
Computer Architecture:

Fundamentals, Tradeoffs, Challenges

Chapter 7: Virtual Memory

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2023

Outline

• Virtual Memory Characteristics

• Pages and Page Tables

• Access Control and Translation

• Case 1: Process Page Table in physical memory

• Case 2: Process Page Table in system virtual memory

• Layout of VAX Virtual Memory

• How do we process: LD R1, X

• A complete example

• The Translation Lookaside Buffer (TLB)

• x86 virtual memory with 4KB pages

• x86 extension to 3 page sizes: 4KB, 2MB, 1GB

Virtual Memory

• ISA has a large virtual address (VA) space

– Allows the user program to uniquely identify all objects

• Physical memory may be smaller, but regardless

– It is shared with all processes in the Balance Set

• Virtual memory management does two things

– Access Control, Translation

• Requires cooperation of Architecture and O/S

– Microarchitecture provides the structures

– Microarchitecture does the actual protection/translation

– Operating System manages the memory

• What is resident (i.e., in physical memory), what is on the disk

• What gets kicked out of memory to handle page faults

Virtual Memory

• N processes share physical memory

• Virtual memory partitioned into user space and privileged space

• Virtual memory pages mapped to physical memory frames

• Balance set is the set of all processes alive in the system

• Working set is the no. of resident pages for a productive process

– Pages D, E, and G comprise the working set of Process 2

Three Concepts

• The Process

– Consists of n pages

– All are on the disk, some (the working set) are in physical memory

• A page of virtual memory occupies a frame of physical memory

• The Process Context

– State information specific to a process

– Loaded when turning control of the computer over to a process

– Saved when terminating a process’ control of the computer

– Includes registers specific to the memory mgt system

• The Page Table

– Consists of n page table entries (PTE)

– Each page has a PTE (The PTE is the descriptor for that page)

• The PTE is used for translation (What frame is the page occupying)

• The PTE is used for access control (Does the process have the right

to make the desired access on this page)

The Page Table Entry (PTE)

Access Control and Translate

• Access Control

• Translate

Translation (Case 1)

The Page Table is in Physical Memory

• The process consists of n pages, three are resident

• The Process Base Register (PBR)

– Note that A is a frame number since the Page Table is in

Physical Memory; i.e., PBR contains a physical address

– PBR points to the first address in that frame

• i.e., the address of the PTE of Page 0 of process space

• The Process Length Register (PLR)

– PLR contains the number of virtual pages in the process

The Translation Process (From VA of x to PA of x)

Assume x is on virtual page k

• Step 1: Is PLR < k, the page number of VA of x?

– If yes, VA of x is ill formed, access is denied

• Step 2: Get the PTE

– Since PTEs are 32 bits, address of PTE of page k is PBR + 4 x k

• Step 3: Check protection, verify process’ right to access

• Step 4: Perform translation

Translation (Case 2)

The Page Table is in System Virtual Memory

• Why do we use this more complicated structure?

– No need for the whole page table in physical memory at same time

– 2GB of process space yields a 16MB page table for the VAX

• A 16 MB page table in system virtual space requires 128KB of physical memory

if the entire page table is resident, which is almost never necessary.

• The Process Base Register (PBR)

– Note the page number, indicating PBR contains a virtual address

– PBR points to the first address on that page

• Address of the PTE of Page 0 of process space

– The high bit of PBR is “1” indicating the Page Table is in Sys. Space

• The Process Length Register (PLR)

– Again, PLR contains the number of pages comprising the process

• The System Page Table is in physical memory

Pages and Page Tables for Case 2

(The Process Page Table is in System Virtual Space)

Layout of the Actual VAX Virtual Memory System

(Note:We are ignoring Control (P1) Space in EE460N)

Explanation of the VAX Virtual Memory Layout

• The 4GB virtual address space is in 4 regions

– Bits [31:30] = 00 → P0 Space (user space)

– Bits [31:30] = 01 → P1 Space (user space)

– Bits [31:30] =10 → System Space

– Bits [31:30] = 11 → Reserved for future use

• P0 Page Table is on Page k of System Virtual Space

– Page 2 of P0 Space is resident in frame 1 of Physical Memory
• Note: valid bit of PTE of Page 2 is 1

• Page 0 and 1 of P0 Space are not resident. The valid bits of their PTEs are 0

• P1 Page Table is on Page k+2 of System Space, not resident

– Last page of P1 space is resident in frame 0 of Physical Memory

• System Page Table is resident in Physical Memory

– Pages k and k+1 of System Space are resident in Physical Memory

The flow: LD R1,X

• How does the uarch find the physical address (PA) of X

– Let us say X is on virtual page number A.

– To get the PA of X, the uarch needs the PTE of page A

(VA of X contains: region bits, page no., byte on the page)

– We compute the virtual address (VA) of the PTE of page A,

i.e., PBR + 4 times A. [The Process Page Table is in Sys Space]

– Let us say the PTE of page A is on page B of system space

– We can get the PTE of page B of System Space from the

System Page Table, which is in Physical Memory [SBR + 4 x B]

– The PTE of Page B gives us the frame containing the PTE of Page A

– The PTE of Page A gives us the frame containing X.

– Since we now have the PA of X, we can access X.

• Start with VA, end with PA (6 steps)

– 1.Which page table

– 2. Is Page No. < Proc length register? If no, ACV fault

– 3. Get the PTE (using the page tables)

– 4. Check protection field. If no, ACV fault

– 5. Check V bit, is page resident. If no, TNV fault (Page Fault)

– 6. All cool, access the physical address

The Abstraction

• x is in virtual memory on Page A

• The PTE of Page A is in Page B of System Virtual Space

The Step-by-step Translation Process

(“Walking” the Page Table)

An alternate picture of the page table walk.

A Complete Example!

• We will modify the ISA to make it easier to digest:

– Page size will be 16 bytes (instead of 512 bytes)

– VA will be 9 bits (instead of 32 bits), 32 pages of 16 bytes

– Physical Address will be 7 bits, 8 page frames of 16 bytes

– PTE will still take 4 bytes

– Process space consists of 16 pages, our example: 6 pages

– System space consists of 16 pages, our example: 5 pages

• Our example:

– Process page table starts (PBR) at VA 0x120

• 6 PTEs times 4 bytes/PTE = 24 bytes = 1.5 pages of system space

– System page table starts (SBR) at PA 0x50

• 5 PTEs times 4 bytes/PTE = 20 bytes = 1.25 pages of physical memory

– System page table indicates pages 0,3, 4 are resident

– Process page table indicates page 5 resident, page 4 not so.

The Memory Map

Processing the instruction: LD R1, X

• x is a VA: 0 0101 1000

– i.e., byte 8 on page 5 of process space

• We need the PTE of page 5 of process space.

– Page 5 x 4 bytes/PTE = 0x00010100. Add to PBR.

– Therefore, Page 5 PTE is at VA = 0x134

– Note the crosshatch on the figure. We can not read VM.

• To get the physical location of page 5, access SPT

– SBR + 4x page 3 gives us physical address of PTE of page 3

– SBR = 0x50, i.e., 0x 1010000; 4 times 3 =12, i.e., 0001100

– i.e., PA of PTE of page 3 of system space is in 0x5c

– We read physical memory: PTE of page 3 indicates PFN is 1

– Since VA of this PTE was 0x134, we add 4 (offset) to PFN

– yielding 0x14, the address of the PTE of the Page containing x

– The PTE directs us to PFN 2, yielding 0x28 as PA of x

– The contents of 0x28 is 17 which we load into R1, and done!

TLB Structure

• Example of a Translation Lookaside Buffer (TLB)

– TLB has 16 entries

– Assume 2^10 pages of Virtual Memory

• Page number consists of ten bits

• Index to TLB is a 4-bit hash function (bits 8,5,4,2)

– TLB is a Content addressable memory

• We compare ten bit page number in the entry with page number

• If a match, we can immediately output the PTE (no extra cycles)

Original x86 Virtual Memory 4KB Page Size

x86 Extension to 3 Page Sizes

Gracias!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 7: Virtual Memory
	Slide 2: Outline
	Slide 3: Virtual Memory
	Slide 4: Virtual Memory
	Slide 5: Three Concepts
	Slide 6: The Page Table Entry (PTE)
	Slide 7: Access Control and Translate
	Slide 8: Translation (Case 1) The Page Table is in Physical Memory
	Slide 9: The Translation Process (From VA of x to PA of x) Assume x is on virtual page k
	Slide 10: Translation (Case 2) The Page Table is in System Virtual Memory
	Slide 11: Pages and Page Tables for Case 2 (The Process Page Table is in System Virtual Space)
	Slide 12: Layout of the Actual VAX Virtual Memory System (Note:We are ignoring Control (P1) Space in EE460N)
	Slide 13: Explanation of the VAX Virtual Memory Layout
	Slide 14: The flow: LD R1,X
	Slide 15: The Abstraction
	Slide 16: The Step-by-step Translation Process (“Walking” the Page Table)
	Slide 17
	Slide 18: A Complete Example!
	Slide 19: The Memory Map
	Slide 20: Processing the instruction: LD R1, X
	Slide 21: TLB Structure
	Slide 22: Original x86 Virtual Memory 4KB Page Size
	Slide 23: x86 Extension to 3 Page Sizes
	Slide 24: Gracias!

