#### *Computer Architecture: Fundamentals, Tradeoffs, Challenges*

#### **Chapter 10: Fixed Point Arithmetic**

#### Yale Patt The University of Texas at Austin

Austin, Texas Spring, 2023

# Outline

- The Binary Point (fixed point vs floating point)
- Several Choices
- 2's complement, 1's complement, Sign-magnitude
- Long Integers
- Addition

-ripple carry, look ahead carry, Kogge Stone) -Interesting anecdote: the P4 fireball

- BCD Arithmetic
- Multiplication —Shift and Add, Booth's Algorithm
- Residue Arithmetic

### The Binary Point (fixed pt. vs. floating pt.) Where do we put the binary point?

- Fixed Point (one place, fixed for that design)
  - Interval remains the same for the entire real line



- Floating Point (varies from binade to binade)
  - Interval changes along the real line



## Several choices

- 2's complement
- 1's complement
- Signed magnitude
- Long Integers
  - When you wish to retain the structure of 2's complement
  - But you need a lot more bits
- BCD
  - Arbitrarily large precision
- Residue Numbers
  - Compute intensive, low I/O (But...)

# 2's complement, 1's complement, Signed-magnitude

#### • Why each?

- 2's complement (Easy for the computer, representations track represented!)
- 1's complement (Seymour Cray's misguided decision)
- Signed-magnitude (Easy for humans, bad for designing logic to implement)
- Example (A 4-bit word length) 2's comp 1's comp Signed-mag

| 0000                                                 | 0                                      | 0                                      | 0                                     |
|------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|
| 0001                                                 | 1                                      | 1                                      | 1                                     |
| 0010                                                 | 2                                      | 2                                      | 2                                     |
| 0011                                                 | 3                                      | 3                                      | 3                                     |
| 0100                                                 | 4                                      | 4                                      | 4                                     |
| 0101                                                 | 5                                      | 5                                      | 5                                     |
| 0110                                                 | 6                                      | 6                                      | 6                                     |
| 0111                                                 | 7                                      | 7                                      | 7                                     |
|                                                      |                                        |                                        |                                       |
|                                                      |                                        |                                        |                                       |
| <br>1000                                             | -8                                     | -7                                     | 0                                     |
| <br>1000<br>1001                                     | <br>-8<br>-7                           | <br>-7<br>-6                           | 0<br>-1                               |
| <br>1000<br>1001<br>1010                             | 8<br>-7<br>-6                          | 7<br>-6<br>-5                          | 0<br>-1<br>-2                         |
| <br>1000<br>1001<br>1010<br>1011                     | -8<br>-7<br>-6<br>-5                   | -7<br>-6<br>-5<br>-4                   | 0<br>-1<br>-2<br>-3                   |
| <br>1000<br>1001<br>1010<br>1011<br>1100             | -8<br>-7<br>-6<br>-5<br>-4             | -7<br>-6<br>-5<br>-4<br>-3             | 0<br>-1<br>-2<br>-3<br>-4             |
| 1000<br>1001<br>1010<br>1011<br>1100<br>1101         | -8<br>-7<br>-6<br>-5<br>-4<br>-3       | -7<br>-6<br>-5<br>-4<br>-3<br>-2       | 0<br>-1<br>-2<br>-3<br>-4<br>-5       |
| 1000<br>1001<br>1010<br>1011<br>1100<br>1101<br>1110 | -8<br>-7<br>-6<br>-5<br>-4<br>-3<br>-2 | -7<br>-6<br>-5<br>-4<br>-3<br>-2<br>-1 | 0<br>-1<br>-2<br>-3<br>-4<br>-5<br>-6 |

#### **Observations**

- With 2's complement
  - why can Carry bit go in the trash?

- With 1's complement
  - Is there a problem?
  - how do we fix it

# Long Integers

- When the number of bits in 2's complement is not enough
   If word length is 16 bits, but you want 160 bit integer data type
- Then you need an instruction requiring that Data Type
  - ADDR, for example. (R for ridiculous!)
- Consider ADDR A,B,C, where A,B,C are 160 bit integers:





- Note: test for overflow only in the last iteration.
- ADDC (add with carry a very important opcode)

# Addition

• Ripple carry



• Look ahead Carry Generation



# Addition (continued): The Kogge-Stone Adder

- The needed values can be generated by a tree!
  - Brilliant insight: reduces time from O(n) to O(log n).
- The basic piece

$$w = x y = 2$$
  

$$G[w;z] = G[w;x] + P[v;x] \cdot G[y;z]$$
  

$$P[w;z] = P[w;x] \cdot P[y;z]$$

• The binary tree



#### Addition (continued):Intel's P4 Fireball

• The code to compute *Z* = A+B+C+D+E

W=A+B X=W+C Y=X+D Z=Y=E

- Operands have too many bits, cycle time is too long
  - Cut number of bits in half, e.g., A becomes A\_high and A\_low
  - Perform 2 ADDs, each clock cycle, on half-width operands
  - The result: 5 adds, rather than 4, BUT with much smaller cycle



## **BCD** Arithmetic

- BCD Each decimal digit represented by 4 bits
- Memory location requires address and size
- Addition with a standard 2's complement ALU
  - Although we could design a special BCD Adder
- The process (using a standard 2's complement ALU
  - Step 1: Add x6666...6 to one of the operands. (Why?)
  - Step 2: Add result to the other operand
  - Step 3: Correct by subtracting 6 where necessary (When?)
- An example: Add BCD numbers 283, 598
  - 283: 0010 1000 0011, 598: 0101 1001 1000
  - Step 1: With standard ALU, 283 + 666 = 8E9
  - Step 2: With standard ALU, 8E9 + 598 = E81
  - Step 3: Since high digit did not generate a carry, subtract 6 from it
     i.e, E81 600 = 881, the correct answer!

#### Multiplication (let's start with decimal)



# **Multiplication**

- A sequence of shifts and adds, one bit each iteration
  - Initially load the multiplier, the multiplicand, and 0 in the Buffer
  - The multiplier is a shift register that right shifts one bit per cycle
  - The 2n bit buffer gets the result of the multiplication
  - Iterations stop when the multiplier contains all 0's.



# Multiplication (continued)

- Booth's Algorithm (my variation, to better explain it)
  - Initially load the multiplier, multiplicand, and 0 in the Buffer
  - The multiplier is in a shift register that right shifts two bits per cycle
  - The 2n bit Buffer gets the result of the multiplication
  - Iterations stop when the multiplier contains all zeroes
  - Control of the two shifters and ALU from the low two bits of the multiplier and the "c" bit, which is produced by a prior iteration



| Bit_1 | Bit_0 | С | X    | Υ     | Z    | C' |
|-------|-------|---|------|-------|------|----|
| 0     | 0     | 0 | SHF0 | PassA | SHF2 | 0  |
| 0     | 0     | 1 | SHF0 | ADD   | SHF2 | 0  |
| 0     | 1     | 0 | SHF0 | ADD   | SHF2 | 0  |
| 0     | 1     | 1 | SHF1 | ADD   | SHF1 | 0  |
| 1     | 0     | 0 | SHF1 | ADD   | SHF1 | 0  |
| 1     | 0     | 1 | SHF0 | SUB   | SHF2 | 1  |
| 1     | 1     | 0 | SHF0 | SUB   | SHF2 | 1  |
| 1     | 1     | 1 | SHF0 | PassA | SHF2 | 1  |

## Booth's Algorithm (first a simple example)

- We want to multiply 22 by 9
  - 22 is 00010110, 9 is 00001001
  - 00010110 is the MCAND, 000001001 is the Multiplier
- We partition the multiplier bits into 2-bit pieces: 00 00 10 01
- Right-most bits = 01, which is 1 times 4^0
  - Add (1 times 4^0) times MCAND = 22
  - Add this to the Buffer (which initially contained 0)
  - Then we shift the multiplier right two bits, yielding 00 00 00 10
  - And, we shift the buffer right two bits, effectively multiplying the MCAND by 4
  - The MCAND is now effectively 88
- Right-most bits of the multiplier are = 10, which is 2.
  - Shift the MCAND one bit to the right, thereby multiplying MCAND by 2 (i.e., 176) and add it to the Buffer (176 + 22 =198)
  - Then we again shift right the multiplier two bits, yielding 00 00

#### • Since there are no more non-zero bits in the multiplier, we are done!

The buffer contains the product of 22 times 9, i.e. 198.

# Booth's Algorithm (A more interesting example)

- We want to multiply 22 x 14; MCAND = 00010110, Multiplier = 00001110
- We partition our multiplier bits into 2-bit pieces: 00 00 11 10
- Right-most bits = 10, which is 2
  - Shift the MCAND one bit to the left, thereby multiplying MCAND by 2 (i.e., 44), add it to the Buffer (44), then shift right the Buffer 2 bits
  - Then we shift right the multiplier two bits, yielding 00 00 11
- Right-most bits are 11, which is 3. Important to note that 3 = 4 -1.
  - Subtract 1 times MCAND from the Buffer and add 1 to the next iteration of the multiplier, yielding 00 01
  - Net result: We have subtracted 4 times MCAND from the running sum
  - As before, we right shift the contents of the Buffer two bits
  - Then we shift right the multiplier two bits, yielding 00 01
- Right-most bits (now) = 01, which is 1.
  - Add 1 times MCAND to the Buffer.
  - Net result: We have added 16 times MCAND to the running sum.
  - Then we right shift the Buffer two bits.
  - Then we shift right the multiplier two bits, yielding 00, and we are done.
- Final result: (16 -4 +2) times MCAND = (14) times MCAND.

# Residue Arithmetic (an entertaining digression)

- When?
  - Inputs, outputs relatively small integers
  - Intermediate results could be very large
  - Internally compute-intensive
  - Very little I/O
- How?
  - Step 1: transform to the residue number domain **SLOW** 
    - $a, b \rightarrow f(a), f(b)$
  - Step 2: Perform the operation in the residue domain. **FAST** 
    - f© ← f(a) \* f(b)
  - Step 3: Perform the inverse transformation **SLOW** 
    - c ← f©
- Note: Does this remind you of anything you have studied in some other course?

### **Residue Arithmetic (continued)**

- The detail:
  - Pick a set of moduli p1, p2, ..pn that are relatively prime
  - Represent each value X as x1,x2,..xn, where xi = X mod pi
     The Chinese Remainder Theorem (from the first century AD) states that each

integer between 0 and (product p1,p2,...pn) -1 are uniquely represented.

- Sum (X,Y), Product (X,Y) can be computed by n simpler elements, all working concurrently, with no interaction between them, yielding a result very fast.
- An example: Add, Multiply the two numbers, 19 and 24
  - Using the moduli p1 = 7, p2 = 8, p3 = 9, 19 is 5,3,1
  - Adding 5,3,1 to 3,0,6, we get 1,3,7, which is 43.
  - Multiplying 5,3,1 to 3,0,6, we get 1,0,6, which is 456.

#### Residue Arithmetic (Two observations)

- Why does it work?
  - Consider the multiplication of A and B
  - A \* B = (m \* p + a) \* (n \* p +b),
     where a is A mod p, b is B mod p.
  - Thus A \* B = p \* (m \* n \* p + a\*n + b\*m) + a\*b,
  - From which,  $(A * B) \mod p = a * b$ ,
  - Completely independent of the other moduli.
- Then why is not used?
  - Transformations are expensive
  - Comparisons are unwieldly (e.g., How to determine if A>B.

# Residue Arithmetic (The Inverse Transformation)

- We multiplied 19 times 24, and got the result: 1,0,6
  - We know X is defined by 1 for x1, 0 for x2, and 6 for x3
  - It would be nice to put it into a more familiar form (e.g., 456)
  - We know 1,0,6 is 1,0,0 + 0,0,0 + 0,0,6. How do we know that?
  - We know 1,0,0 must be a multiple of 72; How do we know that?
  - ...and 0,0,0, a multiple of 63, and 0,0,6 a multiple of 56.
  - So we build three tables with the entries corresponding to the values of x1,x2,x3, and access the following data path:



Merci