
Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 10: Fixed Point Arithmetic

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2023

Outline

• The Binary Point (fixed point vs floating point)

• Several Choices

• 2’s complement, 1’s complement, Sign-magnitude

• Long Integers

• Addition
–ripple carry, look ahead carry, Kogge Stone)
–Interesting anecdote: the P4 fireball

• BCD Arithmetic

• Multiplication
–Shift and Add, Booth’s Algorithm

• Residue Arithmetic

• Fixed Point (one place, fixed for that design)
– Interval remains the same for the entire real line

• Floating Point (varies from binade to binade)
– Interval changes along the real line

The Binary Point (fixed pt. vs. floating pt.)
Where do we put the binary point?

Several choices

• 2’s complement

• 1’s complement

• Signed magnitude

• Long Integers
– When you wish to retain the structure of 2’s complement
– But you need a lot more bits

• BCD
– Arbitrarily large precision

• Residue Numbers
– Compute intensive, low I/O (But…)

• Why each?
– 2’s complement (Easy for the computer, representations track represented!)
– 1’s complement (Seymour Cray’s misguided decision)
– Signed-magnitude (Easy for humans, bad for designing logic to implement)

• Example (A 4-bit word length) 2’s comp 1’s comp Signed-mag
 0000 0 0 0
 0001 1 1 1
 0010 2 2 2
 0011 3 3 3
 0100 4 4 4
 0101 5 5 5
 0110 6 6 6
 0111 7 7 7

 1000 -8 -7 0
 1001 -7 -6 -1
 1010 -6 -5 -2
 1011 -5 -4 -3
 1100 -4 -3 -4
 1101 -3 -2 -5
 1110 -2 -1 -6
 1111 -1 0 -7

2’s complement, 1’s complement, Signed-magnitude

Observations

• With 2’s complement
– why can Carry bit go in the trash?

• With 1’s complement
– Is there a problem?
– how do we fix it

Long Integers

• When the number of bits in 2’s complement is not enough
– If word length is 16 bits, but you want 160 bit integer data type

• Then you need an instruction requiring that Data Type
– ADDR, for example. (R for ridiculous!)

• Consider ADDR A,B,C, where A,B,C are 160 bit integers:
– Requires a procedure call, which performs 10 iterations

• Note: test for overflow only in the last iteration.
• ADDC (add with carry a very important opcode)

Addition

• Ripple carry

• Look ahead Carry Generation

Addition (continued): The Kogge-Stone Adder
• The needed values can be generated by a tree!

– Brilliant insight: reduces time from O(n) to O(log n).
• The basic piece

• The binary tree

Addition (continued):Intel’s P4 Fireball
• The code to compute Z = A+B+C+D+E
 W=A+B
 X=W+C
 Y=X+D
 Z=Y=E

• Operands have too many bits, cycle time is too long
– Cut number of bits in half, e.g., A becomes A_high and A_low
– Perform 2 ADDs, each clock cycle, on half-width operands
– The result: 5 adds, rather than 4, BUT with much smaller cycle

BCD Arithmetic

• BCD Each decimal digit represented by 4 bits
• Memory location requires address and size
• Addition with a standard 2’s complement ALU

– Although we could design a special BCD Adder
• The process (using a standard 2’s complement ALU

– Step 1: Add x6666…6 to one of the operands. (Why?)
– Step 2: Add result to the other operand
– Step 3: Correct by subtracting 6 where necessary (When?)

• An example: Add BCD numbers 283, 598
– 283: 0010 1000 0011, 598: 0101 1001 1000
– Step 1: With standard ALU, 283 + 666 = 8E9
– Step 2: With standard ALU, 8E9 + 598 = E81
– Step 3: Since high digit did not generate a carry, subtract 6 from it
 i.e, E81 – 600 = 881, the correct answer!

Multiplication (let’s start with decimal)

Multiplication

• A sequence of shifts and adds, one bit each iteration
– Initially load the multiplier, the multiplicand, and 0 in the Buffer
– The multiplier is a shift register that right shifts one bit per cycle
– The 2n bit buffer gets the result of the multiplication
– Iterations stop when the multiplier contains all 0’s.

Multiplication (continued)

• Booth’s Algorithm (my variation, to better explain it)
– Initially load the multiplier, multiplicand, and 0 in the Buffer
– The multiplier is in a shift register that right shifts two bits per cycle
– The 2n bit Buffer gets the result of the multiplication
– Iterations stop when the multiplier contains all zeroes
– Control of the two shifters and ALU from the low two bits of the
 multiplier and the “c” bit, which is produced by a prior iteration

Bit_1 Bit_0 C X Y Z C’
0 0 0 SHF0 PassA SHF2 0

0 0 1 SHF0 ADD SHF2 0

0 1 0 SHF0 ADD SHF2 0

0 1 1 SHF1 ADD SHF1 0

1 0 0 SHF1 ADD SHF1 0

1 0 1 SHF0 SUB SHF2 1

1 1 0 SHF0 SUB SHF2 1

1 1 1 SHF0 PassA SHF2 1

Booth’s Algorithm (first a simple example)

• We want to multiply 22 by 9
– 22 is 00010110, 9 is 00001001
– 00010110 is the MCAND, 000001001 is the Multiplier

• We partition the multiplier bits into 2-bit pieces: 00 00 10 01

• Right-most bits = 01, which is 1 times 4^0
– Add (1 times 4^0) times MCAND = 22
– Add this to the Buffer (which initially contained 0)
– Then we shift the multiplier right two bits, yielding 00 00 00 10
– And, we shift the buffer right two bits, effectively multiplying the MCAND by 4
– The MCAND is now effectively 88

• Right-most bits of the multiplier are = 10, which is 2.
– Shift the MCAND one bit to the right, thereby multiplying MCAND by 2 (i.e., 176)
 and add it to the Buffer (176 + 22 =198)
– Then we again shift right the multiplier two bits, yielding 00 00

• Since there are no more non-zero bits in the multiplier, we are done!
– The buffer contains the product of 22 times 9, i.e. 198.

Booth’s Algorithm (A more interesting example)

• We want to multiply 22 x 14; MCAND = 00010110, Multiplier = 00001110
• We partition our multiplier bits into 2-bit pieces: 00 00 11 10
• Right-most bits = 10, which is 2

– Shift the MCAND one bit to the left, thereby multiplying MCAND by 2 (i.e., 44),
 add it to the Buffer (44), then shift right the Buffer 2 bits
– Then we shift right the multiplier two bits, yielding 00 00 11

• Right-most bits are 11, which is 3. Important to note that 3 = 4 -1.
– Subtract 1 times MCAND from the Buffer
 and add 1 to the next iteration of the multiplier, yielding 00 01
– Net result: We have subtracted 4 times MCAND from the running sum
– As before, we right shift the contents of the Buffer two bits
– Then we shift right the multiplier two bits, yielding 00 01

• Right-most bits (now) = 01, which is 1.
– Add 1 times MCAND to the Buffer.
– Net result: We have added 16 times MCAND to the running sum.
– Then we right shift the Buffer two bits.
– Then we shift right the multiplier two bits, yielding 00, and we are done.

• Final result: (16 -4 +2) times MCAND = (14) times MCAND.

Residue Arithmetic (an entertaining digression)

• When?
– Inputs, outputs relatively small integers
– Intermediate results could be very large
– Internally compute-intensive
– Very little I/O

• How?
– Step 1: transform to the residue number domain SLOW

• a, b - f(a), f(b)
– Step 2: Perform the operation in the residue domain. FAST

• f©  f(a) * f(b)
– Step 3: Perform the inverse transformation SLOW

• c  f©

• Note: Does this remind you of anything you have studied
 in some other course?

Residue Arithmetic (continued)

• The detail:
– Pick a set of moduli p1, p2, ..pn that are relatively prime
– Represent each value X as x1,x2,..xn, where xi = X mod pi
 The Chinese Remainder Theorem (from the first century AD) states that each
 integer between 0 and (product p1,p2,…pn) -1 are uniquely represented.

– Sum (X,Y), Product (X,Y) can be computed by n simpler elements,
 all working concurrently, with no interaction between them, yielding
 a result very fast.

• An example: Add, Multiply the two numbers, 19 and 24
– Using the moduli p1 = 7, p2 = 8, p3 = 9, 19 is 5,3,1
– Adding 5,3,1 to 3,0,6, we get 1,3,7, which is 43.
– Multiplying 5,3,1 to 3,0,6, we get 1,0,6, which is 456.

Residue Arithmetic (Two observations)

• Why does it work?
– Consider the multiplication of A and B
– A * B = (m * p + a) * (n * p +b),
 where a is A mod p, b is B mod p.
– Thus A * B = p * (m * n * p + a*n + b*m) + a*b,
– From which, (A * B) mod p = a * b,
– Completely independent of the other moduli.

• Then why is not used?
– Transformations are expensive
– Comparisons are unwieldly (e.g., How to determine if A>B.

Residue Arithmetic (The Inverse Transformation)
• We multiplied 19 times 24, and got the result: 1,0,6

– We know X is defined by 1 for x1, 0 for x2, and 6 for x3
– It would be nice to put it into a more familiar form (e.g., 456)
– We know 1,0,6 is 1,0,0 + 0,0,0 + 0,0,6. How do we know that?
– We know 1,0,0 must be a multiple of 72; How do we know that?
– …and 0,0,0, a multiple of 63, and 0,0,6 a multiple of 56.
– So we build three tables with the entries corresponding to the
 values of x1,x2,x3, and access the following data path:

 Merci

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

