Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 10: Fixed Point Arithmetic

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2023

Outline

The Binary Point (fixed point vs floating point)
Several Choices

2’s complement, 1’s complement, Sign-magnitude
Long Integers

Addition

—ripple carry, look ahead carry, Kogge Stone)
—Interesting anecdote: the P4 fireball

BCD Arithmetic

Multiplication
—Shift and Add, Booth’s Algorithm

Residue Arithmetic

The Binary Point (fixed pt. vs. floating pt.)
Where do we put the binary point?

* Fixed Point (one place, fixed for that design)
— Interval remains the same for the entire real line

ad . 0 o«

\ A IS RY MY | ad _-"'I"\- & ¢ — e - 3
)™~ L . 3 1 | =& e\ L= = |

1 - = 4 L M S I~y
: - all] ll ' ¥ |

* Floating Point (varies from binade to binade)
— Interval changes along the real line

Several choices

2’s complement
1’s complement
Signed magnitude

Long Integers
— When you wish to retain the structure of 2’s complement
— But you need a lot more bits

BCD
— Arbitrarily large precision

Residue Numbers
— Compute intensive, low I/O (But...)

2’s complement, 1’'s complement, Signed-maghitude
* Why each?

— 2’s complement (Easy for the computer, representations track represented!)

— 1’s complement (Seymour Cray’s misguided decision)
— Signed-magnitude (Easy for humans, bad for designing logic to implement)

° Example (A 4-bit word Iength) 2’s comp 1’s comp Signed-mag

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 -7 0
1001 7 -6 -1
1010 6 -5 -2
1011 -5 -4 -3
1100 -4 -3 4
1101 -3 -2 -5
1110 -2 -1 -6

Observations

* With 2’s complement
— why can Carry bit go in the trash?

* With 1’s complement
— Is there a problem?
— how do we fix it

Long Integers

When the number of bits in 2’s complement is not enough
— If word length is 16 bits, but you want 160 bit integer data type

Then you need an instruction requiring that Data Type
— ADDR, for example. (R for ridiculous!)

Consider ADDR A,B,C, where A,B,C are 160 bit integers:

— Requires a procedure call. which nerforms 10 iterations
159 ' \.a

| (4
43 , lis ,
': 1 - - f

Note: test for overflow only In the last iteration.
ADDC (add with carry a very important opcode)

Addition

* Ripple carry

;\Wt{n A EL A R

L_u*" LH' JH {AJ
ey

S Sy S %

\
|

* Look ahead Carry Generation

ﬂ(_sx GLIS i) Alnd :sf 8 Al ’4J B{74) A3 B(3:0]

lL—«“?—]' gy b by L)

k)

Lol o | [@Jw
i A

’L o0 Awm) Caney G everaTol

Addition (continued): The Kogge-Stone Adder

* The needed values can be generated by a tree!
— Brilliant insight: reduces time from O(n) to O(log n).

* The basic piece . v =
| | \

o o = T = 2 1
i | s I - G i [Y:2 |
(_HJ L ; = C) i'r._u . o J| 1 l| | e .S J - (_':- L]

4 o Phdin]e FLTED
5; L‘u L] = I} J
* The binary tree @ B @ F 3 S
; [e - :
7 7 I ’ J' .// |'I /, | & o
i C & Y
| | A
) O[]

Addition (continued):Intel’s P4 Fireball

* The code to compute Z = A+B+C+D+E
W=A+B
X=W+C
Y=X+D
Z=Y=E
* Operands have too many bits, cycle time is too long
— Cut number of bits in half, e.qg., A becomes A_high and A_low
— Perform 2 ADDs, each clock cycle, on half-width operands

— The result: 5 adds, rather than 4, BUT with much smaller cycle

/A \ '
| ’ -
— T { :s
\ A K .
et e —
4 " . |
i - ; \ e \
)\ S— N
,‘——’“— - -
| X / . L J
] e “
s —

BCD Arithmetic

BCD Each decimal digit represented by 4 bits
Memory location requires address and size

Addition with a standard 2’s complement ALU
— Although we could design a special BCD Adder

The process (using a standard 2’s complement ALU
— Step 1: Add x6666...6 to one of the operands. (Why?)
— Step 2: Add result to the other operand
— Step 3: Correct by subtracting 6 where necessary (When?)

An example: Add BCD numbers 283, 598
— 283: 0010 1000 0011, 598: 0101 1001 1000
— Step 1: With standard ALU, 283 + 666 = 8E9
— Step 2: With standard ALU, 8E9 + 598 = E81
— Step 3: Since high digit did not generate a carry, subtract 6 from it
i.e, E81 - 600 = 881, the correct answer!

Multiplication (let’s start with decimal)

[4 ! | 42 [42
XS 213 213
D C C -twgr‘ Obo I—
| llﬁ L ||';’§4. |'=F.’_ o
- o~ - ™
21D (o2 213 (uoe 218 (v
0o 00 O il
42 L 42 é 41c
———) (e £ o SE—
L1 2(ap2) 213 (hod
426 426
(42 —
213 SHF
. X
1. y . '
[[i]4 2 f &S | 42 - |
| i:ﬁl 5 I{;V) 2"_1'-'_ ey ___1U,, I:_'-a.-. |
g i S W M e e
| 4 | 42 | &2
|42 R
L 42 p £
| 3 ¥ =~ T
135 pp) ST~
|‘t“'f\3 | \h-' =
142)
2 ,I??-"\f-ul"
e N T oy
If{r{' ._;'. [SR |
oy N T 1 [&
| ll‘.“—‘:—l-)—‘.rHl-'- Ci-' i s)13 MU L
| g L | ¥4 — - A7 |
4 1¢ , 4. | X9h ™ |
41 23) ¢4
184)
o I‘?‘f Id{— : =,
L 115 5D 2> (APD
Ll g - 30 24¢ T

Multiplication

* A sequence of shifts and adds, one bit each iteration
— Initially load the multiplier, the multiplicand, and 0 in the Buffer
— The multiplier is a shift register that right shifts one bit per cycle
— The 2n bit buffer gets the result of the multiplication
— Iterations stop when the multiplier contains all 0’s.

T MU LT PLICR,
| MCAVD) e
i (I
\ II{/ .'l ‘
AV} |
ol

. e — J

Multiplication (continued)

* Booth’s Algorithm (my variation, to better explain it)
— Initially load the multiplier, multiplicand, and 0 in the Buffer
— The multiplier is in a shift register that right shifts two bits per cycle
— The 2n bit Buffer gets the result of the multiplication
— Iterations stop when the multiplier contains all zeroes
— Control of the two shifters and ALU from the low two bits of the

multiplier and the “c” bit, which is produced by a prior iteration
—

. Bit 1 Bit 0 C | X Y Z C’
- [MCAND | MULTIPLIER 0 0 0 SHFO | PassA SHF2 |0
2 0 0 1 | SHFO | ADD SHF2 | 0
A B / 8213 0 1 0 | SHFO | ADD | SHF2 |0
7 0 1 1 | SHF1 ADD |SHF1 |0
! X 1 0 0 | SHF1 | ADD | SHF1 |0
- 1 0 1 SHFO |SUB | SHF2 1
@ 1 1 0 | SHFO | SUB | SHF2 1
; 1 1 1 | SHFO | PassA | SHF2 1

Booth’s Algorithm (first a simple example)

We want to multiply 22 by 9
— 22is 00010110, 9 is 00001001
— 00010110 is the MCAND, 000001001 is the Multiplier

We partition the multiplier bits into 2-bit pieces: 00 00 10 01

Right-most bits = 01, which is 1 times 470
— Add (1 times 4"0) times MCAND = 22
— Add this to the Buffer (which initially contained 0)
— Then we shift the multiplier right two bits, yielding 00 00 00 10
— And, we shift the buffer right two bits, effectively multiplying the MCAND by 4
— The MCAND is now effectively 88

Right-most bits of the multiplier are = 10, which is 2.
— Shift the MCAND one bit to the right, thereby multiplying MCAND by 2 (i.e., 176)
and add it to the Buffer (176 + 22 =198)
— Then we again shift right the multiplier two bits, yielding 00 00

Since there are no more non-zero bits in the multiplier, we are done!
— The buffer contains the product of 22 times 9, i.e. 198.

Booth’s Algorithm (A more interesting example)

We want to multiply 22 x 14; MCAND = 00010110, Multiplier = 00001110
We partition our multiplier bits into 2-bit pieces: 00 00 11 10

Right-most bits = 10, which is 2
— Shift the MCAND one bit to the left, thereby multiplying MCAND by 2 (i.e., 44),
add it to the Buffer (44), then shift right the Buffer 2 bits
— Then we shift right the multiplier two bits, yielding 00 00 11

Right-most bits are 11, which is 3. Important to note that 3 =4 -1.
— Subtract 1 times MCAND from the Buffer
and add 1 to the next iteration of the multiplier, yielding 00 01
— Net result: We have subtracted 4 times MCAND from the running sum
— As before, we right shift the contents of the Buffer two bits
— Then we shift right the multiplier two bits, yielding 00 01
Right-most bits (now) = 01, which is 1.
— Add 1 times MCAND to the Buffer.
— Net result: We have added 16 times MCAND to the running sum.

— Then we right shift the Buffer two bits.
— Then we shift right the multiplier two bits, yielding 00, and we are done.

EFinal result- (16 -4 +2) times MCAND = (14) times MCAND

Residue Arithmetic (an entertaining digression)

When?

— Inputs, outputs relatively small integers
— Intermediate results could be very large
— Internally compute-intensive

— Very little 1/0

How?
— Step 1: transform to the residue nhumber domain SLOW
* a, b-> f(a), f(b)
— Step 2: Perform the operation in the residue domain. FAST
- fO € f(a)* f(b)
— Step 3: Perform the inverse transformation SLOW
e c €fO

Note: Does this remind you of anything you have studied
In some other course?

Residue Arithmetic (continued)

* The detail:
— Pick a set of moduli p1, p2, ..pn that are relatively prime
— Represent each value X as x1,x2,..xn, where xi = X mod pi

The Chinese Remainder Theorem (from the first century AD) states that each
integer between 0 and (product p1,p2,...pn) -1 are uniquely represented.

— Sum (X,Y), Product (X,Y) can be computed by n simpler elements,
all working concurrently, with no interaction between them, yielding
a result very fast.

* An example: Add, Multiply the two numbers, 19 and 24
— Using the modulipl1=7,p2=8,p3=9,19is 5,3,1
— Adding 5,3,1 to 3,0,6, we get 1,3,7, which is 43.
— Multiplying 5,3,1 to 3,0,6, we get 1,0,6, which is 456.

Residue Arithmetic (Two observations)

* Why does it work?
— Consider the multiplication of A and B
-~ A*B=(m*p+a)*(n*p+h)
where ais A mod p, b is B mod p.
— Thus A*B=p*(m*n*p+a*n+ b*m) + a*b,
— From which, (A *B) mod p =a * b,
— Completely independent of the other moduli.

* Then why is not used?
— Transformations are expensive
— Comparisons are unwieldly (e.g., How to determine if A>B.

Residue Arithmetic (The Inverse Transformation)
* We multiplied 19 times 24, and got the result: 1,0,6

— We know X is defined by 1 for x1, 0 for x2, and 6 for x3

— It would be nice to put it into a more familiar form (e.q., 456)

— We know 1,0,6 is 1,0,0 + 0,0,0 + 0,0,6. How do we know that?

— We know 1,0,0 must be a multiple of 72; How do we know that?

— ...and 0,0,0, a multiple of 63, and 0,0,6 a multiple of 56.

— So we build three tables with the entries corresponding to the

values of x1,x2,x3, gnd acc€$§ the fg[lqwing data path:

.Ir)- / =4 = 0| |
T—)
2 7T = 3
= . ! Ko —H__——
e S TTE L secae 1T T ‘
| — — L -
‘|1 de] # sisavt (RS B
"\--—“Li J 26l | _ic¥ |
2 T A I
) _| ! ﬂ-" S
Y =
— 4 / /
i h. /
4 .-‘J
\ __/
\"IC|} _C4|

Merci

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

