Computer Architecture: Fundamentals, Tradeoffs, Challenges

Chapter 11: Floating Point Arithmetic

Yale Patt The University of Texas at Austin

Austin, Texas Spring, 2023

Computer Architecture: Fundamentals, Tradeoffs, Challenges

Chapter 11: Floating Point Arithmetic

Yale Patt The University of Texas at Austin

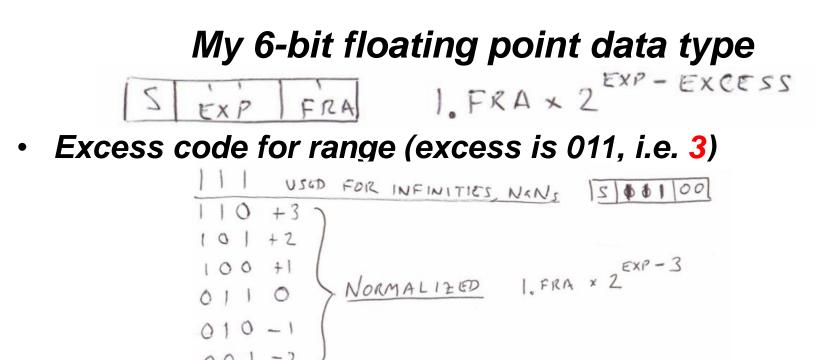
Austin, Texas Spring, 2021

Outline

- Scientific Notation and its representations in binary
 - Avogadro's Number
 - Format (Precision vs Range)
 - Common floating point data types
 - Why it is called floating point
- My 6-bit floating point data type
 - Redundant most significant bit
 - Excess code for exponents (infinity, subnormals)
- Rounding
 - Four rounding modes
 - Guard, Round, Sticky bits
 - Wobble
- Infinities, NaNs
- Subnormal numbers (gradual underflow)
- Exceptions: Invalid, DivBy0, Underflow, Overflow, Inexact
 - Quiet vs Signaling

Scientific Notation and its representation in binary

- Avogadro's Number: 6.022 x 10^23
- Where is the Decimal Point
 - What determines where the decimal point is?
 - Ergo, "floating point"
- Bits for range vs bits for precision
 - Von Neumann's Quip
- Binary Representations
 - 32 bits: 1 bit sign, 8 bits exponent, 23 bits of fraction
 - 64 bits (the default): 1 bit sign, 11 bits exponent, 52 bits fraction
 - 16 bits (recently for graphics): 1 bit sign, 5 bits exp, 10 bits fra



000 USED OF SUBNORMAL NUMBERS 5 000 FRA

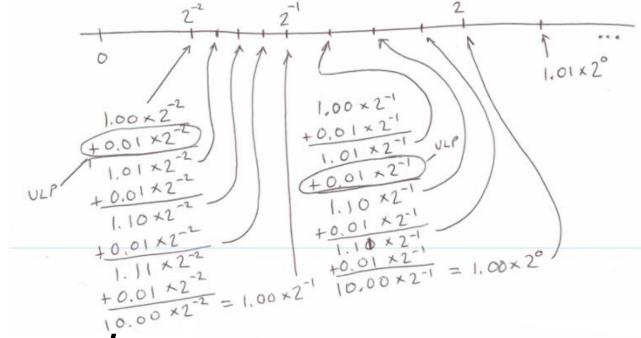
- Signed-magnitude for precision
 - Redundant most significant bit (because radix = 2)
- An example: 6 5/8. 110.101 (Unnormalized)
 - Normalize it: 1.10101 x 2^2
 - Store in memory: Subsequent read from memory: $1.10 \times 2^2 = 6$

010110

• We lost 5/8 because we had 2 fraction bits, but we needed 5 fraction bits

My 6-bit floating point data type

• Exact representations on the real line



00

= 1.00 × 2-2

• Maximum value: $10110111 = 1.11 \times 2^3 = 14$

00

0

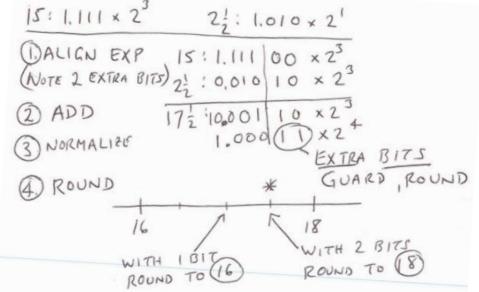
• Minimum normalized value:

Rounding

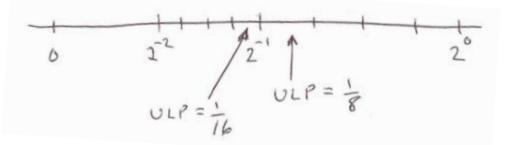
- Why, When
 - Why: when a value can not be represented exactly
 - When: Often, most values can not be represented exactly
 - Example (with our 6 bit floating point): 1.011 (1 3/8)
- Rounding Modes
 - Round up: 1.10 (1 ¹/₂)
 - Round down: 1.01 (1 ¹/₄)
 - Round to zero: 1.01 (1 1/4)
 - Unbiased Nearest: 1.10 (1 ¹/₂)
 - Why not 1.01 (1 ¼)?
 - 1 $\frac{1}{4}$ is just as "near" to 1 3/8 as 1 $\frac{1}{2}$ is
 - Unbiased \rightarrow when equal, round to the value with 0 in the ULP

Rounding

- Guard, Round, Sticky bits
 - Extra bits carried along to help in rounding (1 bit or 2 bits?)
 - Example: Add 15 + 2 $\frac{1}{2}$ (This example uses 3 bits of fraction!)



- Wobble (since 1 ULP < 2^k is half the size of 1 ULP > 2^k)
 - Best case, because radix = 2

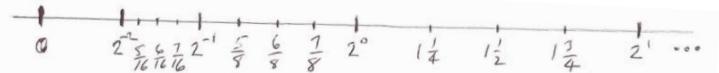


Infinity

- Exact vs Overflow
 - (finite operands) \rightarrow infinite results
 - Examples: tan(90 degrees), 5 divided by 0
- Infinity is NOT the same as undefined
 - Example: continued fraction expansion
 - Simple examples:
 - *infinity* + 7 = *infinity*
 - *infinity* + *infinity* = *infinity*
 - 5 divided by infinity = 0
 - Code example
 - X=5
 - Y=0
 - *Z*=X/Y
 - W= arctan(Z)

Subnormals

- Why?
 - Underflow vs inexact discrepancy was unacceptable
 - 1 divided by underflow produces infinity
- Tradeoff
 - Subnormals provide gradual underflow
 - Underflow is no worse than inexact
 - Cost is loss of precision
- Without subnormals: Store zero



• With subnormals: Gradual underflow

Not a Number (NaN)

• Examples

- Infinity minus infinity, infinity divided by infinity, 0 divided by 0
- arcsin(2), sqroot (negative number)
- A function that asymptotes
- It was here before IEEE Floating Point
 - Supercomputers had them, for example
- The difference:
 - IEEE Floating Pt allows exception handlers to be involved
 - Allows correction of the problem and continue processing

Five Floating Point Exceptions

• What are they?

- Overflow: too large to represent in normalized form)
- Underflow: too small to represent as a subnormal number
- Inexact: not a value that can be represented exactly)
- Divide by zero: function (finite arguments) → infinity
- Invalid: creation of a NaN

Quiet vs Signaling

- Quiet: sets a sticky bit, handled under program control
 - For example, usual way to deal with "inexact"
- Signaling: takes an exception to deal with the problem
 - For example, usual way to deal with "NaNs"

Arigato!