
Computer Architecture:

Fundamentals, Tradeoffs, Challenges

Chapter 2: The ISA

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2023

• What is it?

– The interface between hardware and software

– A specification

– NOT microarchitecture

– NOT just the instruction set

• The Instruction

– The atomic unit of processing

– Changes the state of the machine

• Characteristics

– First, a simple example: The LC-3b

– The x86, RISCV

– Vector Architecture

• Tradeoffs (with examples)

Outline

What is the ISA?

• A specification

– The interface between hardware and software

• A contract

– What the software demands

– What the hardware agrees to deliver

NOT Microarchitecture

• Architecture
– Software Visible

– Address Space, Addressability

– Opcodes, Data Types, Addressing Modes

– Privilege, Priority

– Support for Multiprocessors (e.g., TSET)

– Support for Multiprogramming (e.g., LDCTX)

• Microarchitecture
– Not Software Visible

– Caches (although this has changed, …sort of)

– Branch Prediction

– The instruction cycle

– Pipelining

DIGRESSION (nugget): You have a brilliant idea, and

It requires a change to the ISA or to the uarchitecture.

Another DIGRESSION (nugget)

• The pure distinction between ISA vs uarchitecture
– ISA is visible to the software

– Microarchitecture is “underneath the hood”

• BUT some have noticed that…
– If you let the compiler know how the ISA is implemented,

– i.e., if you break the walls between the transformation levels,

– You can produce better code for that implementation

– …at the expense of compatibility

• Today, with the impending demise of Moore’s Law,
– Computer Architecture is looking for ways to still be relevant

– I have been preaching: Break the layers!

– MIT recent white paper: “There is plenty of room at the top!”

Characteristics (The LC-3b)

• Processor State (memory, registers)
– Memory addressability: byte

– Memory address space: 2^16

– Registers: 8 GPR, Condition Codes N, Z, P

– Word length: 16 bits

• Privilege: 2 levels, supervisor, user

• Priority: 8 levels

• Instruction format: fixed length, 16 bits

• Endian-ness: little endian

• Instructions (opcode, addressing mode, data type)
– Opcode (14 opcodes, including XOR, SHF, LDB)

– Addressing modes (PC-relative, Register + offset)

– Data types (2’s complement 16 bit integers, bit vector)

– Three-address machine

The LC-3b Instruction Set

• Vector architecture (instructions, operands): no

• Virtual memory specification: not yet!
– Address space

– Translation mechanism

– Protection

– Page size

• System architecture
– State to deal with: trap vector table, interrupt vector table

– Interrupt, exception handling

– Instructions for the O/S to use (RTI, CHMD)

• NOT the instruction cycle (It is part of the uarch)

Characteristics (the LC-3b), continued

x86

• Variable length instruction (one byte to 16 bytes)

• Characteristics

– Rich set of addressing modes

– Two-address machine

– SSE extension

– Not load/store

– Three page sizes (4KB, 2MB, 1GB)

– Register sizes: 8b, 16b, 32b, 64b, 128b, …

– Example: AH, Ax, EAX, …

– Memory: Byte addressable, 64 bit address space

RISCV

• The 5th chip from Professor David Patterson’s group

– UC Berkeley

– Nothing (really) in common with their other four risc chips

• Mostly handled by Professor Krste Asonovic

• Major selling point: Open Source

• Overall structure

– Multiple subset ISAs (Integer, Float, MUL/DIV, Atomic, etc.)

– Designers build their own system, picking and choosing

– MUST contain one of the Integer subsets (32-bit or 64-bit)

– The rest (extensions) are up to the designer

RISCV (characteristics)

• The subsets

– Integer: 32-bit (RV32I), 64-bit (RV64I), 128-bit (RV128I)

– Float extension: 32-bit (RV32F), 64-bit (RV64D), 128-bit (RV128Q)

– M extension: Integer MUL/DIV

– A extension: Atomic instructions

– L extension: Decimal float

– C extension: Compressed

– B extension: Bit manipulation

– J extension: Dynamically translated

– T extension: Transactional memory

– P extension: Packed SIMD

– V extension: Vector operations

– E extension: Embedded Controller (RV32E)

– G extension: A system, really (IMAFD)

RISCV Characteristics (continued)

• RV32I

– 47 distinct opcodes (

• loads, stores, shifts, arith, logic, compare, branch, jump, synch, count

– 32 GPRs (x0 to x31, x0=0, x1 used for call return linkage)

– Also contains a PC

– 32 bit instructions

• Can be extended by a multiple of n bits

• Mixture allows for unaligned access

• Also allows for 16 bit instructions, but then restricted to 8 registers

– 4 basic instruction formats

– Other

• Little endian

• Load/Store

• No predication

• Conditional branches use GPRs, not condition codes

Vector Architecture

• Vector Registers

– Each register has multiple components

• Vector Instructions

– Loads/Stores

• Multiple memory locations in one instruction

• Length register defines the number of components

• Stride register defines distance between successive memory locations

– Operates

• Operates operate component by component

• For example, C = A+B means Ci = Ai + Bi for all I

• Instruction is ADD V3, V1, V2

Vector processing example

• The scalar code:

for i=1,50

A(i) = (B(i)+C(i))/2; Vectorizable!

• The vector code:

lvs 1 ; load vector stride

lvl 50 ; load vector length

vld V0,B ; load V0 from memory, starting at address B

vld V1,C ; load V1 from memory, starting at address C

vadd V2,V0,V1 ; V2 < --- V0 + V1

vshfr V3,V2,1 ; V3 < --- V2 divided by 2 (shift right one bit)

vst V3,A ; store V3 to memory, starting at address A

Vector processing example (continued)

• Baseline: with a Scalar Processor:

– Loads/Stores take 11 cycles

– Add takes 4 cycles

– Shift takes 1 cycle

– Iteration Control takes 2 cycles

• 50 iterations of (LD, LD, Add, Shift, Store, Iteration Ctl)

– 50 x (Load, Load, Add, Shift, Store, Iteration_Ctl)

– 50 x (11 + 11 + 4 + 1 + 11 2) = 50 x 40 = 2000 clock cycles

Vector processing example (continued)

Vector Processor Timing

• Vector code (no vector chaining): 285 clock cycles

• Vector code (with chaining): 182 clock cycles

• Vector code (with 2 load, 1 store port to memory):

79 clock cycles

Important to note that SIMD can be

either Vector Processors or Array Processors

Tradeoffs (with examples)

• Dynamic static interface (The semantic gap)

• Some example instructions
– EDITPC, INDEX, AOBLEQ, LDCTX, CALL, FF,

– INSQUE/REMQUE, Triads, CHMD, PROBE

• Security (at ISA: capability based ISAs)
– I432, IBM System 38, Data General Fountainhead

• Predication
– X86: CMOV

– ARM: inst[31:28]

– THUMB: IT block

• Support for multiple ISAs
– ARM: T bit in the status register

– VAX: Compatibility mode bit in the PSL

Tradeoffs (with examples) continued

• Register set and size

– Many machine have 32 32-bit registers

– x86 now has 512-bit registers

– Itanium has one-bit predicate registers

• Condition codes vs using a general purpose register

– MIPS, CDC6600

• Rich instruction set vs Lean instruction set

– Hewlett Packard’s RISC: HPPA has 140 instructions

– Orthogonal to RISC vs CISC

• Load/Store vs Operate in the same instruction

– LC-3b, x86 are load/store

– x86 is not load/store

Tradeoffs (with examples), continued

• Memory address space (keeps growing!)

• Memory addressability
– Most memories: byte addressable (Data processing)

– Scientific machines: 64 bits (size of normal fl.pt. operands)

– Burroughs 1700: one bit (virtual machines)

• Page Size (4KB vs more than one)
– Wasted space

– Longer access time

– Too many PTEs

• I/O architecture
– Most today use memory mapped I/O

– Old days, special I/O instructions

– x86 still has both

Tradeoffs (with examples), continued

• Compile time vs run time
– MIPS initially had NO hardware interlocks

• Instruction format
– Most have fixed length, uniform decode

– x86 has variable length, with prefixes

– i432 had different bit size opcode

• Word length
– VAX: 32 bits

– x86: initially 16 bits, then 32 bits, today 64 bits

– CRAY 1: 64 bits

– DEC System 20: 36 bits (LISP car, cdr for AI processing)

Tradeoffs (with examples), continued

• Help for the programmer vs help fo the uarchitect
– Who gets the cushy job?

– Unaligned accesses

– Data Types

– Addressing modes

• Unaligned access
– LC-3b does not allow unaligned access

– DEC: PDP-11 (no), VAX (yes), Alpha (no)

• Data types (rich or lean)
– Integers, floats of various sizes

– Doubly-linked list, character string

• Addressing modes (rich or lean)
– Indirect addressing

– Autoincrement, postdecrement

– SIB byte in x86

Tradeoffs (with examples), continued

• VLIW vs …
– VLIW: compiler does it

– Superscalar: part of the microarchitecture

• 0,1,2,3 address machine (how many EXPLICIT)
– LC-3b: 3 address

– x86: 2 address

– VAX: both 2 and 3

– Old days: one address (registers were expensive)

– Stack machine: 0 address

• Precise exceptions vs …
– Precise exceptions: today, everyone

– IBM 360/91: NO

• Privilege modes
– Most ISA have two – supervisor and user

– VAX had four

Obrigado!!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 2: The ISA
	Slide 2: Outline
	Slide 3: What is the ISA?
	Slide 4: NOT Microarchitecture
	Slide 5: Another DIGRESSION (nugget)
	Slide 6: Characteristics (The LC-3b)
	Slide 7: The LC-3b Instruction Set
	Slide 8: Characteristics (the LC-3b), continued
	Slide 9: x86
	Slide 10: RISCV
	Slide 11: RISCV (characteristics)
	Slide 12: RISCV Characteristics (continued)
	Slide 13: Vector Architecture
	Slide 14
	Slide 15: Vector processing example
	Slide 16: Vector processing example (continued)
	Slide 17: Vector processing example (continued) Vector Processor Timing
	Slide 18: Important to note that SIMD can be either Vector Processors or Array Processors
	Slide 19
	Slide 20: Tradeoffs (with examples)
	Slide 21: Tradeoffs (with examples) continued
	Slide 22: Tradeoffs (with examples), continued
	Slide 23: Tradeoffs (with examples), continued
	Slide 24: Tradeoffs (with examples), continued
	Slide 25: Tradeoffs (with examples), continued
	Slide 26: Obrigado!!

