Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 11: Floating Point Arithmetic

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2023

Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 11: Floating Point Arithmetic

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2021

Outline

Scientific Notation and its representations in binary
— Avogadro’s Number

— Format (Precision vs Range)

— Common floating point data types

— Why it is called floating point

My 6-bit floating point data type
— Redundant most significant bit
— Excess code for exponents (infinity, subnormals)

Rounding

— Four rounding modes

— Guard, Round, Sticky bits
— Wobble

Infinities, NaNs
Subnormal numbers (gradual underflow)

Exceptions: Invalid, DivByO, Underflow, Overflow, Inexact
— Quiet vs Signaling

Scientific Notation and its representation in binary

Avogadro’s Number: 6.022 x 10"23

Where is the Decimal Point
— What determines where the decimal point is?
— Ergo, “floating point”

Bits for range vs bits for precision
— Von Neumann’s Quip

Binary Representations

— 32 bits: 1 bit sign, 8 bits exponent, 23 bits of fraction

— 64 bits (the default): 1 bit sign, 11 bits exponent, 52 bits fraction
— 16 bits (recently for graphics): 1 bit sign, 5 bits exp, 10 bits fra

My 6-bit floating point data type
(ST ep Trad). Fraw 2207 Exeess

e EXxcess code for range (excess i1s 011, 1.e. 3)

BN PR
PV v for inemiTies Nans JS1@ 81100

IC\' + 3

Q@)} #L

\ &\' C\ 1| Z Exp‘ S
D NoamAL 12 €D | FRA x Z

O] § C
O1 0 ~\

| - N
001 =2 -
RS — ——— - ———— = o | ®
“'\ P\‘ .’\) U ‘)L“N C‘r" SL/;;/\/C j: /""/-\’\ Ng’f\'n\Ci(\ '% OC() ‘P \.‘

« Signed-magnitude for precision
— Redundant most significant bit (because radix = 2)

« An example: 6 5/8. 110.101 (Unnormalized)
— Normalize it: 1.10101 x 2"2 ‘ :j)l Lol o "5
— Store in memory: Subsequent read from memory: 1.10x2"2=6
 We lost 5/8 because we had 2 fraction bits, but we needed 5 fraction bits

My 6-bit floating point data type

Exact representations on the real line

\ 2

72 Z e ' -
—— —

= =
| A2
,A! " 0)
fr,:,_tl-”"’{/ ‘ .y C ~1 \
.10 *t / S / \
: - +0.Y _—7
0.0V AL P \ W& 2L /
e L o\ Al 2
TR 4 R \ *C/‘//F'.‘L‘*~|(‘<"
o X ~ "Lf*
~ O.v
*’-:L"L;-’i' 1,00 *¢& |
_,-—".\ ’(L
R St

Maximum value: o N
jojive | v

o —
|
p
A
=]
I
.F\

Minimum normalized value:

|oleo) |ool =

Rounding

 Why, When
— Why: when a value can not be represented exactly
— When: Often, most values can not be represented exactly
— Example (with our 6 bit floating point): 1.011 (1 3/8)

 Rounding Modes
— Round up: 1.10 (1 %)
— Round down: 1.01 (1 %)
— Round to zero: 1.01 (1 %)

— Unbiased Nearest: 1.10 (1 ¥2)
 Why not 1.01 (1 ¥%)?
« 17%is justas “near”’to13/8as1zis
 Unbiased = when equal, round to the value with 0 in the ULP

Rounding

Guard, Round, Sticky bits
— Extra bits carried along to help in rounding (1 bit or 2 bits?)

— Example: Add 15 + 2 % (This example uses 3 bits of fraction!)

_ 3 l
1S4 Il % 2 '22-'.(‘0/011
(DALICy exP (st 1M1l 6o x'233

(/\,_;'{) EXTRA Uy?)').zf *o00V'0)l1 O % 7
4 3 . [

7N - —_— — T‘ —5
(2 APD 177 ‘001 10 *xZ
) '/\ X 2

| .oead
=y T1 R |ES
L;fyl—,-—?ﬁ ’J',__—————-

@N‘:‘ii’”‘;\LMC'
GUALY leCk'ND

pray
(A) [{C‘QNJ Ax_
=~)

//\: / ‘\\ 'g

Wit VRN o }ZCQ:M) = Q\

QOunND TO QL

 Wobble (since 1 ULP < 27k is half the size of 1 ULP > 27k)

— Best case, because radix = 2

| 4 M 1 i Cey |
4— i 1 \ | " N ‘T*‘__*._
"2, -\ A "O
O A /2_ ‘ 2
i Y
L= =
ULP = = 8

Infinity

« Exact vs Overflow
— (finite operands) = infinite results
— Examples: tan(90 degrees), 5 divided by 0

 Infinity is NOT the same as undefined
— Example: continued fraction expansion

— Simple examples:
« infinity + 7 = infinity
infinity + infinity = infinity
« 5divided by infinity =0
— Code example
« X=5
« Y=0
o Z=XIY
« W=arctan(2)

Subnormals
Why?

— Underflow vs inexact discrepancy was unacceptable
« 1 divided by underflow produces infinity

Tradeoff

— Subnormals provide gradual underflow
« Underflow is no worse than inexact

— Costis loss of precision

Without subnormals: Store zero

4§ TR L ,
e "
@ 2 ee12 = 2 L 3 (1' /- f 2 2
7€ T¢1g T Y ¥ ' . 4

With subnormals: Gradual underflow

' =ty l) —4 | | { ‘ :
) 1 y | . T { — ,
(7 ;/ 2 o o i { < [7 S R ;2 7 ¥ .
“ 16 /6 Z S (f } Vi 3 - 5% / | 4 f 7] == 7 e
/6 Je 16 ’) - 9

Not a Number (NaN)

« Examples
— Infinity minus infinity, infinity divided by infinity, O divided by O
— arcsin(2), sqroot (negative number)
— A function that asymptotes

« It was here before IEEE Floating Point
— Supercomputers had them, for example

 The difference:
— |EEE Floating Pt allows exception handlers to be involved
— Allows correction of the problem and continue processing

Five Floating Point Exceptions

 What are they?

— Overflow: too large to represent in normalized form)

— Underflow: too small to represent as a subnormal number
— Inexact: not a value that can be represented exactly)

— Divide by zero: function (finite arguments) =2 infinity

— Invalid: creation of a NaN

* Quiet vs Signaling
— Quiet: sets a sticky bit, handled under program control
 For example, usual way to deal with “inexact”

— Signaling: takes an exception to deal with the problem
» For example, usual way to deal with “NaNs”

Arigato!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 11: Floating Point Arithmetic
	Slide 2: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 11: Floating Point Arithmetic
	Slide 3: Outline
	Slide 4: Scientific Notation and its representation in binary
	Slide 5: My 6-bit floating point data type
	Slide 6: My 6-bit floating point data type
	Slide 7: Rounding
	Slide 8: Rounding
	Slide 9: Infinity
	Slide 10: Subnormals
	Slide 11: Not a Number (NaN)
	Slide 12: Five Floating Point Exceptions
	Slide 13: Arigato!

