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Outline

Scientific Notation and its representations in binary
— Avogadro’s Number

— Format (Precision vs Range)

— Common floating point data types

— Why it is called floating point

My 6-bit floating point data type
— Redundant most significant bit
— Excess code for exponents (infinity, subnormals)

Rounding

— Four rounding modes

— Guard, Round, Sticky bits
— Wobble

Infinities, NaNs
Subnormal numbers (gradual underflow)

Exceptions: Invalid, DivByO, Underflow, Overflow, Inexact
— Quiet vs Signaling



Scientific Notation and its representation in binary

Avogadro’s Number: 6.022 x 10"23

Where is the Decimal Point
— What determines where the decimal point is?
— Ergo, “floating point”

Bits for range vs bits for precision
— Von Neumann’s Quip

Binary Representations

— 32 bits: 1 bit sign, 8 bits exponent, 23 bits of fraction

— 64 bits (the default): 1 bit sign, 11 bits exponent, 52 bits fraction
— 16 bits (recently for graphics): 1 bit sign, 5 bits exp, 10 bits fra



My 6-bit floating point data type
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« Signed-magnitude for precision
— Redundant most significant bit (because radix = 2)

« An example: 6 5/8. 110.101 (Unnormalized)
— Normalize it: 1.10101 x 2"2 ‘ :j)l Lol o "5
— Store in memory: Subsequent read from memory: 1.10x2"2=6
 We lost 5/8 because we had 2 fraction bits, but we needed 5 fraction bits



My 6-bit floating point data type

Exact representations on the real line
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Rounding

 Why, When
— Why: when a value can not be represented exactly
— When: Often, most values can not be represented exactly
— Example (with our 6 bit floating point): 1.011 (1 3/8)

 Rounding Modes
— Round up: 1.10 (1 %)
— Round down: 1.01 (1 %)
— Round to zero: 1.01 (1 %)

— Unbiased Nearest: 1.10 (1 ¥2)
 Why not 1.01 (1 ¥%)?
« 17%is justas “near”’to13/8as1zis
 Unbiased = when equal, round to the value with 0 in the ULP



Rounding

Guard, Round, Sticky bits
— Extra bits carried along to help in rounding (1 bit or 2 bits?)

— Example: Add 15 + 2 % (This example uses 3 bits of fraction!)
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 Wobble (since 1 ULP < 27k is half the size of 1 ULP > 27k)

— Best case, because radix = 2
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Infinity

« Exact vs Overflow
— (finite operands) = infinite results
— Examples: tan(90 degrees), 5 divided by 0

 Infinity is NOT the same as undefined
— Example: continued fraction expansion

— Simple examples:
« infinity + 7 = infinity
infinity + infinity = infinity
« 5divided by infinity =0
— Code example
« X=5
« Y=0
o Z=XIY
« W=arctan(2)



Subnormals
Why?

— Underflow vs inexact discrepancy was unacceptable
« 1 divided by underflow produces infinity

Tradeoff

— Subnormals provide gradual underflow
« Underflow is no worse than inexact

— Costis loss of precision

Without subnormals: Store zero
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With subnormals: Gradual underflow
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Not a Number (NaN)

« Examples
— Infinity minus infinity, infinity divided by infinity, O divided by O
— arcsin(2), sqroot (negative number)
— A function that asymptotes

« It was here before IEEE Floating Point
— Supercomputers had them, for example

 The difference:
— |EEE Floating Pt allows exception handlers to be involved
— Allows correction of the problem and continue processing



Five Floating Point Exceptions

 What are they?

— Overflow: too large to represent in normalized form)

— Underflow: too small to represent as a subnormal number
— Inexact: not a value that can be represented exactly)

— Divide by zero: function (finite arguments) =2 infinity

— Invalid: creation of a NaN

* Quiet vs Signaling
— Quiet: sets a sticky bit, handled under program control
 For example, usual way to deal with “inexact”

— Signaling: takes an exception to deal with the problem
» For example, usual way to deal with “NaNs”



Arigato!
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