Computer Architecture:

 Fundamentals, Tradeoffs, Challenges
Chapter 10: Fixed Point Arithmetic

Yale Patt
The University of Texas at Austin

Austin, Texas

Spring, 2023

Outline

- The Binary Point (fixed point vs floating point)
- Several Choices
- 2's complement, 1's complement, Sign-magnitude
- Long Integers
- Addition
-ripple carry, look ahead carry, Kogge Stone)
-Interesting anecdote: the P4 fireball
- BCD Arithmetic
- Multiplication
-Shift and Add, Booth's Algorithm
- Residue Arithmetic

The Binary Point (fixed pt. vs. floating pt.) Where do we put the binary point?

- Fixed Point (one place, fixed for that design)
- Interval remains the same for the entire real line

- Floating Point (varies from binade to binade)
- Interval changes along the real line

Several choices

- 2's complement
- 1's complement
- Signed magnitude
- Long Integers
- When you wish to retain the structure of 2's complement
- But you need a lot more bits
- BCD
- Arbitrarily large precision
- Residue Numbers
- Compute intensive, low I/O (But...)

2's complement, 1's complement, Signed-magnitude

- Why each?
- 2's complement (Easy for the computer, representations track represented!)
- 1's complement (Seymour Cray's misguided decision)
- Signed-magnitude (Easy for humans, bad for designing logic to implement)
- Example (A 4-bit word length) 2's comp 1's comp Signed-mag

0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	-8	-7	0
1001	-7	-6	-1
1010	-6	-5	-2
1011	-5	-4	-3
1100	-4	-3	-4
1101	-3	-2	-5
1110	-2	-1	-6
1111	-1	0	-7

Observations

- With 2's complement
- why can Carry bit go in the trash?
- With 1's complement
- Is there a problem?
- how do we fix it

Long Integers

- When the number of bits in 2's complement is not enough
- If word length is 16 bits, but you want 160 bit integer data type
- Then you need an instruction requiring that Data Type
- ADDR, for example. (R for ridiculous!)
- Consider ADDR A,B,C, where A,B,C are 160 bit integers:
- Requires a procedure call. which performs 10 iterations

- Note: test for overflow only in the last iteration.
- ADDC (add with carry a very important opcode)

Addition

- Ripple carry

- Look ahead Carry Generation

Addition (continued): The Kogge-Stone Adder

- The needed values can be generated by a tree!
- Brilliant insight: reduces time from O(n) to O(log n).
- The basic piece

- The binary tree

Addition (continued):Intel's P4 Fireball

- The code to compute $Z=A+B+C+D+E$

$$
\begin{aligned}
& W=A+B \\
& X=W+C \\
& Y=X+D \\
& Z=Y=E
\end{aligned}
$$

- Operands have too many bits, cycle time is too long
- Cut number of bits in half, e.g., A becomes A_high and A_low
- Perform 2 ADDs, each clock cycle, on half-width operands
- The result: 5 adds, rather than 4, BUT with much smaller cycle

BCD Arithmetic

- BCD Each decimal digit represented by 4 bits
- Memory location requires address and size
- Addition with a standard 2's complement ALU
- Although we could design a special BCD Adder
- The process (using a standard 2's complement ALU
- Step 1: Add x6666... 6 to one of the operands. (Why?)
- Step 2: Add result to the other operand
- Step 3: Correct by subtracting 6 where necessary (When?)
- An example: Add BCD numbers 283, 598
- 283: 00101000 0011, 598: 010110011000
- Step 1: With standard ALU, $283+666=8 E 9$
- Step 2: With standard ALU, 8E9 + 598 = E81
- Step 3: Since high digit did not generate a carry, subtract 6 from it i.e, E81-600 = 881, the correct answer!

Multiplication (let's start with decimal)

Multiplication

- A sequence of shifts and adds, one bit each iteration
- Initially load the multiplier, the multiplicand, and 0 in the Buffer
- The multiplier is a shift register that right shifts one bit per cycle
- The 2n bit buffer gets the result of the multiplication
- Iterations stop when the multiplier contains all 0's.

Multiplication (continued)

- Booth's Algorithm (my variation, to better explain it)
- Initially load the multiplier, multiplicand, and 0 in the Buffer
- The multiplier is in a shift register that right shifts two bits per cycle
- The 2n bit Buffer gets the result of the multiplication
- Iterations stop when the multiplier contains all zeroes
- Control of the two shifters and ALU from the low two bits of the multiplier and the " c " bit, which is produced by a prior iteration

Bit_1	Bit_0	\mathbf{C}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{C}^{\prime}
0	0	0	SHF0	PassA	SHF2	0
0	0	1	SHF0	ADD	SHF2	0
0	1	0	SHF0	ADD	SHF2	0
0	1	1	SHF1	ADD	SHF1	0
1	0	0	SHF1	ADD	SHF1	0
1	0	1	SHF0	SUB	SHF2	1
1	1	0	SHF0	SUB	SHF2	1
1	1	1	SHF0	PassA	SHF2	1

Booth's Algorithm (first a simple example)

- We want to multiply 22 by 9
- 22 is 00010110, 9 is 00001001
- 00010110 is the MCAND, 000001001 is the Multiplier
- We partition the multiplier bits into 2-bit pieces: 00001001
- Right-most bits = 01, which is 1 times $\mathbf{4}^{\wedge} 0$
- Add (1 times $4^{\wedge} 0$) times MCAND $=22$
- Add this to the Buffer (which initially contained 0)
- Then we shift the multiplier right two bits, yielding 00000010
- And, we shift the buffer right two bits, effectively multiplying the MCAND by 4
- The MCAND is now effectively 88
- Right-most bits of the multiplier are =10, which is 2.
- Shift the MCAND one bit to the right, thereby multiplying MCAND by 2 (i.e., 176) and add it to the Buffer ($176+22=198$)
- Then we again shift right the multiplier two bits, yielding 0000
- Since there are no more non-zero bits in the multiplier, we are done!
- The buffer contains the product of 22 times 9, i.e. 198.

Booth's Algorithm (A more interesting example)

- We want to multiply 22×14; MCAND $=00010110$, Multiplier $=00001110$
- We partition our multiplier bits into 2-bit pieces: 00001110
- Right-most bits = 10, which is 2
- Shift the MCAND one bit to the left, thereby multiplying MCAND by 2 (i.e., 44), add it to the Buffer (44), then shift right the Buffer 2 bits
- Then we shift right the multiplier two bits, yielding 000011
- Right-most bits are 11, which is 3. Important to note that 3 =4-1.
- Subtract 1 times MCAND from the Buffer and add 1 to the next iteration of the multiplier, yielding 0001
- Net result: We have subtracted 4 times MCAND from the running sum
- As before, we right shift the contents of the Buffer two bits
- Then we shift right the multiplier two bits, yielding 0001
- Right-most bits (now) = 01, which is 1.
- Add 1 times MCAND to the Buffer.
- Net result: We have added 16 times MCAND to the running sum.
- Then we right shift the Buffer two bits.
- Then we shift right the multiplier two bits, yielding 00, and we are done.
- Final result: (16-4 +2) times MCAND $=(14)$ times MCAND.

Residue Arithmetic (an entertaining digression)

- When?
- Inputs, outputs relatively small integers
- Intermediate results could be very large
- Internally compute-intensive
- Very little I/O
- How?
- Step 1: transform to the residue number domain SLOW
- a, $b-\boldsymbol{f}(\mathbf{a}), f(b)$
- Step 2: Perform the operation in the residue domain. FAST
- $f \odot \leftarrow f(a) * f(b)$
- Step 3: Perform the inverse transformation SLOW
- $c \leftarrow \subset$
- Note: Does this remind you of anything you have studied in some other course?

Residue Arithmetic (continued)

- The detail:
- Pick a set of moduli p1, p2, ..pn that are relatively prime
- Represent each value X as $x 1, x 2, . . x n$, where $x i=X ~ m o d ~ p i$ The Chinese Remainder Theorem (from the first century AD) states that each integer between 0 and (product p1,p2,...pn) -1 are uniquely represented.
- Sum (X, Y), Product (X, Y) can be computed by n simpler elements, all working concurrently, with no interaction between them, yielding a result very fast.
- An example: Add, Multiply the two numbers, 19 and 24
- Using the moduli p1 = 7, p2 = 8, p3 = 9, 19 is $5,3,1$
- Adding 5,3,1 to $3,0,6$, we get $1,3,7$, which is 43 .
- Multiplying 5,3,1 to 3,0,6, we get 1,0,6, which is 456.

Residue Arithmetic (Two observations)

- Why does it work?
- Consider the multiplication of A and B
- A * $B=(m * p+a)$ * (n *p +b), where a is $A \bmod p, b$ is $B \bmod p$.
- Thus A * $B=p$ * $\left(m\right.$ * n * $\left.p+a^{*} n+b^{*} m\right)+a * b$,
- From which, ($\left.A^{*} B\right) \bmod p=a * b$,
- Completely independent of the other moduli.
- Then why is not used?
- Transformations are expensive
- Comparisons are unwieldly (e.g., How to determine if A>B.

Residue Arithmetic (The Inverse Transformation)

- We multiplied 19 times 24, and got the result: 1,0,6
- We know X is defined by 1 for x1, 0 for x2, and 6 for $x 3$
- It would be nice to put it into a more familiar form (e.g., 456)
- We know $1,0,6$ is $1,0,0+0,0,0+0,0,6$. How do we know that?
- We know 1,0,0 must be a multiple of 72; How do we know that?
- ...and 0,0,0, a multiple of 63, and 0,0,6 a multiple of 56.
- So we build three tables with the entries corresponding to the values of $x 1, x 2, x 3$, and access the following data path:

Merci

