Computer Architecture:
Fundamentals, Tradeoffs, Challenges

Chapter 9: Input/Output (I1/O)

Yale Patt
The University of Texas at Austin

Austin, Texas
Spring, 2023

Outline

Characteristics of I/0O
Bus Transactions

An example: asynchronous bus with central arbitration

— Arbitration
« Race Conditions

— Transfer

RAID (Redundant Array of Disks)

Characteristics of I/O

 Three parts
— The medium (e.g., the magnetic field in the track)
— The device itself (e.g., the disk)
— The controller

* How
— Polling
— Interrupt driven
— DMA (the I/O control block)
— |/O processor
* Instructions
— Memory-mapped
— Special I/O instructions

Bus Transactions

« Synch vs Asynch

— Asynch (slow)
« Handshaking
* No clock
« Everything explicit
— Synch (fast)
« Clock -2 Most things are implicit
« Very fast, but must be short

« Signals

— Three types: Address, Data, Control
« Multiplexed address, data

« Arbitration
— Central: Priority Arbitration Unit
— Distributed: my “dinner table” analogy

* Transfer

An Asynchronous I/O System

Address

;:7 ICTiL HE] (_C;L =
Lo T
il I— -
‘ T

Arbitration

The concept:

DONE

K(“’T)BCN _ [gg—w

DoNE

3~

e gs
pEV G B85

If the device does not want the bus:

)

SACK

Is there a problem?

A Race Condition

Consider the following:

— The PAU asserts the BG signal

— Device A does not want the bus

— Controller A passes it on

— Controller B wants it, asserts SACK

— Controller A sees SACK, returns to Idle

What if:

— Device A wants the bus before PAU negated BG
— Controller A goes to BR and, since BG is still asserted
— Controller A goes to SACK

How do we fix it?

The fix!

« We do not return to IDLE when we see SACK
— PAU may still be asserting BG

« We wait until PAU stops asserting BG
— Then it is safe to return to IDLE

e The fix:

What if a higher priority request comes in
AFTER the PAU has issued BG?

« How do we keep PAU from issuing higher BG
— Disable new requests to PAU at start of bus cycle
(Bus master, asserts BBSY, negates SACK)
— Enable requests to PAU at end of arbitration
(Next bus master asserts SACK)

/? R — LATCU \'* :’j kATC!*‘ - /)'— .‘> y
. o { p— e P AL J
s :)

’ . — 2G

. , —_— 1S

2 \ . —] L0\ _,'\) =

L‘O/ZF N CT“j LATCH l CAT CH\—"P NS \
- —
j SACK

The Transfer

Redundant Array of Interdependent Disks (RAID)

The soul of RAID: performance plus redundancy
— Introduced by Norman Ouchi (IBM), US Patent granted in 1978
— Acronym by Gibson, Katz, Patterson (UC Berkeley), 1988

The meaning of I in RAID

— Initially Inexpensive, until they realized it was not inexpensive
— Then independent, except the disks are not independent

— I suggest “Interdependent” !

The various levels

— RAID 0: Vanilla -- Coarse, No redundancy

— RAID 1: Mirroring — Coarse, Redundancy

— RAID 2: ECC - Fine, ECC

— RAID 3: Parity — Fine, Parity disk

— RAID 4: Coarse parity — Coarse, Parity disk

— RAID 5: The preferred model — Fine, no parity disk

— RAID 6: More than one mechanism for error checking

The RAID levels

 RAID O:

— Coarse
— No Redundancy

- RAID 1. " k -—;‘%
o
— Coarse P S

— Redundancy - Q

« RAID 2:
— Fine
— ECC

The RAID levels

RAID 3:
— Fine
— Parity Disk

RAID 4:

— Coarse
— Parity Disk

RAID 5:
— Fine
— No Parity Disk

(continued)

C// S ‘/ (i :
- Dot o
{ PAL |t -
‘.‘__2_-_ i 2\
. = SR

Danke!

	Slide 1: Computer Architecture: Fundamentals, Tradeoffs, Challenges Chapter 9: Input/Output (I/O)
	Slide 2: Outline
	Slide 3: Characteristics of I/O
	Slide 4: Bus Transactions
	Slide 5: An Asynchronous I/O System
	Slide 6: Arbitration
	Slide 7: A Race Condition
	Slide 8: The fix!
	Slide 9: What if a higher priority request comes in AFTER the PAU has issued BG?
	Slide 10: The Transfer
	Slide 11: Redundant Array of Interdependent Disks (RAID)
	Slide 12: The RAID levels
	Slide 13: The RAID levels (continued)
	Slide 14: Danke!

