Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 2: The ISA

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2023

Outline

What is it?

— The interface between hardware and software
— A specification

— NOT microarchitecture

— NOT just the instruction set

The Instruction
— The atomic unit of processing
— Changes the state of the machine

Characteristics

— First, a simple example: The LC-3b
— The x86, RISCV
— Vector Architecture

Tradeoffs (with examples)

What is the ISA?

« A specification
— The interface between hardware and software

« A contract
— What the software demands
— What the hardware agrees to deliver

NOT Microarchitecture

« Architecture
— Software Visible
— Address Space, Addressability
— Opcodes, Data Types, Addressing Modes
— Privilege, Priority
— Support for Multiprocessors (e.g., TSET)
— Support for Multiprogramming (e.g., LDCTX)

 Microarchitecture
— Not Software Visible
— Caches (although this has changed, ...sort of)
— Branch Prediction
— The instruction cycle
— Pipelining

DIGRESSION (nugget): You have a brilliant idea, and
It requires a change to the ISA or to the uarchitecture.

Another DIGRESSION (nugget)

 The pure distinction between ISA vs uarchitecture
— ISA is visible to the software
— Microarchitecture is “underneath the hood”

- BUT some have noticed that...
— If you let the compiler know how the ISA is implemented,
— I.e., If you break the walls between the transformation levels,
— You can produce better code for that implementation
— ...at the expense of compatibility

« Today, with the impending demise of Moore’s Law,
— Computer Architecture is looking for ways to still be relevant
— | have been preaching: Break the layers!
— MIT recent white paper: “There is plenty of room at the top!”

Characteristics (The LC-3b)

Processor State (memory, registers)
— Memory addressability: byte

— Memory address space: 2*16

— Registers: 8 GPR, Condition Codes N, Z, P
— Word length: 16 bits

Privilege: 2 levels, supervisor, user
Priority: 8 levels

Instruction format: fixed length, 16 bits
Endian-ness: little endian

Instructions (opcode, addressing mode, data type)
— Opcode (14 opcodes, including XOR, SHF, LDB)

— Addressing modes (PC-relative, Register + offset)

— Data types (2’s complement 16 bit integers, bit vector)

— Three-address machine

The LC-3b Instruction Set

15 14 13 12 11 W0 9 8 7 & 5

ADD" ‘ oo:m | :nn ‘ :sm: ‘0‘ 00‘ ‘
ADD’ ‘ :00:01: | :DR: ‘ :&sm: M |mm5 |
AND' \ :UI:Ul: | :nn ‘ 1sm: ‘Ul 00‘ snzl ‘
AND™ [oo | x| o 1] s |
BR \ 0000 |n‘z|p‘ o PCoﬁseW o |
e T L
JMP [:n:oo: | :000: B:qse:R‘ . bodoou . |
s Com [\ e |
JSRR \ :m:ooj |o‘ o:o ‘ a:c.se:n‘ oooooo |
LDB” [:00:10“ | :nn: ‘B‘::tse:R‘ bousen's |
LDw* :UI:IU‘ | :DR: ‘B%:se:R‘ ‘offs,‘eiél |
LEA ’ :n:m | :DR: ‘ : : :Pc?ﬁsew I : |
vor' [| o | w o] mn |
RET \ :n:uo | imu ‘ ‘ 000000 |
RTI [:10:00 | 600'000'000'006 |
LSHF " l :n:m‘ | :DR: ‘ ‘0|0| umoum:A |
RSHFL ‘ :n:m | :DR: ‘ ‘0‘1| qmoluni:d |
RSHFAW :n:m‘ | :DR‘I } :sn| Ml| urmo‘uni:4|
SIB \ :oo:n | ‘a:asen‘ l?olfsc?it? |
STW ‘ :UI:II | a:asen‘ : SﬁQeiol : |
e [0 | o ren
XOR' ‘ :10:01 | :nn: :sm: ‘n‘ nn‘ snz ‘
o L | o | w [e]
orwe | 00 |,
rotwea | o |]

Characteristics (the LC-3b), continued

Vector architecture (instructions, operands): no

Virtual memory specification: not yet!
— Address space

— Translation mechanism

— Protection

— Page size

System architecture

— State to deal with: trap vector table, interrupt vector table
— Interrupt, exception handling

— Instructions for the O/S to use (RTIl, CHMD)

NOT the instruction cycle (It is part of the uarch)

X86

« Variable length instruction (one byte to 16 bytes)

Prefix 1

Prefix 2

Prefix 3

Prefix 4

Opcode

Opcode 2

ModR/M

SIB

Address

Immed

Characteristics

Rich set of addressing modes
Two-address machine

SSE extension

Not load/store

Three page sizes (4KB, 2MB, 1GB)
Register sizes: 8b, 16b, 32b, 64b, 128b, ...

Example: AH, Ax, EAX, ...
Memory: Byte addressable, 64 bit address space

T

up to 4 bytes

I

RISCV

The 5t chip from Professor David Patterson’s group

UC Berkeley
Nothing (really) in common with their other four risc chips

Mostly handled by Professor Krste Asonovic

Major selling point: Open Source

Overall structure

Multiple subset ISAs (Integer, Float, MUL/DIV, Atomic, etc.)
Designers build their own system, picking and choosing
MUST contain one of the Integer subsets (32-bit or 64-bit)
The rest (extensions) are up to the designer

RISCV (characteristics)

 The subsets
— Integer: 32-bit (RV32l), 64-bit (RV64l), 128-bit (RV128I)
— Float extension: 32-bit (RV32F), 64-bit (RV64D), 128-bit (RV128Q)
— M extension: Integer MUL/DIV
— A extension: Atomic instructions
— L extension: Decimal float
— C extension: Compressed
— B extension: Bit manipulation
— J extension: Dynamically translated
— T extension: Transactional memory
— P extension: Packed SIMD
— V extension: Vector operations
— E extension: Embedded Controller (RV32E)
— G extension: A system, really (IMAFD)

RISCV Characteristics (continued)

RV32I

— 47 distinct opcodes (
» loads, stores, shifts, arith, logic, compare, branch, jump, synch, count

— 32 GPRs (x0 to x31, x0=0, x1 used for call return linkage)
— Also contains a PC

— 32 bit instructions
« Can be extended by a multiple of n bits
« Mixture allows for unaligned access
« Also allows for 16 bit instructions, but then restricted to 8 registers

— 4 basic instruction formats - e o L ol i
R {FUMCT7 zf(szlrLSy lrwajl Ro] G PCcoDg)

Other 1 [Trmeppre Lo]| k31 Jpmecs) Rol oPcobe |
° I—lttle endian < WCDQ\CS’J‘IZ‘SLFLS\ l&,«;imn[hdi ou’co))éﬂl

\ | %
 Load/Store U {7) jmne L5012 8 [gp | oP<odE)

* No predication
e Conditional branche< 1ice GPR< not condition codes

Vector Architecture

* Vector Registers
— Each register has multiple components

« Vector Instructions

— Loads/Stores
« Multiple memory locations in one instruction
« Length register defines the number of components
« Stride register defines distance between successive memory locations

— Operates
« Operates operate component by component
 For example, C = A+B means Ci = Ai + Bi for all |
* |nstruction is ADD V3, V1, V2

fe—
L———_——__’,\ADD
—

Fig 5 Mock dingenm of regivtor
VECTOR RLGISTERS

—

MEMORY]

T00

g%
(14
VECTOR
*)
\2)
/AT
L il
Vector ;
(onrel 5 [
[E w 51| FLOATING
RTC -

SCALAR REGISTERS

53| POINT || |
o |

((An) + $km)

= through

((an) +

(R4

INSTRUCTION BUFFERS

ADDRESS

i
FUNCTIONAL UNITS

Vector processing example

The scalar code:
for 1=1,50
A() = (B(i1)+C(i))/2; Vectorizable!

The vector code:

lvs 1 ; load vector stride

lvl 50 ; load vector length

vid VO,B ; load VO from memory, starting at address B
vid V1,C ; load V1 from memory, starting at address C
vadd vV2,vV0,V1 'V2<---VO+V1

vshfr V3,v2,1 ; V3 <---V2 divided by 2 (shift right one bit)

vst V3A , store V3 to memory, starting at address A

Vector processing example (continued)

« Baseline: with a Scalar Processor:

— Loads/Stores take 11 cycles

— Add takes 4 cycles

— Shift takes 1 cycle

— Iteration Control takes 2 cycles

« 50 iterations of (LD, LD, Add, Shift, Store, Iteration Ctl)
— 50 x (Load, Load, Add, Shift, Store, Iteration_Ctl)
- 50x(11+11+4+1+11 2)=50x 40 =2000 clock cycles

Vector processing example (continued)
Vector Processor Timing
 Vector code (no vector chaining): 285 clock cycles

Ly ST LOAD LOAD APD SHIFT YITC"”ZE‘
, :
Ty, b4 I B . o A e
\ i \ | \ }——— 1

0

« Vector code (with chaining): 182 clock cycles
il - N s

—+—H+—+— ¢ . +
L} 1 1

* Vector code (with 2 load, 1 store port to memory):

i b W __,___————t-"-—""_"
W' 79 clock cycles
o ———
|
1 4-3 \
l_’*F—fn 49 \
—— !

Important to note that SIMD can be
either Vector Processors or Array Processors

SiMD

Vector Processors, Array Processors

— — T —

o[- Jfe)fs [F[z][3][]

LD, |, Lo, Lo, Lo,
P2 1T e 10203 -4
LD, -zi@1| @ & @ @,
LD‘.‘.-.E_.@EiSTH ' ST, ST, 8T, ST,
4 |@y) ST, N
@ 8T,
L

ST,

SIMD

Vector Processors, Array Processors

)+ [e]fsT

LD,

LD, .1 —

LD, -2 @

LD, -3 |@|sT,

G ST,
| @y 5T,

ST,

t

]3]

LD, LD,
‘3 4

@ @

ST,

[t S

= —

|
3Ty ST,

Tradeoffs (with examples)

Dynamic static interface (The semantic gap)

Some example instructions
— EDITPC, INDEX, AOBLEQ, LDCTX, CALL, FF,
— INSQUE/REMQUE, Triads, CHMD, PROBE

Security (at ISA: capability based ISAS)
— 1432, IBM System 38, Data General Fountainhead

Predication

— X86: CMOV

— ARM: inst[31:28]
— THUMB: IT block

Support for multiple ISAs
— ARM: T bit in the status register
— VAX: Compatibility mode bit in the PSL

Tradeoffs (with examples) continued

Register set and size

— Many machine have 32 32-bit registers
— x86 now has 512-bit registers

— Itanium has one-bit predicate registers

Condition codes vs using a general purpose register
— MIPS, CDC6600

Rich instruction set vs Lean instruction set
— Hewlett Packard’s RISC: HPPA has 140 instructions
— Orthogonal to RISC vs CISC

Load/Store vs Operate in the same instruction
— LC-3b, x86 are load/store
— x86 is not load/store

Tradeoffs (with examples), continued

Memory address space (keeps growing!)

Memory addressability

— Most memories: byte addressable (Data processing)

— Scientific machines: 64 bits (size of normal fl.pt. operands)
— Burroughs 1700: one bit (virtual machines)

Page Size (4KB vs more than one)
— Wasted space

— Longer access time

— Too many PTEs

I/O architecture

— Most today use memory mapped I/O
— 0Old days, special I/O instructions

— X86 still has both

Tradeoffs (with examples), continued

« Compiletimevs run time
— MIPS initially had NO hardware interlocks

 |nstruction format

— Most have fixed length, uniform decode
— x86 has variable length, with prefixes
— 1432 had different bit size opcode

« Word length
— VAX: 32 bits

— x86: initially 16 bits, then 32 bits, today 64 bits
— CRAY 1: 64 bits

— DEC System 20: 36 bits (LISP car, cdr for Al processing)

Tradeoffs (with examples), continued

Help for the programmer vs help fo the uarchitect
— Who gets the cushy job?

— Unaligned accesses

— Data Types

— Addressing modes

Unaligned access

— LC-3b does not allow unaligned access
— DEC: PDP-11 (no), VAX (yes), Alpha (no)
Data types (rich or lean)

— Integers, floats of various sizes

— Doubly-linked list, character string
Addressing modes (rich or lean)

— Indirect addressing

— Autoincrement, postdecrement
— SIB byte in x86

Tradeoffs (with examples), continued

VLIW vs ...

— VLIW: compiler does it
— Superscalar: part of the microarchitecture

0,1,2,3 address machine (how many EXPLICIT)
— LC-3b: 3 address

— x86: 2 address

— VAX: both 2 and 3

— Old days: one address (registers were expensive)

— Stack machine: O address

Precise exceptions vs ...

— Precise exceptions: today, everyone

— IBM 360/91: NO

Privilege modes

— Most ISA have two — supervisor and user
— VAX had four

Obrigado!!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 2: The ISA
	Slide 2: Outline
	Slide 3: What is the ISA?
	Slide 4: NOT Microarchitecture
	Slide 5: Another DIGRESSION (nugget)
	Slide 6: Characteristics (The LC-3b)
	Slide 7: The LC-3b Instruction Set
	Slide 8: Characteristics (the LC-3b), continued
	Slide 9: x86
	Slide 10: RISCV
	Slide 11: RISCV (characteristics)
	Slide 12: RISCV Characteristics (continued)
	Slide 13: Vector Architecture
	Slide 14
	Slide 15: Vector processing example
	Slide 16: Vector processing example (continued)
	Slide 17: Vector processing example (continued) Vector Processor Timing
	Slide 18: Important to note that SIMD can be either Vector Processors or Array Processors
	Slide 19
	Slide 20: Tradeoffs (with examples)
	Slide 21: Tradeoffs (with examples) continued
	Slide 22: Tradeoffs (with examples), continued
	Slide 23: Tradeoffs (with examples), continued
	Slide 24: Tradeoffs (with examples), continued
	Slide 25: Tradeoffs (with examples), continued
	Slide 26: Obrigado!!

