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The Binary Point (fixed pt. vs. floating pt.)
Where do we put the binary point?

* Fixed Point (one place, fixed for that design)
— Interval remains the same for the entire real line
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* Floating Point (varies from binade to binade)
— Interval changes along the real line




Several choices

2’s complement
1’s complement
Signed magnitude

Long Integers
— When you wish to retain the structure of 2’s complement
— But you need a lot more bits

BCD
— Arbitrarily large precision

Residue Numbers
— Compute intensive, low I/O (But...)



2’s complement, 1’'s complement, Signed-maghitude
* Why each?

— 2’s complement (Easy for the computer, representations track represented!)

— 1’s complement (Seymour Cray’s misguided decision)
— Signed-magnitude (Easy for humans, bad for designing logic to implement)

° Example (A 4-bit word Iength) 2’s comp 1’s comp Signed-mag

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 -7 0
1001 7 -6 -1
1010 6 -5 -2
1011 -5 -4 -3
1100 -4 -3 4
1101 -3 -2 -5
1110 -2 -1 -6



Observations

* With 2’s complement
— why can Carry bit go in the trash?

* With 1’s complement
— Is there a problem?
— how do we fix it



Long Integers

When the number of bits in 2’s complement is not enough
— If word length is 16 bits, but you want 160 bit integer data type

Then you need an instruction requiring that Data Type
— ADDR, for example. (R for ridiculous!)

Consider ADDR A,B,C, where A,B,C are 160 bit integers:

— Requires a procedure call. which nerforms 10 iterations
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Note: test for overflow only In the last iteration.
ADDC (add with carry a very important opcode)



Addition

* Ripple carry
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* Look ahead Carry Generation
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Addition (continued): The Kogge-Stone Adder

* The needed values can be generated by a tree!
— Brilliant insight: reduces time from O(n) to O(log n).
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Addition (continued):Intel’s P4 Fireball

* The code to compute Z = A+B+C+D+E
W=A+B
X=W+C
Y=X+D
Z=Y=E
* Operands have too many bits, cycle time is too long
— Cut number of bits in half, e.qg., A becomes A_high and A_low
— Perform 2 ADDs, each clock cycle, on half-width operands

— The result: 5 adds, rather than 4, BUT with much smaller cycle
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BCD Arithmetic

BCD Each decimal digit represented by 4 bits
Memory location requires address and size

Addition with a standard 2’s complement ALU
— Although we could design a special BCD Adder

The process (using a standard 2’s complement ALU
— Step 1: Add x6666...6 to one of the operands. (Why?)
— Step 2: Add result to the other operand
— Step 3: Correct by subtracting 6 where necessary (When?)

An example: Add BCD numbers 283, 598
— 283: 0010 1000 0011, 598: 0101 1001 1000
— Step 1: With standard ALU, 283 + 666 = 8E9
— Step 2: With standard ALU, 8E9 + 598 = E81
— Step 3: Since high digit did not generate a carry, subtract 6 from it
i.e, E81 - 600 = 881, the correct answer!



Multiplication (let’s start with decimal)
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Multiplication

* A sequence of shifts and adds, one bit each iteration
— Initially load the multiplier, the multiplicand, and 0 in the Buffer
— The multiplier is a shift register that right shifts one bit per cycle
— The 2n bit buffer gets the result of the multiplication
— Iterations stop when the multiplier contains all 0’s.
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Multiplication (continued)

* Booth’s Algorithm (my variation, to better explain it)
— Initially load the multiplier, multiplicand, and 0 in the Buffer
— The multiplier is in a shift register that right shifts two bits per cycle
— The 2n bit Buffer gets the result of the multiplication
— Iterations stop when the multiplier contains all zeroes
— Control of the two shifters and ALU from the low two bits of the

multiplier and the “c” bit, which is produced by a prior iteration
—

. Bit 1 Bit 0 C | X Y Z C’
- [ MCAND | MULTIPLIER 0 0 0 SHFO | PassA SHF2 |0
2 0 0 1 | SHFO | ADD SHF2 | 0
A B / 8213 0 1 0 | SHFO | ADD | SHF2 |0
7 0 1 1 | SHF1 ADD |SHF1 |0
! X 1 0 0 | SHF1 | ADD | SHF1 |0
- 1 0 1 SHFO |SUB | SHF2 1
@ 1 1 0 | SHFO | SUB | SHF2 1
; 1 1 1 | SHFO | PassA | SHF2 1




Booth’s Algorithm (first a simple example)

We want to multiply 22 by 9
— 22is 00010110, 9 is 00001001
— 00010110 is the MCAND, 000001001 is the Multiplier

We partition the multiplier bits into 2-bit pieces: 00 00 10 01

Right-most bits = 01, which is 1 times 470
— Add (1 times 4"0) times MCAND = 22
— Add this to the Buffer (which initially contained 0)
— Then we shift the multiplier right two bits, yielding 00 00 00 10
— And, we shift the buffer right two bits, effectively multiplying the MCAND by 4
— The MCAND is now effectively 88

Right-most bits of the multiplier are = 10, which is 2.
— Shift the MCAND one bit to the right, thereby multiplying MCAND by 2 (i.e., 176)
and add it to the Buffer (176 + 22 =198)
— Then we again shift right the multiplier two bits, yielding 00 00

Since there are no more non-zero bits in the multiplier, we are done!
— The buffer contains the product of 22 times 9, i.e. 198.



Booth’s Algorithm (A more interesting example)

We want to multiply 22 x 14; MCAND = 00010110, Multiplier = 00001110
We partition our multiplier bits into 2-bit pieces: 00 00 11 10

Right-most bits = 10, which is 2
— Shift the MCAND one bit to the left, thereby multiplying MCAND by 2 (i.e., 44),
add it to the Buffer (44), then shift right the Buffer 2 bits
— Then we shift right the multiplier two bits, yielding 00 00 11

Right-most bits are 11, which is 3. Important to note that 3 =4 -1.
— Subtract 1 times MCAND from the Buffer
and add 1 to the next iteration of the multiplier, yielding 00 01
— Net result: We have subtracted 4 times MCAND from the running sum
— As before, we right shift the contents of the Buffer two bits
— Then we shift right the multiplier two bits, yielding 00 01
Right-most bits (now) = 01, which is 1.
— Add 1 times MCAND to the Buffer.
— Net result: We have added 16 times MCAND to the running sum.

— Then we right shift the Buffer two bits.
— Then we shift right the multiplier two bits, yielding 00, and we are done.

EFinal result- (16 -4 +2) times MCAND = (14) times MCAND



Residue Arithmetic (an entertaining digression)

When?

— Inputs, outputs relatively small integers
— Intermediate results could be very large
— Internally compute-intensive

— Very little 1/0

How?
— Step 1: transform to the residue nhumber domain SLOW
* a, b-> f(a), f(b)
— Step 2: Perform the operation in the residue domain. FAST
- fO € f(a)* f(b)
— Step 3: Perform the inverse transformation SLOW
e c €fO

Note: Does this remind you of anything you have studied
In some other course?



Residue Arithmetic (continued)

* The detail:
— Pick a set of moduli p1, p2, ..pn that are relatively prime
— Represent each value X as x1,x2,..xn, where xi = X mod pi

The Chinese Remainder Theorem (from the first century AD) states that each
integer between 0 and (product p1,p2,...pn) -1 are uniquely represented.

— Sum (X,Y), Product (X,Y) can be computed by n simpler elements,
all working concurrently, with no interaction between them, yielding
a result very fast.

* An example: Add, Multiply the two numbers, 19 and 24
— Using the modulipl1=7,p2=8,p3=9,19is 5,3,1
— Adding 5,3,1 to 3,0,6, we get 1,3,7, which is 43.
— Multiplying 5,3,1 to 3,0,6, we get 1,0,6, which is 456.



Residue Arithmetic (Two observations)

* Why does it work?
— Consider the multiplication of A and B
-~ A*B=(m*p+a)*(n*p+h)
where ais A mod p, b is B mod p.
— Thus A*B=p*(m*n*p+a*n+ b*m) + a*b,
— From which, (A *B) mod p =a * b,
— Completely independent of the other moduli.

* Then why is not used?
— Transformations are expensive
— Comparisons are unwieldly (e.g., How to determine if A>B.



Residue Arithmetic (The Inverse Transformation)
* We multiplied 19 times 24, and got the result: 1,0,6

— We know X is defined by 1 for x1, 0 for x2, and 6 for x3

— It would be nice to put it into a more familiar form (e.q., 456)

— We know 1,0,6 is 1,0,0 + 0,0,0 + 0,0,6. How do we know that?

— We know 1,0,0 must be a multiple of 72; How do we know that?

— ...and 0,0,0, a multiple of 63, and 0,0,6 a multiple of 56.

— So we build three tables with the entries corresponding to the

values of x1,x2,x3, gnd acc€$§ the fg[lqwing data path:
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Merci
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