
Computer Architecture:

Fundamentals, Tradeoffs, Challenges

Chapter 1: Introduction, Focus, Overview

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2023

Outline

• A science of tradeoffs

• The transformation hierarchy

• Architecture vs Microarchitecture

• Moore’s Law

• The von Neumann Machine

• The algorithm, the compiler, the microarchitecture

• Speculation

• Intro to Nonsense: Is hardware parallel or sequential

• Do it in hardware or do it in software

• Design points

• Design Principles

• Role of the Architect

• More Nonsense: The Role of Numbers

• Thinking outside the box

• Finally, a few questions

Trade-offs, the overriding consideration:

What is the cost?

What is the benefit?

• Global view
– Global vs. Local transformations

• Microarchitecture view
– The three ingredients to performance

• Physical view
– Wire delay (recently relevant) – Why? (frequency)

– Bandwidth (recently relevant) – Why? (multiple cores)

– Power, energy (recently relevant) – Why? (cores, freq)

– Soft errors (recently relevant) – Why? (freq)

– Partitioning (since the beginning of time)

Trade-offs, the overriding consideration:

What is the cost?

What is the benefit?

• Global view
– Global vs. Local transformations

• Microarchitecture view
– The three ingredients to performance

• Physical view
– Wire delay (recently relevant) – Why? (frequency)

– Bandwidth (recently relevant) – Why? (multiple cores)

– Power, energy (recently relevant) – Why? (cores, freq)

– Soft errors (recently relevant) – Why? (freq)

– Partitioning (since the beginning of time)

Algorithm

Program

ISA (Instruction Set Arch)

Microarchitecture

Circuits

Problem

Electrons

Architecture vs Microarchitecture

• Architecture
– Visible to the software

– Address Space, Addressability

– Opcodes, Data Types, Addressing Modes

– Support for Multiprocessors (e.g., TSET)

– Support for Multiprogramming (e.g., LDCTX)

• Microarchitecture
– Not Visible to the software

– Caches (although this has changed, …sort of)

– Branch Prediction

– The instruction cycle

– Pipelining

DIGRESSION (nugget): You have a brilliant idea, and

It requires a change to the ISA or to the uarchitecture.

Moore’s Law

• What is it?

– The law itself: ??

– A law of Physics? Microarchitecture? Psychology?

• Why has it been important?

– Everyone knows: chip resources (2300 transistors initially)

• 5 billion transistors today

– Just as important: frequency (106 Kilohertz initially)

• Gigahertz today

– i.e., We can do more computing concurrently and faster!

• Why all the attention today?

– Too expensive to continue making smaller transistors

• 7 nanometers = 70 Angstroms

– Charles Leiserson et al at MIT: Plenty of room at the top

– I say: True, but still plenty to do at the bottom

The von Neumann Model

• The classical model of computing

– Not really von Neumann

– Von Neumann was about co-locating inst, data in same mem

– The model has been declared dead for the future

• Digression: Wrong!

– Future machines will include lots of accelerators

– The von Neumann machine will be needed to maintain order

The Three Elements to Performance

(with credit to George Michael)

• Only the programmer knows the ALGORITHM
– Pragmas

– Pointer chasing

– Partition code, data

• Only the COMPILER knows the future (sort of ??)
– Predication

– Prefetch/Poststore

– Block-structured ISA

• Only the HARDWARE knows the past
– Branch directions

– Cache misses

– Functional unit latency

Trade-offs, the overriding consideration:

What is the cost?

What is the benefit?

• Global view
– Global vs. Local transformations

• Microarchitecture view
– The three ingredients to performance

• Physical view
– Wire delay (recently relevant) – Why? (frequency)

– Bandwidth (recently relevant) – Why? (multiple cores)

– Power, energy (recently relevant) – Why? (cores, freq)

– Soft errors (recently relevant) – Why? (freq)

– Partitioning (since the beginning of time)

Microarchitecture

(The Requirement)

• Perfect Instruction Cache

• No packet breaks

• 100% branch prediction

• Perfect data flow

• Irregular parallelism

• Enough functional units

• Perfect interconnect

• Infinite capacity

• Single cycle access time

Instruction

Supply

Data Path

Data Supply

Microarchitecture

(The Problem)

• Bandwidth (Pins)

• Latency

• Conditional branches

• Data Dependencies

• Sequential bottleneck

• Bandwidth

• Latency

Instruction

Supply

Data Path

Data Supply

Microarchitecture

(The Solution)

• Block –Structure

• Bandwidth (microcode)

• Latency (prefetch)

• Branch Prediction

• Multiple Issue

• Deep pipelines

• Data flow

• Bandwidth (data organization)

• Latency (prefetch, poststore)

Instruction

Supply

Data Path

Data Supply

A few more words on Data Supply

• Memory is particularly troubling

– Off-chip latency (hundreds of cycles, and getting worse)

– What can we do about it?

• Larger caches

• Better replacement policies

• Predict what is in memory (value prediction)

• Is MLP (Memory level parallelism) the answer

– Wait for two accesses at the same time

– Do parallel useful work while waiting (Runahead)

Trade-offs, the overriding consideration:

What is the cost?

What is the benefit?

• Global view
– Global vs. Local transformations

• Microarchitecture view
– The three ingredients to performance

• Physical view (more important in the multicore era)
– Wire delay (recently relevant) – Why? (frequency)

– Bandwidth (recently relevant) – Why? (multiple cores)

– Power, energy (recently relevant) – Why? (cores, freq)

– Soft errors (recently relevant) – Why? (freq)

– Partitioning (since the beginning of time)

The Computer System

• The Processor
– Manages the computer system, processes the instructions

– Accesses information (loads/stores) from memory and I/O

– Computes (operate instructions) with functional units

– Maintains instruction flow (control instructions)

• The Memory System
– Multiple levels of cache

– Main memory

• Input/output devices
– Some very simple (keyboard, monitor

– Some more complex (disk)

– Some are like a processor in their own right

Speculation

• Why good? – improves performance

• How? – we guess
– Starting with the design of ALUs, many years ago!

– Branch prediction – enables parallelism

– Way prediction

– Data prefetching – enables parallelism

– Value prediction – enables parallelism

– Address prediction – enables parallelism

– Memory disambiguation – enables parallelism

• Why bad? – consumes energyl

Hardware – Sequential or Parallel?

• First the nonsense: Hardware is Sequential, cycle by cycle

• Hardware is inherently parallel
– It has been since time began

– Then why the sudden interest?

• Why is parallel important?
– A simple example: factorial

– It allows us to compute faster than the speed of light!

• The key idea is Synchronization
– It can be explicit

– It can be implicit

• Pipelining
– Parallelism at its most basic level

– Everyone in the world understands that (e.g., factories)

• Speculation (formerly a no-brainer, today it depends)

• Single thread vs. multiple threads

• Single core vs. multiple cores

Hardware or Software

• Do it in hardware

– Takes time, not easily changed

– Generally higher performance

• Do it in software

– Easier, faster to implement, easily changed

– Generally lower performance

• Which is better?

– It depends

Design Principles

• Critical path design

• Bread and Butter design

• Balanced design

Critical path design

• The ill-advised performance equation states:

Performance = 1/(length x CPI x cycle time)

• Likely paths

– ALU

– On-chip storage access

– Microsequencer function

• Methodology

– Pick the longest

– Work on shortening it until it no longer is

– Iterate

• Bad design example: Removing ucode had no effect

Bread and Butter design

• What does your machine have to do real fast?

– Or what if optimized will be a BIG win?

• Concentrate your efforts there

• The other stuff? Just be sure it not done too badly

• Bad design example: The DEC 2080

Balanced Design

• Front end, back end should make sense together

• Bad design #1: 6-wide issue, four functional units

• Bad design #2: A supercomputer with one result bus

• Bad design #3: Multi-threading with one ALU

Design Methodology

• Specify your design point

• Identify the Bread and Butter

• Optimize the Bread and Butter

• Cover the rest

Numbers

(because comp arch is obsessed with numbers)

• The Baseline – Make sure it is the best
– Superlinear speedup (Are you evil, or just confused?)

– Recent example, one core vs. 4 cores with ability to fork

• The Simulator you use – Is it bug-free?

• Understanding vs “See, it works!”
– 16/64

• You get to choose your experiments
– SMT: If throughput is your metric, run the idle process!

– Combining cores: what should each core look like

• You get to choose the data you report
– Wrong path detection: WHEN was the wrong path detected

• Never gloss over anomalous data

Finally, people are always telling you:

Think outside the box

I prefer: Expand the box

Something you are all familiar with:

Look-ahead Carry Generators

• They speed up ADDITION

• But why do they work?

12

9

21

182378

645259

827637

Addition

Question:

• What is computer architecture?

• It is a contract between

– The software (what it demands)

– The hardware (what it agrees to deliver)

Question:

• What is microarchitecture?

• It is a science of tradeoffs:

– What functionality we will deliver

– At what performance

– At what cost

Question:

• How do we compute faster than the speed of light?

• We do things concurrently.

Question:

• Should we add a feature if the clock slows by 10% ?

• Normally no, unless

– The benefit of the feature taking a single cycle outweighs

– the fact that everything else takes 10% more time.

Question: Is computer architecture dead?

Answer: Computer Architecture will always be alive

and healthy as long as people can dream.

(Dreamers are not the architects, they are those who

want to use machines in new and interesting ways)

Computer Architecture is about the interface between

what technology can provide and the market demands

Tack!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 1: Introduction, Focus, Overview
	Slide 2: Outline
	Slide 3: Trade-offs, the overriding consideration: What is the cost? What is the benefit?
	Slide 4: Trade-offs, the overriding consideration: What is the cost? What is the benefit?
	Slide 5
	Slide 6: Architecture vs Microarchitecture
	Slide 7: Moore’s Law
	Slide 8: The von Neumann Model
	Slide 9: The Three Elements to Performance (with credit to George Michael)
	Slide 10: Trade-offs, the overriding consideration: What is the cost? What is the benefit?
	Slide 11: Microarchitecture (The Requirement)
	Slide 12: Microarchitecture (The Problem)
	Slide 13: Microarchitecture (The Solution)
	Slide 14: A few more words on Data Supply
	Slide 15: Trade-offs, the overriding consideration: What is the cost? What is the benefit?
	Slide 16: The Computer System
	Slide 17: Speculation
	Slide 18: Hardware – Sequential or Parallel?
	Slide 19: Hardware or Software
	Slide 20: Design Principles
	Slide 21: Critical path design
	Slide 22: Bread and Butter design
	Slide 23: Balanced Design
	Slide 24: Design Methodology
	Slide 25
	Slide 26
	Slide 27: Numbers (because comp arch is obsessed with numbers)
	Slide 28: Finally, people are always telling you: Think outside the box
	Slide 29: I prefer: Expand the box
	Slide 30
	Slide 31: Something you are all familiar with: Look-ahead Carry Generators
	Slide 32
	Slide 33: Question:
	Slide 34: Question:
	Slide 35: Question:
	Slide 36: Question:
	Slide 37: Question: Is computer architecture dead?
	Slide 38

