
Computer Architecture:

Fundamentals, Tradeoffs, Challenges

Chapter 11: Floating Point Arithmetic

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2023

Computer Architecture:

Fundamentals, Tradeoffs, Challenges

Chapter 11: Floating Point Arithmetic

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2021

Outline

• Scientific Notation and its representations in binary

– Avogadro’s Number

– Format (Precision vs Range)

– Common floating point data types

– Why it is called floating point

• My 6-bit floating point data type

– Redundant most significant bit

– Excess code for exponents (infinity, subnormals)

• Rounding

– Four rounding modes

– Guard, Round, Sticky bits

– Wobble

• Infinities, NaNs

• Subnormal numbers (gradual underflow)

• Exceptions: Invalid, DivBy0, Underflow, Overflow, Inexact

– Quiet vs Signaling

Scientific Notation and its representation in binary

• Avogadro’s Number: 6.022 x 10^23

• Where is the Decimal Point

– What determines where the decimal point is?

– Ergo, “floating point”

• Bits for range vs bits for precision

– Von Neumann’s Quip

• Binary Representations

– 32 bits: 1 bit sign, 8 bits exponent, 23 bits of fraction

– 64 bits (the default): 1 bit sign, 11 bits exponent, 52 bits fraction

– 16 bits (recently for graphics): 1 bit sign, 5 bits exp, 10 bits fra

My 6-bit floating point data type

• Excess code for range (excess is 011, i.e. 3)

• Signed-magnitude for precision

– Redundant most significant bit (because radix = 2)

• An example: 6 5/8. 110.101 (Unnormalized)

– Normalize it: 1.10101 x 2^2

– Store in memory: Subsequent read from memory: 1.10 x 2^2 = 6

• We lost 5/8 because we had 2 fraction bits, but we needed 5 fraction bits

My 6-bit floating point data type

• Exact representations on the real line

• Maximum value:

• Minimum normalized value:

• Why, When

– Why: when a value can not be represented exactly

– When: Often, most values can not be represented exactly

– Example (with our 6 bit floating point): 1.011 (1 3/8)

• Rounding Modes

– Round up: 1.10 (1 ½)

– Round down: 1.01 (1 ¼)

– Round to zero: 1.01 (1 ¼)

– Unbiased Nearest: 1.10 (1 ½)

• Why not 1.01 (1 ¼)?

• 1 ¼ is just as “near” to 1 3/8 as 1 ½ is

• Unbiased → when equal, round to the value with 0 in the ULP

Rounding

• Guard, Round, Sticky bits

– Extra bits carried along to help in rounding (1 bit or 2 bits?)

– Example: Add 15 + 2 ½ (This example uses 3 bits of fraction!)

• Wobble (since 1 ULP < 2^k is half the size of 1 ULP > 2^k)

– Best case, because radix = 2

Rounding

• Exact vs Overflow

– (finite operands) → infinite results

– Examples: tan(90 degrees), 5 divided by 0

• Infinity is NOT the same as undefined

– Example: continued fraction expansion

– Simple examples:

• infinity + 7 = infinity

• infinity + infinity = infinity

• 5 divided by infinity = 0

– Code example

• X=5

• Y=0

• Z=X/Y

• W= arctan(Z)

Infinity

• Why?

– Underflow vs inexact discrepancy was unacceptable

• 1 divided by underflow produces infinity

• Tradeoff

– Subnormals provide gradual underflow

• Underflow is no worse than inexact

– Cost is loss of precision

• Without subnormals: Store zero

• With subnormals: Gradual underflow

Subnormals

• Examples

– Infinity minus infinity, infinity divided by infinity, 0 divided by 0

– arcsin(2), sqroot (negative number)

– A function that asymptotes

• It was here before IEEE Floating Point

– Supercomputers had them, for example

• The difference:

– IEEE Floating Pt allows exception handlers to be involved

– Allows correction of the problem and continue processing

Not a Number (NaN)

• What are they?

– Overflow: too large to represent in normalized form)

– Underflow: too small to represent as a subnormal number

– Inexact: not a value that can be represented exactly)

– Divide by zero: function (finite arguments) → infinity

– Invalid: creation of a NaN

• Quiet vs Signaling

– Quiet: sets a sticky bit, handled under program control

• For example, usual way to deal with “inexact”

– Signaling: takes an exception to deal with the problem

• For example, usual way to deal with “NaNs”

Five Floating Point Exceptions

Arigato!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 11: Floating Point Arithmetic
	Slide 2: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 11: Floating Point Arithmetic
	Slide 3: Outline
	Slide 4: Scientific Notation and its representation in binary
	Slide 5: My 6-bit floating point data type
	Slide 6: My 6-bit floating point data type
	Slide 7: Rounding
	Slide 8: Rounding
	Slide 9: Infinity
	Slide 10: Subnormals
	Slide 11: Not a Number (NaN)
	Slide 12: Five Floating Point Exceptions
	Slide 13: Arigato!

