
Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 14: Pot Pourri

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2023

Outline

• Measurement Methodology

• RISC

• Spatial Computing

• FPGAs, ASICs, CPUs

• GPUs

•GPUs
– SMT, SIMD, Predication
– Branch Divergence, Memory

Coalescing

•GPUs
– SMT, SIMD, Predication
– Branch Divergence, Memory

Coalescing

Measurement Methodology

• The Basic Equation (and what is wrong with it

• How do we measure

• Real Hardware, Simulator, Analytic model

• Hardware instrumentation, Microcode, Software monitoring

• What do we measure (i.e., benchmarks)

• The ADD instruction

• The Gibson mix

• Synthetic code

• Kernels

• Toy Benchmarks

• SPEC

• The Perfect Club

• Your relevant workload

• Serious Abuses

Why do we measure?

• Before the fact

• So we will know what to build

• After the fact

• So we will know what to build next time

The Standard Performance Equation
(Everyone uses it, and what is wrong with it!)

T = L x CPI x t

L = Dynamic number of instructions executed (ISA)

CPI = Cycles per instruction (ISA, Microarchitecture)

• Pipelining, Issue rate, branch handling

• How do we compute CPI?

t = Clock (technology, marketing)

How do we measure? (Degree of Sanitizing)

• Real Hardware
• Gotchas have a chance to get in the way (a good thing!)

• Least flexible

• Slow (since you have to build the hdwr), Fast (once you have hdwr)

• Fast for doing a thorough job (only one that does a thorough job!)

• Simulation
• Not thorough, some effects are missing

• Most flexible

• Slowest for actual measuring

• Analytic Model
• Good for gross effects, not thorough at all

• Therefore, must be validated

How do we measure? (Invasiveness)

• Hardware instrumentation
• Most expensive

• Non-invasive

• Least flexible

• Microcoded instrumentation
• Best of both worlds (e.g., performance counters, SSMT)

• SPAM (System Performance Analysis using Microcode)

• Software monitoring
• Cheap

• Very invasive

• Most flexible

Benchmarks

• Why benchmarks?
• Find a set of programs or program fragments

REPRESENTATIVE of the WORKLOAD you need the machine for

• Types
• The ADD instruction

• Instruction MIX (Gibson Mix, 1959)

• Kernels (Livermore Loops, Berkeley’s 13 dwarfs, micro-benchmarks)

• Synthetic Benchmarks (Easy parameterization, but RRW is not RWR)

• Toy benchmarks (easy to hand-compile, strongly disparaged today)

• SPEC (Systems Performance Evaluation Co-operative), Agreement!

• Real workload – Why you actually bought the machine!

A few of my concerns

• One number: SpecMARK (Better than ADD time)

• SimplScalar (very low bar to entry, and not bug-free)

• In the literature (1.85 IPC max, Issue width does not matter)

• 400 floating point ops or 1 LLC miss

• Power models

BAD ways to measure performance
(…and each has been used and published)

• Apples and Oranges
• RISC (Counting Simulated Cycles) vs A lightly loaded VAX

• Who should get the credit
• The architecture or the compiler (Berkeley Pascal or VMS Pascal)
• Algorithm optimizations (disallowed by SPEC, determininant concat)
• Instruction set or Register Windows (Bob Colwell)

• Choice of Benchmarks
• Overstates significance of a feature (procedure call, no floating point)
• Small size (100% fits in cache, TLB hits, no I/O)

BAD ways to measure performance (continued)

• Play with Statistics (Which machine is better)

Program A Program B
Machine 1: 1 unit 2 units
Machine 2: 2 units 1 unit

Machine 1 is twice as fast on A, half as fast on B
Speedup is ½ (2 + ½) = 1.25 …Hello!

Short Retrospective on RISC

• From RISC I to RISC V

• Open Microcode

• What is it (technical)

• Characteristics

• What is it (non-technical)

• Why did it happen

• Comments on the Hype

• The Notable Ventures

• Berkeley and Stanford

From RISC 1 to RISC V

• RISC I

• Patterson’s initial RISC activity at Berkeley (1980)

• Carlo Sequin provided the name: Reduced Instruction Set Computer

• Emphasis on Simple set of Simple Instructions with NO microcode

• RISC 2

• Second version, by Manolis Katvenis, Robert Sherborne, D. Loupis

• SOAR (Smalltalk on a RISC)

• Recently renamed RISC 3

• David Ungar, Joan Pendleton

• SPUR (Symmetric Processor under RISC)

• Recently renamed RISC 4

• David Wood, Susan Eggers, Mark Hill

• RISC V (to continue the numbering sequence)

• Open source

Open Microcode

• Compiler Generates Lowest Level of Interpretation
• No Microcode
• Single Cycle Execution

• Complex Compiler vs. Complex Hardware
• Issues:

• Bandwidth, Compiler Complexity, On Chip Tailoring
• Wasted Cycles

HLL

Control
Signals

ISA

Microcode ISA

What is it?

• Originally : Open Microcode

• John Cocke (1970’s)

• 1980: Simple Set of Simple Instructions

• Sequin, Patterson (1980)

• 1989: Short, Tight Pipelines

• John Hennessy

• 1994: VLIW

• Wall Street Journal

Characteristics

• Fixed Length, Uniform Decode Instructions

• No Microcode

• Load/Store

• Larger Register Set

• Delayed Branch

• Register Windows

What is it (Non-Technical)

• Everything New Since 1983

• “Good”

• Motorola 68010 Article

• Microcoded RISC Article

• MicroVAX – 2

• VAX 9000 Literature

• SPARC System

• The “RISC” Core

Why Did It Happen

• Masterful Marketing
• Published Berkeley Benchmarks

• RISC Chip took Weeks, VAX took Years

• Simple is Beautiful

• 4-on-floor vs. Automatic

• Time-to-Market Curve
• VAX 8600 Was Very Late

• Track Technology Curve

• Why Was it Taken Seriously
• My opinion: Because HP Bet the Family Store

Comments on the Hype

• Simple is Beautiful

• Complex Instructions Provide Opportunity for Speed-Up
• 1st add Fl.Pt.

• Graphics

• MMX

• Compilers Never Use It
• Some BAD Implementations

• One Compiler or All Compilers

• Published Berkeley Benchmarks

• Why did H-P jump in ?

The Notable Ventures

• The first project (pre-1980)
• IBM 801 (IBM Yorktown, John Cocke)

• University Projects
• RISC (Berkeley, 1980, Patterson, Emphasis on “Simple”)
• MIPS (Stanford, 1981, Hennessy, Emphasis on Compiler)

• Commercial Products (1980s: RISC’s Golden Years)
• IBM 801 (IBM Yorktown, John Cocke, the first project, pre-1980)
• HP-PA (The IBM Team, Emphasis on Compiler)
• SPARC (“modified” Berkeley RISC)
• MIPS (Simple)
• AMD 29000
• Motorola 88000 (Initially intended to replace M68000)
• IBM RISC System 6000 (IBM Austin, John Cocke, Return to Past)

• Notable later product lines
• Digital Equipment Corporation (ALPHA 21064, 21164, 21264)
• IBM, Motorola, Apple (Power PC 601, 604, 620, …)

Berkeley and Stanford

• Berkeley
• Register Windows
• Delayed Branch
• No microcode → use the area for registers

• Stanford
• Two instructions per 32 bit instruction word
• Pipeline Reorganizer
• Delayed Branch

=================================

The RISC/CISC Wars

• What was it?
• RISC: Reduced Instruction Set Computers

• Most emphasized simple
• “Speed demons”

• CISC: Complex (or, Comprehensive) Instruction Set Computers
• Emphasixed dense encoding of the instructions
• A lot of work specified in each instruction
• “Brainiacs”

• A continual debate as to which was better (1980s, 1990s)

• Why did CISC (i.e., x86) win the war?
• X86 more than doubled the pipeline depth, allowing increased frequency
• Application base for x86 was much larger than for any of the RISCs
• Worth noting: War was about desktops and NOT embedded processors!

=================================

Spatial Computing

• Code laid out in space as a data flow graph

• Data passed from producer unit to consumer unit

• Excellent if the code has to work on large number of data sets

• Critical problem: turning sequential code into a data flow graph

• Enormous performance possible since most nodes are processing

•GPUs
– SMT, SIMD, Predication
– Branch Divergence, Memory

Coalescing

•GPUs
– SMT, SIMD, Predication
– Branch Divergence, Memory

Coalescing

FPGAs, ASICs, CPU

• FPGAs and ASICs are accelerators

• Both provide speed-up over code running on a CPU

• Performance vs Flexibility

• FPGA consumes more energy, takes more space, and is slower

• But it is more flexible

• My analogy: a set of wrenches vs a single adjustable wrench

GPUs

• SMT, SIMD, and Predication

• Bottlenecks to Performance

• Branch Divergence

• Memory Coalescing

• Ten thousand processors per chip

• 32 SIMD lanes

• 32 Stream Processors

• 10 way SMT

•GPUs
– SMT, SIMD, Predication
– Branch Divergence, Memory

Coalescing

•GPUs
– SMT, SIMD, Predication
– Branch Divergence, Memory

Coalescing

Blagodarya!!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 14: Pot Pourri
	Slide 2: Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Spatial Computing
	Slide 24: FPGAs, ASICs, CPU
	Slide 25: GPUs
	Slide 26: Blagodarya!!

