 18 x3000 LD.MAR = 1, GatePC = 1, LD.PC = 1, PCMUX = PC+1

 6 x4257 LD.MAR = 1, ALUK = XX , SR1MUX = IR[8:6]

 6 x4259 LD.MAR = 1, ALUK = XX , SR1MUX = IR[8:6]

 9 xFFF5 LD.REG = 1, DR = IR[11:9], ALUK = NOT, SR1MUX = IR[8:6]

 21 x3005 LD.REG = 1, DRMUX = R7 , ADDR2MUX = IR[10:0]

 16 - LD.MDR = 0 , MIO.EN = 1 , R.W = W , LD.MAR = 0

 32 - LD.BEN = 1 , J = XXXXXX , IRD = 1

 Part B : Given the above table, and the fact that the RET instruction was executed 7 times, what
 were the inputs if R1 has value x0000 when the program terminates?

 Input 1: #60 Input 2: #10

 8

 Name: ___________________________________

 Exact matches were not required: 8:6 or [6:8] could get the same credit as IR[8:6]. Similarly,
 PCoffset11 was enough to get credit for IR[10:0].
 x4247

 ● The first instruction loads R0 with the mystery value in OUTPUT, and the second
 instruction puts the mystery value + offset into MAR to read from memory. Meanwhile,
 state 6 is the first state of LDR, where “MAR<-B+off6”. To get B+off6 into the MAR, we
 must put it on the bus. Thus, we know that the BUS value x4257 = mystery value + #16
 (#16 = x10). x4257 - x10 = x4247 .

 ● x4241 : Common error: Notice that the offset is given in decimal (#16) not hexadecimal
 (x16). x4257 - x16 = x4241.

 ● x4246 : Common error : The bus value is unrelated to PC, but some students tried to
 subtract 1 from x4247 to counter the PC+1 in state 18.

 ALUK = XX (b11), SR1MUX = IR[8:6] (b01)
 ● A handful of students gave different answers for the first state 6 and the second state 6.

 However, control signals are fixed for a given state, so the two rows should have the same
 values.

 ● ALUK = XX : Many students put ADD, and some put PASSA. However, GateALU is 0
 in state 6, so the value of ALUK doesn’t matter. The BUS is actually driven by
 GateMARMUX, where MARMUX selects ADDER, ADDR1MUX selects SR1, and
 ADDR2MUX selects SEXT[IR[5:0]].

 ● SR1MUX = IR[8:6] : The Instruction Set Handout shows that BaseR is specified by bits
 8:6 of the IR. Some students put 11:9, but that gives the Destination Register instead.

 BUX = x3005, DRMUX = R7 (b111 or b01), ADDR2MUX = IR[10:0] (b11)
 ● BUX = x3005, DRMUX = R7 : In state 21 (JSR), the incremented PC (not the original,

 x3004) gets saved into R7. Setting DRMUX to IR[11:9] or IR[8:6] would save the
 incremented PC into a random register given by the offset from the location that is being
 jsr’d to instead. R7 is not specified dynamically by the instruction; it’s built into one of
 the options of the DRMUX and appears directly in the state machine (instead of DR).

 ● ADDR2MUX = IR[10:0] : The JSR instruction specifies 11 bits of offset (shown in the
 instruction set and the state machine.) The offset is given by IR[10:0].

 LD.MDR = 0, MIO.EN = 1, R.W = W (1), LD.MAR = 0
 ● Data is being written from MDR to M[MAR], meaning we are accessing memory

 (MIO.EN = 1), more specifically writing to memory (R.W = W). Neither MAR nor MDR
 are getting loaded with new values, so their loads are 0. (If X, registers/memory will be
 scrambled.)

 32, LD.BEN = 1, J = XXXXXX
 ● IRD is only ever set in state 32 . Additionally, by looking at the microsequencer, we can

 see that IRD being set causes the next state to depend directly on the first four bits of the
 IR (or the opcode), so the values of the COND bits and the J bits don’t matter .

 ● The first line in the state 32 bubble in the state machine: BEN<−IR[11] & N + IR[10] &
 Z + IR[9] & P. Thus, BEN gets a new value, so LD.BEN must be set.

 Input 2 = #10 (xA)

 9

 Name: ___________________________________

 ● In state 9 of the table, the BUS contains the NOT of R2 (Input 2). Unlike R1, R2 is never
 changed in the program after being loaded with Input 2, so we know that xFFF5 must be
 the not of Input 2, regardless of how many times we’ve passed that instruction. (That was
 also not an issue when using LDR to calculate the .FILL for OUTPUT because both
 occurrences of LDR were shown in the table, and because there was no loop around them
 in code. For the NOT, we have a loop, but it doesn’t matter because the value of R2 is
 never overwritten, so the result of the first time the instruction is executed is the same as
 the result of the last time, or any time in between.) We can expand xFFF5 to
 b-1111-1111-1111-0101, and invert it to get b-0000-0000-0000-1010, or x000A .

 ● #11 (xB) : Common error: Some students saw that the subroutine involved getting the
 2’s complement of R2, so they took the 2’s complement of xFFF5 instead. The key is that
 at state 9, right as the NOT instruction is finished, we haven’t yet added 1 to R0 yet
 (that’s the next instruction). Thus, the BUS value is only the inversion or the 1’s
 complement of Input 2, not the 2’s complement.

 Input 1 = #60 (x3C)
 ● It was given that the output was 0 and that the RET instruction occurred seven times.

 Tracing the code reveals that the program serves as a modulus or remainder calculator,
 repeatedly subtracting Input 2 from Input 1 until the difference is negative, then adding
 Input 2 back, such that the result is a positive number smaller than Input 2. By looping
 until the difference is negative, we loop 1 more time than the integer result of Input 1
 divided by Input 2. For instance, given Input 1 = 7 and Input 2 = 5, we would loop 2
 times, even though 5 can only completely fit into 7 one time. After reaching -3, we would
 add 5 to get that the remainder is 2. Thus, Input 1 = Input 2 * (loops-1) + Output. Going
 back to the problem where it was given that the output was 0 and the RET was occurred 7
 times, we know that Input 1 = Input 2 * (loops-1) + Output = 10 * (7-1) +0 = #60.

 ● #70 (x46) : Common error: Some students got the jist of the general algorithm, but
 didn’t catch that the code added an extra iteration in the loop to go into the negatives.
 Thus, they thought the relationship was Input 1 = Input 2 * loops + Output.

 10

 Name: ___________________________________

 Question 7 (20 Points): An programmer did a poor job implementing some important features
 in the operating system. Thankfully, he did manage to implement TRAPs. The table below
 shows how the memory in the system region is configured at the start of the program. Recall the
 exception vector for privilege mode exception is x00, for illegal opcode is x01, and for access
 control violation is x02.

 Memory Address Data Comments

 …

 x0100 x1500

 x0101 x1510

 x0102 x1520

 …

 x1500 x8000

 …

 x1510 x8000

 …

 x1520 xD025

 …

 Table below shows the user program to be executed. The user program starts executing at
 x3000 with priority 0.

 Memory Address Data Assembly Comments

 x3000 x5020 AND R0, R1, #0 ; Start of User Program

 x3001 x103F ADD R0, R0, #-1

 x3002 xA003 C LDI R0, A

 x3003 x07FE BRzp C

 x3004 xA002 LDI R0, B

 x3005 xF025 TRAP x25

 x3006 x0E00 A .FILL x0E00

 x3007 x0E01 B .FILL x0E01

 11

 Name: ___________________________________

 Part A: During the first 300 cycles of executing this program, what exception(s) occur if any?
 Assume that each memory access takes 5 cycles. Also, use the state diagram and the datapath
 that handles interrupts and exceptions.

 ACV, illegal opcode exception

 Part B: What is in memory locations x2FFC~x2FFF after 300 cycles of execution?

 Memory Address Content

 x2FFC x1520

 x2FFD x0004

 x2FFE x3002

 x2FFF x8004

 Part C: Suppose the operating system engineering changes the access control violation service
 routine as follows.

 ST R0, SAVE_R0
 LDR R0, R6, #0
 ADD R0, R0, #1
 STR R0, R6, #0
 LDR R0, R0, #-1
 ST R0, LABEL
 LD R0, SAVE_R0

 LABEL .BLKW #1
 RTI

 SAVE_R0 .BLKW #1

 He hopes to fix the exception by executing the faulting instruction in privileged mode.
 Unfortunately, the code above does not do what he wishes for the user program on the previous
 page. Why?

 The code above tries to execute the instruction causing the ACV in privilege mode by copying
 the instruction from user space to the memory location LABEL. This would have worked if it
 was a LDR or STR instruction. However, because the instruction uses PC-relative addressing
 modes, the location it would have loaded from would not be what the user intended to load
 from.

 Note that if the DR in the instruction is R6, this would not have worked either as R6 is the
 system stack pointer. Playing with the system stack pointer would cause RTI to not work.

 12

 Name: ___________________________________

 Question 8 (20 Points): A binary tree is a common data structure, used to represent (among
 other things) family trees and organization charts. A binary tree consists of nodes, connected
 by links as shown in the example below.

 If this tree were an organization chart, C would be the CEO and o and e employees who report
 directly to him. If the tree were a family tree, C would be the patriarch.

 Each link connects a "parent" node to one of its possible "child" nodes . For example, node o
 has two children nodes, m and p. Node r has no children. Every node except one has a single
 parent. The node that does not have a parent is called the " root ." Each node can have up to
 two children. The children are the roots of subtrees. For example, the entire tree has a root
 (node C), a left subtree (consisting of nodes o, m, p, u, t) and a right subtree (consisting of node
 e and r). Node o is the root of a subtree having a left subtree (consisting of node m) and a right
 subtree (consisting of nodes p, u, and t).

 Unlike a linked list which has only one order in which all the nodes of the link list can be visited,
 the nodes of a tree can be visited in several different orders. One of the orders is called
 "pre-order traversal," in which the root is visited first, then all the nodes of its left subtree, then
 all the nodes of its right subtree. In the tree above the pre-order traversal visits C then o, m, p,
 u, t, e, and r in that order.

 If we identify the data of each node as the ASCII code of a typed character, each node in the
 tree above occupies three words of LC-3 memory as shown below: a link to the left child, a link
 to the right child, and the data (ascii code). If the node does not have a left (or right) subtree, the
 corresponding link is x0000.

 13

 Name: ___________________________________

 Below is a program which prints all the characters in the tree in the order described above. For
 each node it visits, it keeps track of the right child (if there is one), and then follows the
 left child. When it visits a node with no left child, the program goes through the right
 children in reverse order. Assume the tree is already in memory with the root at address
 x4000.

 Your Job: Fill in the missing instructions .

 .ORIG x3000
 LD R6, STACK
 LD R1, TREE_ROOT

 LOOP LDR R0, R1, #2
 TRAP x21 ; OUT
 LDR R0, R1, #1
 BRz SKIP
 ADD R6, R6, #-1
 STR R0, R6, #0

 SKIP LDR R1, R1, #0
 BR np LOOP
 LD R2, DONE_VAL
 ADD R0, R2, R6
 BRz DONE
 LDR R1, R6, #0
 ADD R6, R6, #1
 BR nzp LOOP

 DONE HALT

 TREE_ROOT .FILL x4000
 DONE_VAL .FILL x0200 ;xFE00+x0200=x0000
 STACK .FILL xFE00

 .END

 14

 Name: ___________________________________

 Question 9 (20 Points): In this question, we modify how JSR/JSRR and RET works in LC3.
 JSR/JSRR will use the stack as the linkage instead of R7 by pushing the return PC onto the
 stack. Similarly, RET will load the PC with the value popped from the top of the stack.

 In memory, there are 10 subroutines to print the 10 digits. For example, the subroutine to print
 the number “5” consists of the following instructions:

 Print5 LD R0 Label5
 OUT
 RET

 Label5 .FILL x35
 Since each subroutine requires 4 memory locations, the starting address of each subroutine is
 always 4 greater than the starting address of the previous subroutine. The starting address of
 the subroutine Print0 is x5000. Therefore, the starting address of the subroutine Print1 is x5004,
 the starting address of the subroutine Print2 is x5008, and so on.

 A student wishes to surprise Dr. Patt by printing our course number “306” with a program that
 does not use any JSR/JSRR instructions nor I/O trap service routines in the main program.
 Your Job : Fill in the blanks in the main program, so that executing this program will result in
 printing the digits “306” on the console, and then halt the machine .

 Hint: What happens when a RET is executed without a JSR being executed beforehand?
 .ORIG x3000
 LD R6, SP_INIT
 LD R0, LABELH
 ADD R6 R6 #-1
 STR R0, R6, #0
 LD R0, LABEL6
 ADD R6 R6 #-1
 STR R0, R6, #0
 LD R0, LABEL0
 ADD R6 R6 #-1
 STR R0, R6, #0
 LD R0, LABEL3
 ADD R6 R6 #-1
 STR R0, R6, #0
 RET

 LABELH .FILL x3012
 LABEL6 .FILL x5018
 LABEL0 .FILL x5000
 LABEL3 .FILL x500C

 HALT
 SP_INIT .FILL xFE00

 .END
 15

 Name: ___________________________________

 Explanation for Q9: This is actually a real world security attack called Return-Oriented-Programming,
 invented by one of UT CS professors, Hovav Shacham (utexas.edu)

 The premise of this attack/question is that how to execute some instructions that are never part of your
 main program. The idea is to chain together a new sequence of instructions together through return
 instructions. Because RET instructions would pop the top of the stack, all the user have to do is to find
 instructions followed by a RET instruction and put that address on the stack. The system will then execute
 the new sequence of instructions. This attack is powerful as this the program can look benign at first
 glance.

 16

https://www.cs.utexas.edu/~hovav/

