
Computer Architecture:

Fundamentals, Tradeoffs, Challenges

Chapter 13: Multi-thread Parallelism

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2023

Outline

• A few examples

• Some fundamentals
– Amdahl’s Law

– Metrics (speedup, efficiency, redundancy, utilization)

• Trade-offs
– Tightly coupled vs. Loosely coupled

• Shared Distributed vs Shared Centralized

– CMP vs SMT, and while we are at it: SSMT (aka helper threads)

– Heterogeneous vs. Homogeneous

– Interconnection networks

• Cache Coherence

• Memory Consistency

A few examples

• Cm* (Carnegie Mellon, late 1970s

• HEP (Burton Smith, late 1970s)

• Cosmic Cube (Geoffrey Fox)

• Classical GPU (Nvidia, for example)

Cosmic Cube

Classical GPU

• Ten thousand threads not uncommon

– 32 stream processors

– Each runs 32-way SIMD (with predication)

– 10-stages, as in the HEP

• Great! …unless

– Memory collisions (coalescing)

– Branch divergence

Amdahl’s Law

• Speed-up of an application running on many processors

– Depends on how many processors (p)

– Depends on how parallel the application is (alpha)

• The Speed-up Equation

• The Serial Bottleneck always limits performance

– If alpha is .5, an infinite no. of processors only gives Speed-up of 2

– If alpha is .9, an infinite no. of processors only gives Speed-up of 10

• BUT Heterogeneous cores can minimize the effect

An important observation from Bill Buzbee

• First, he recognized that p processors adds complexity

– Every system requires management activity, and its cost

• Buzbee’s Amdahl’s Law equation:

…where sigma is a function of the number of processors

Metrics

• Speed-up: How much faster with p processors?

• Efficiency: How many extra processors do you tie up?

• Utilization: How much of it is actually used?

• Redundancy: How much extra processing do you do?

An example: z = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0

Calculation of Speed-up

• Correct? NO!

Why Not?

Definition of Speedup

• Speed-up with p processors = T1 divided by Tp,

– where T1 is the best one processor solution!

• With Horner’s Rule, T1 = 8, not 11

– Therefore, speedup = 8/5, or 1.6, not 11/5, or 2.2.

Calculation of Efficiency, Utilization, Redundancy

Tradeoffs

• Tightly coupled vs. loosely coupled

• Distributed Shared memory vs. Centralized Shared

• CMP (aka multicore) vs. SMT (and SSMT)

• One Supercomputer vs. many light-weight cores

• Homogeneous vs Heterogeneous

• Interconnection networks

Tightly-coupled vs Loosely-coupled

• Tightly coupled (i.e., Multiprocessor)
– Shared global memory (centralized or distributed)

(an early example of shared distributed: cm*)

– Each processor capable of doing work on its own
• 8086 and 8087 coprocessor is NOT a multiprocessor

– Easier for the software

– Hardware has to worry about cache coherency,

memory contention

• Loosely-coupled (i.e., Multicomputer Network)
– Message passing

– Easier for the hardware

– Programmer’s job is tougher

CMP vs SMT

• CMP (chip multiprocessor)

– aka Multi-core

• SMT (simultaneous multithreading)

– One core – a PC for each thread, in a pipelined fashion

– Multithreading introduced by Burton Smith, HEP ~1975

– “Simultaneous” first proposed by H.Hirata et.al, ISCA 1992

– Carried forward by Nemirovsky, HICSS 1994

– Popularized by Tullsen, Eggers, ISCA 1995

• One can do both on same chip (IBM POWER ~2004)

HPC with one heavyweight or many lightweights

• A Choice: (1 times 2^n), (2^k times 2^n-k), (2^n times 1)

– Not really a choice anymore

• Many reasons for championing HPC

– It is like a better microscope or better telescope

• Scalability

– SIMD is easy (The General barks an order to his troops)

– MIMD is very hard

– Massive SIMD has been around since the 1980s

• Cm1 from Thinking Machines (2^16 cores)

• Non-Von from D.E.Shaw (2^20 cores)

• Boolean Vector Machine (2^30 cores)

Heterogeneous vs Homogeneous

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Large

core

ACMP Approach

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

Niagara

-like

core

“Niagara” Approach

Large

core

Large

core

Large

core

Large

core

“Tile-Large” Approach

Large core vs. Small Core

• Out-of-order

• Wide fetch e.g. 4-wide

• Deeper pipeline

• Aggressive branch
predictor (e.g. hybrid)

• Many functional units

• Trace cache

• Memory dependence
speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

Degree of Parallelism

S
p

e
e

d
u

p
 v

s
.
1

 L
a

rg
e

 C
o

re Niagara

Tile-Large

ACMP

Throughput vs. Serial Performance

Interconnection Networks

• Parameters: Latency, Cost, Contention

• Basic Topologies Latency Cost Contention

– Bus 1 O (n) Worst

– Crossbar 1 O (n^2) Best
--

– Omega Network Logk(n) O (nklogk(n))

– Hypercube Log2(n) O (nlogn)

– Tree Log2(n) O (n)

– Mesh sq.root(n) O (n)

– Ring n/2 O (n)

Example Omega Networks

(constructed from k by k crossbar switches)

N=16, k=2 N=16, k=4

32 2x2 crossbars 8 4x4 crossbars

Banyan Trees

• A variation on Omega Networks

– Here at UT (Prof Jack Lipovski, ECE; Prof Jim Browne, CS)

– Constructed from m levels of j by k crossbar switches

– Like Omega networks, a unique path for each A to each B

• Example:

– j: 2

– k: 3

– m: 3

– J^m Processors

– K^m Memories

Cache Coherence

• Definition:

If a cache line is present in more than one cache,

it has the same values in all caches

• Why is it important?

• Snoopy schemes

– All caches snoop the common bus

• Directory schemes

– Each cache line has a directory entry in memory

A Snoopy Scheme

Directory Scheme (p=n)

Sequential Consistency

• Definition: Memory sees loads/stores in program order.

• Why it is important: It guarantees mutual exclusion.

Two Processors and a critical section

Processor 1 Processor 2

L1=0 L2=0

A: L1 = 1 X: L2=1

B: If L2 =0 Y: If L1=0

{critical section} {critical section}

C: L1=0 Z: L2=0

What can happen?

Order of A,B,C,X,Y,Z obeying seq. consistency

(Shown are the ten starting with A,

There are also ten starting with X)

A A A A A A A A A A

B B B B X X X X X X

C X X X B B B Y Y Y

X C Y Y C Y Y B B Z

Y Y C Z Y C Z C Z B

Z Z Z C Z Z C Z C C

Which processors get exclusive access to the critical section under each order?

1,2 1,2 1 1 2 None None None None 1

Note: 1,2 means first 1 gets exclusive access, and when done, 2 gets access.

Critical Sections require Mutual Exclusion

• A critical section: a region of memory containing data

wherein only one thread can be allowed access at a time.

• Why is this important?

– P1 program wants to execute LD R1,A followed by ADD A,A,R1

– Between the two instructions, suppose P2 executes ST R2,A

– The bad result: A contains A + R2 instead of A + A.

• Mutual Exclusion Property

– Only one processor at a time can access the critical section

• What happens if B occurs before X, and Y occurs before A?

– If B occurs before X, Process 1 can access the memory

– If Y occurs before A, Process 2 can access the memory

– No mutual exclusion!

Sequential Consistency Guarantees

Mutual Exclusion

• Sequential consistency means all memory accesses reach

the memory system in program order. That is, A occurs

before B, B before C, and X before Y, Y before Z.

• Both processors accessing shared memory concurrently

means B must occur before X and Y must occur before A.

• That is, sequential consistency AND concurrent access

only if A before B before X before Y before A. Impossible!

• Therefore, having sequential consistency guarantees

no concurrent access, i.e., mutual exclusion.

Bedankt!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 13: Multi-thread Parallelism
	Slide 2: Outline
	Slide 3: A few examples
	Slide 4
	Slide 5
	Slide 6: Cosmic Cube
	Slide 7: Classical GPU
	Slide 8: Amdahl’s Law
	Slide 9
	Slide 10: An important observation from Bill Buzbee
	Slide 11: Metrics
	Slide 12: An example: z = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0
	Slide 13: Calculation of Speed-up
	Slide 14: Definition of Speedup
	Slide 15: Calculation of Efficiency, Utilization, Redundancy
	Slide 16: Tradeoffs
	Slide 17: Tightly-coupled vs Loosely-coupled
	Slide 18: CMP vs SMT
	Slide 19: HPC with one heavyweight or many lightweights
	Slide 20: Heterogeneous vs Homogeneous
	Slide 21: Large core vs. Small Core
	Slide 22: Throughput vs. Serial Performance
	Slide 23: Interconnection Networks
	Slide 24: Example Omega Networks (constructed from k by k crossbar switches)
	Slide 25: Banyan Trees
	Slide 26: Cache Coherence
	Slide 27: A Snoopy Scheme
	Slide 28: Directory Scheme (p=n)
	Slide 29: Sequential Consistency
	Slide 30: Two Processors and a critical section
	Slide 31: Order of A,B,C,X,Y,Z obeying seq. consistency (Shown are the ten starting with A, There are also ten starting with X)
	Slide 32: Critical Sections require Mutual Exclusion
	Slide 33: Sequential Consistency Guarantees Mutual Exclusion
	Slide 34: Bedankt!

