
Computer Architecture:

Fundamentals, Tradeoffs, Challenges

Chapter 9: Input/Output (I/O)

Yale Patt

The University of Texas at Austin

Austin, Texas

Spring, 2023

Outline

• Characteristics of I/O

• Bus Transactions

• An example: asynchronous bus with central arbitration

– Arbitration

• Race Conditions

– Transfer

• RAID (Redundant Array of Disks)

Characteristics of I/O

• Three parts

– The medium (e.g., the magnetic field in the track)

– The device itself (e.g., the disk)

– The controller

• How

– Polling

– Interrupt driven

– DMA (the I/O control block)

– I/O processor

• Instructions

– Memory-mapped

– Special I/O instructions

Bus Transactions

• Synch vs Asynch

– Asynch (slow)

• Handshaking

• No clock

• Everything explicit

– Synch (fast)

• Clock → Most things are implicit

• Very fast, but must be short

• Signals

– Three types: Address, Data, Control

• Multiplexed address, data

• Arbitration

– Central: Priority Arbitration Unit

– Distributed: my “dinner table” analogy

• Transfer

An Asynchronous I/O System

Arbitration

• The concept:

• If the device does not want the bus:

Is there a problem?

A Race Condition

• Consider the following:

– The PAU asserts the BG signal

– Device A does not want the bus

– Controller A passes it on

– Controller B wants it, asserts SACK

– Controller A sees SACK, returns to Idle

• What if:

– Device A wants the bus before PAU negated BG

– Controller A goes to BR and, since BG is still asserted

– Controller A goes to SACK

• How do we fix it?

The fix!

• We do not return to IDLE when we see SACK

– PAU may still be asserting BG

• We wait until PAU stops asserting BG

– Then it is safe to return to IDLE

• The fix:

What if a higher priority request comes in

AFTER the PAU has issued BG?

• How do we keep PAU from issuing higher BG

– Disable new requests to PAU at start of bus cycle

(Bus master, asserts BBSY, negates SACK)

– Enable requests to PAU at end of arbitration

(Next bus master asserts SACK)

The Transfer

Redundant Array of Interdependent Disks (RAID)

• The soul of RAID: performance plus redundancy

– Introduced by Norman Ouchi (IBM), US Patent granted in 1978

– Acronym by Gibson, Katz, Patterson (UC Berkeley), 1988

• The meaning of I in RAID

– Initially Inexpensive, until they realized it was not inexpensive

– Then independent, except the disks are not independent

– I suggest “Interdependent” !

• The various levels

– RAID 0: Vanilla -- Coarse, No redundancy

– RAID 1: Mirroring – Coarse, Redundancy

– RAID 2: ECC – Fine, ECC

– RAID 3: Parity – Fine, Parity disk

– RAID 4: Coarse parity – Coarse, Parity disk

– RAID 5: The preferred model – Fine, no parity disk

– RAID 6: More than one mechanism for error checking

The RAID levels

• RAID 0:

– Coarse

– No Redundancy

• RAID 1:

– Coarse

– Redundancy

• RAID 2:

– Fine

– ECC

The RAID levels (continued)

• RAID 3:

– Fine

– Parity Disk

• RAID 4:

– Coarse

– Parity Disk

• RAID 5:

– Fine

– No Parity Disk

Danke!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 9: Input/Output (I/O)
	Slide 2: Outline
	Slide 3: Characteristics of I/O
	Slide 4: Bus Transactions
	Slide 5: An Asynchronous I/O System
	Slide 6: Arbitration
	Slide 7: A Race Condition
	Slide 8: The fix!
	Slide 9: What if a higher priority request comes in AFTER the PAU has issued BG?
	Slide 10: The Transfer
	Slide 11: Redundant Array of Interdependent Disks (RAID)
	Slide 12: The RAID levels
	Slide 13: The RAID levels (continued)
	Slide 14: Danke!

