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Outline

• A few examples

• Some fundamentals
– Amdahl’s Law

– Metrics (speedup, efficiency, redundancy, utilization)

• Trade-offs
– Tightly coupled vs. Loosely coupled

• Shared Distributed vs Shared Centralized

– CMP vs SMT, and while we are at it: SSMT (aka helper threads)

– Heterogeneous vs. Homogeneous

– Interconnection networks

• Cache Coherence

• Memory Consistency



A few examples

• Cm* (Carnegie Mellon, late 1970s

• HEP (Burton Smith, late 1970s)

• Cosmic Cube (Geoffrey Fox)

• Classical GPU (Nvidia, for example)







Cosmic Cube



Classical GPU

• Ten thousand threads not uncommon

– 32 stream processors

– Each runs 32-way SIMD (with predication)

– 10-stages, as in the HEP

• Great! …unless

– Memory collisions (coalescing)

– Branch divergence



Amdahl’s Law

• Speed-up of an application running on many processors

– Depends on how many processors (p)

– Depends on how parallel the application is (alpha)

• The Speed-up Equation

• The Serial Bottleneck always limits performance

– If alpha is .5, an infinite no. of processors only gives Speed-up of 2

– If alpha is .9, an infinite no. of processors only gives Speed-up of 10

• BUT Heterogeneous cores can minimize the effect





An important observation from Bill Buzbee

• First, he recognized that p processors adds complexity

– Every system requires management activity, and its cost

• Buzbee’s Amdahl’s Law equation:

…where sigma is a function of the number of processors



Metrics

• Speed-up: How much faster with p processors?

• Efficiency: How many extra processors do you tie up?

• Utilization: How much of it is actually used?

• Redundancy: How much extra processing do you do? 



An example:  z = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0



Calculation of Speed-up

• Correct?  NO!

Why Not?



Definition of Speedup

• Speed-up with p processors  = T1 divided by Tp,

– where T1 is the best one processor solution!

• With Horner’s Rule, T1 = 8, not 11

– Therefore, speedup = 8/5, or 1.6, not 11/5, or 2.2. 



Calculation of Efficiency, Utilization, Redundancy



Tradeoffs

• Tightly coupled vs. loosely coupled

• Distributed Shared memory vs. Centralized Shared

• CMP (aka multicore) vs. SMT (and SSMT)

• One Supercomputer vs. many light-weight cores

• Homogeneous vs Heterogeneous

• Interconnection networks



Tightly-coupled vs Loosely-coupled

• Tightly coupled (i.e., Multiprocessor)
– Shared global memory (centralized or distributed)

(an early example of shared distributed: cm*)

– Each processor capable of doing work on its own
• 8086 and 8087 coprocessor is NOT a multiprocessor

– Easier for the software

– Hardware has to worry about cache coherency,

memory contention

• Loosely-coupled (i.e., Multicomputer Network)
– Message passing

– Easier for the hardware

– Programmer’s job is tougher



CMP vs SMT

• CMP (chip multiprocessor)

– aka Multi-core

• SMT  (simultaneous multithreading)

– One core – a PC for each thread, in a pipelined fashion

– Multithreading introduced by Burton Smith, HEP ~1975

– “Simultaneous” first proposed by H.Hirata et.al, ISCA 1992

– Carried forward by Nemirovsky, HICSS 1994

– Popularized by Tullsen, Eggers, ISCA 1995

• One can do both on same chip (IBM POWER ~2004)



HPC with one heavyweight or many lightweights

• A Choice: (1 times 2^n), (2^k times 2^n-k), (2^n times 1)

– Not really a choice anymore

• Many reasons for championing HPC

– It is like a better microscope or better telescope

• Scalability

– SIMD is easy (The General barks an order to his troops)

– MIMD is very hard

– Massive SIMD has been around since the 1980s

• Cm1 from Thinking Machines (2^16 cores)

• Non-Von from D.E.Shaw (2^20 cores)

• Boolean Vector Machine (2^30 cores) 



Heterogeneous vs Homogeneous
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Large core vs. Small Core

• Out-of-order

• Wide fetch e.g. 4-wide

• Deeper pipeline

• Aggressive branch 
predictor (e.g. hybrid)

• Many functional units

• Trace cache

• Memory dependence 
speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor 

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core
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Interconnection Networks

• Parameters: Latency, Cost, Contention

• Basic Topologies      Latency     Cost         Contention

– Bus                                     1               O (n) Worst

– Crossbar                            1               O (n^2) Best
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

– Omega Network            Logk(n)         O (nklogk(n))              

– Hypercube                     Log2(n)         O (nlogn)

– Tree                                 Log2(n)        O (n)

– Mesh                               sq.root(n)      O (n)

– Ring                                   n/2               O (n)



Example Omega Networks

(constructed from k by k crossbar switches)

N=16, k=2                                    N=16, k=4

32 2x2 crossbars                        8 4x4 crossbars



Banyan Trees

• A variation on Omega Networks

– Here at UT (Prof Jack Lipovski, ECE; Prof Jim Browne, CS)

– Constructed from m levels of j by k crossbar switches

– Like Omega networks, a unique path for each A to each B

• Example: 

– j: 2

– k: 3

– m: 3                                             

– J^m Processors

– K^m Memories



Cache Coherence

• Definition:

If a cache line is present in more than one cache, 

it has the same values in all caches

• Why is it important?

• Snoopy schemes

– All caches snoop the common bus

• Directory schemes

– Each cache line has a directory entry in memory



A Snoopy Scheme



Directory Scheme (p=n)



Sequential Consistency

• Definition:  Memory sees loads/stores in program order.

• Why it is important: It guarantees mutual exclusion.



Two Processors and a critical section

Processor 1                      Processor 2

L1=0                                   L2=0

A: L1 = 1                           X:  L2=1

B:  If L2 =0                         Y:  If L1=0

{critical section}                {critical section}

C:  L1=0                             Z:  L2=0

What can happen?



Order of A,B,C,X,Y,Z obeying seq. consistency

(Shown are the ten starting with A,

There are also ten starting with X)

A   A    A     A   A   A      A    A    A      A

B   B   B     B  X   X      X   X    X     X

C   X   X     X  B   B      B   Y    Y     Y

X   C   Y     Y  C   Y      Y   B    B     Z

Y   Y   C     Z  Y   C      Z   C    Z     B

Z   Z   Z     C  Z    Z      C   Z    C    C
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Which processors get exclusive access to the critical section under each order?

1,2   1,2   1            1     2     None   None  None  None     1

Note: 1,2 means first 1 gets exclusive access, and when done, 2 gets access.



Critical Sections require Mutual Exclusion

• A critical section: a region of memory containing data

wherein only one thread can be allowed access at a time.

• Why is this important? 

– P1 program wants to execute LD  R1,A followed by ADD A,A,R1

– Between the two instructions, suppose P2 executes ST R2,A

– The bad result: A contains A + R2 instead of A + A.

• Mutual Exclusion Property

– Only one processor at a time can access the critical section

• What happens if B occurs before X, and Y occurs before A?

– If B occurs before X, Process 1 can access the memory

– If Y occurs before A, Process 2 can access the memory

– No mutual exclusion!



Sequential Consistency Guarantees 

Mutual Exclusion

• Sequential consistency means all memory accesses reach 

the memory system in program order.  That is,  A occurs

before B, B before C,  and X before Y, Y before Z.  

• Both processors accessing shared memory concurrently 

means B must occur before X and Y must occur before A.

• That is, sequential consistency AND concurrent access

only if A before B before X before Y before A. Impossible!

• Therefore, having sequential consistency guarantees 

no concurrent access, i.e., mutual exclusion.



Bedankt!
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