Chapter 7

Assembly Language

The following is provided as reference material to the Adslgrprocess, and the LC-
3b Assembly Language. It has been extracted from Intro tofiLaimg Systems: From
bits and gates to C and beyond, 2e, McGraw-Hill, 2004. In ngency to get this on
the web site, | may have inadvertently created inconsigsntf you find anything here
that is missing an antecedent or otherwise makes no sereseseptontact me and/or
one of the TAs. — Yale Patt

7.1 LC-3b Assembly Language

We will begin our study of the LC-3b assembly language by rseainan example.
The program in Figure 7.1 multiplies the integer intiallgistd in NUMBER by six by
adding the integer to itself six times. For example, if theegrer is 123, the program
computes the product by adding 12323+ 123+ 123+ 123+ 123.

The program consists of 21 lines of code. We have addieeaumber to each line
of the program in order to be able to refer to individual liesily. This is a common
practice. These line numbers are not part of the program .liies start with a semi-
colon, designating that they are strictly for the benefitref human reader. More on
this momentarily. Seven lines (06, 07, 08, OC, 0D, OE, andsp@xify actual instruc-
tions to be translated into instructions in the ISA of the 8&-which will actually be
carried out when the program runs. The remaining four lifgs {2, 13, and 15) con-
tain pseudo-ops,which are messages from the programmiee tivanslation program
to help in the translation process. The translation progsaoalled anassembler (in
this case the LC-3b assembler), and the translation prigeafiedassembly.

7.1.1 Instructions

Instead of an instruction being 16 Os and 1s, as is the caseih@-3b ISA, an in-
struction in assembly language consists of four parts, assivelow:

LABEL OPCCDE OPERANDS ; COWMENTS

143

144 CHAPTER 7. ASSEMBLY LANGUAGE

01

02 ; Programto multiply an integer by the constant 6.

03 ; Before execution, an integer nust be stored in NUVBER
04

05 .ORIG x3050

06 LEA R2, NUMBER

07 LDW R2, R2, #0

08 LEA RL, SI X

09 LDW RL, RL, #0

0A AND R3, R3, #0 ; Cear R3. It will
0B ; contain the product.
0C ; The inner |oop

0D ;

OE AGAIN ADD R3, R3, R2

OF ADD RL, R1, #-1 ; Rl keeps track of
10 BRp AGAI N ; the iterations
11

12 HALT

13

14 NUMBER .BLKW 1

15 SIX .FILL x0006

16 ;

17 . END

Figure 7.1: An assembly language program

Two of the parts (LABEL and COMMENTS) are optional. More oatimomentarily.

Opcodes and Operands

Two of the parts (OPCODE and OPERANDS) amandatory. An instruction must
have an OPCODE (the thing the instruction is to do), and thpaggpiate number of
operands (the things it is supposed to do it to).

The OPCODE is a symbolic name for the opcode of the correspgrdC-3b in-
struction. The idea is that it is easier to remember an ojeraty the symbolic name
ADD, AND, or LDW than by the four-bit quantity 0001,0101, ot 10.

The number of operands depends on the operation being pextorFor example,
the ADD instruction (line OE) requires three operands (tearses to obtain the num-
bers to be added, and one destination to designate wheredihi¢is to be placed). All
three operands must be explicitly identified in the instrct

AGAI N ADD R3, R3, R2

The operands to be added are obtained from register 2 andr&gister 3. The result
is to be placed in register 3. We represent each of the regi8tthrough 7 as RO, R2,
..., R7.

7.1. LC-3BASSEMBLY LANGUAGE 145

The LEA instruction (line 06) requires two operands (the memocation whose
address is to be read) and the destination register whichderttain that address after
the instruction completes execution. We will see momelyténat memory locations
will be given symbolic addresses callbels. In this case, the location whose address
is to be read is given the labRIUMBER. The destination into which that address is to
be loaded is register 2.

LEA R2, NUMBER

As we discussed in class, operands can be obtained fronteegiffom memory, or
they may be literal (i.e., immediate) values in the institt In the case of register
operands, the registers are explicitly represented (sadRZaand R3 in line 0C). In
the case of memory operands, the symbolic name of the memocagidn is explicitly
represented (such as NUMBER in line 06 and SIX in line 08)hindase of immediate
operands, the actual value is explicitly represented (sgdhe value 0 in line 0A).

AND R3, R3, #0 ; Clear R3. It will contain the product.

A literal value must contain a symbol identifying the regmetation base of the number.
We use # for decimal, x for hexadecimal, and b for binary. Simes there is no
ambiguity, such as in the case 3FOA, which is a hex numberethefess, we write it
as x3F0A. Sometimes there is ambiguity, such as in the cdX& ¥@000 represents the
decimal number 4096, b1000 represents the decimal numlaerd3#1000 represents
the decimal number 1000.

Labels

Labels are symbolic names which are used to identify menmrgtions that are re-
ferred to explicitly in the program. In LC-3b assembly laage, a label cosists of
from one to 20 alphanumeric characters (i.e., a capitahwetacase letter of the alpha-
bet, or a decimal digit), starting with a letter of the alpbalNOW, Under21, R2D2,
and C3PO are all examples of possible LC-3b assembly largahgls.

There are two reasons for explicitly referring to a memoigelton.

1. The location contains the target of a branch instructiongxample, AGAIN in
line OE).

2. The location contains a value that is loaded or storedgfample, NUMBER,
line 14, and SIX, line 15).

The location AGAIN is specifically referenced by the brang$tiuction in line 10.
BRp AGAIN

If the result of ADD R1,R1,#-1 is positive (as evidenced bg hcondition code be-
ing set), then the program branches to the location exiylicferenced as AGAIN to
perform another iteration.

146 CHAPTER 7. ASSEMBLY LANGUAGE

The location NUMBER is specifically referenced by the LEAtinstion in line 06.
The value stored in the memory location explicitly refereti@s NUMBER is loaded
into R2.

If a location in the program is not explicitly referencedeththere is no need to
give it a label.

Comments

Comments are messages intended only for human consumftiay. have no effect
on the translation process and indeed are not acted on byGkgblLAssembler. They
are identified in the program by semicolons. A semicolonifigmthat the rest of the
line is a comment and is to be ignored by the assembler. Ifeh@colon is the first
nonblank character on the line, the entire line is ignoréthd semicolon follows the
operands of an instruction, then only the comment is ignbsethe assembler.

The purpose of comments is to make the program more compsidterno the
human reader. They help explain a nonintuitive aspect ofatruction or a set of
instructions. In line OA, the comment “Clear R3; it will cam the product” lets the
reader know that the instruction on line OA is initializing Rrior to accumulating
the product of the two numbers. While the purpose of line 04/ in@ obvious to the
programmer today, it may not be the case two years from naer #fe programmer
has written an additional 30,000 lines of code and cannogemeber why he/she wrote
AND R3,R3,#0. It may also be the case that two years from nbe,programmer
no longer works for the company and the company needs to stff program in
response to a product update. If the task is assigned to sameloo has never seen
the code before, comments go a long way to helping compréens

It is important to make comments that provide additionaljhsand not just restate
the obvious. There are two reasons for this. First, commiatsrestate the obvious
are a waste of everyone’s time. Second, they tend to obskhareamments that say
something important because they add clutter to the progFamexample, in line OF,
the comment “Decrement R1” would be a bad idea. It would mtevio additional
insight to the instruction, and it would add clutter to thgea

Another purpose of comments, and also the judicious use toé édank spaces
to a line, is to make the visual presentation of a programeedsi understand. So,
for example, comments are used to separate pieces of theaprdgopm each other to
make the program more readable. That is, lines of code thet twgether to compute
a single result are placed on successive lines, while pieicagprogram that produce
separate results are separated from each other. For examehat lines OE through
10 are separated from the rest of the code by lines 0D and XreTénothing on lines
0D and 11 other than the semicolons.

Extra spaces that are ignored by the assembler provide aortopjty to align
elements of a program for easier readability. For exampléha opcodes start in the
same column on the page.

7.1. LC-3BASSEMBLY LANGUAGE 147

7.1.2 Pseudo-ops (Assembler Directives)

The LC-3b assembler is a program that takes as input a stficftasacters representing
a computer program written in LC-3b assembly language, earslates it into a pro-
gram in the ISA of the LC-3b. Pseudo-ops are helpful to therasder in performing
that task.

Actually, a more formal name for a pseudo-opassembler directive. They are
called pseudo-ops because they do not refer to operatiahwithbe performed by the
program during execution. Rather, the pseudo-op is strecthessage to the assem-
bler to help the assembler in the assembly process. Oncessieenbler handles the
message, the pseudo-op is discarded. The LC-3b assembhtairofive pseudo-ops:
.ORIG, .FILL, .BLKW, .STRINGZ, and .END. All are easily regnizable by the dot
as their first character.

.ORIG

e .ORIG tells the assembler where in memory to place the LC+8gram. In
line 05, .ORIG x3050 says, start with location x3050. As aultegshe LEA
R2,NUMBER instruction will be put in location x3050.

FILL

e .FILL tells the assembler to set aside the next locationéypttogram and
initialize it with the value of the operand. In line 15, thexatnth location in the
resultant LC-3b program is initialized to the value x0006.

.BLKW

e .BLKW tells the assembler to set aside some number of seigligr@mory loca-
tions (i.e., aBBLocK of Words) in the program. The actual number is the operand
of the .BLKW pseudo-op. In line 11, the pseudo-op instrusesassembler to
set aside one location in memory (and also to label it NUMBIBEBidentally).

The pseudo-op .BLKW is particularly useful when the actuwdle of the
operand is not yet known. For example, one might want to sdeaslocation
in memory for storing a character input from a keyboard. It not be until the
program is run that we will know the identity of that keysteok

148 CHAPTER 7. ASSEMBLY LANGUAGE

.STRINGZ

e .STRINGZ tells the assembler to initialize a sequenaeof memory locations,
wherea=1if nis odd, anda= 2 if n is even. The argument is a sequence of
characters, inside double quotation marks. The firstl bytes of memory are
initialized with the ASCII codes of the corresponding cltdeas in the string,
followed by x00. A final byte x00 is added if necessary to erglgtring on a
word boundary. Tha& -+ 14 character (x00) provides a convenient sentinel for
processing the string of ASCII codes.

For example, the code fragment

.RIG x3010
HELLO .STRINGZ "Hello, Wrld!"

would result in the assembler initializing locations x3athBough x301D to the
following values:

x3010: x48
x3011: x65
x3012: x6C
x3013: x6C
x3014:. x6F
x3015: x2C
x3016: x20
x3017: x57
x3018: x6F
x3019: x72
x301A: x6C
x301B: x64
x301C. x21
x301D: x00

.END

e .END tells the assembler where the program ends. Any chamatitat come
after .END will not be utilized by the assembleNote: .END does not stop
the program during execution. In fact, .END does not evestatithe time of
execution. It is simply a delimiter—it marks the end of theisz® program.

7.1.3 An Example

The program shown in Figure 7.2 takes a character that i inpu the keyboard and
a file and counts the number of occurrences of that characthai file.

7.1. LC-3BASSEMBLY LANGUAGE

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30

149

; Programto count occurrences of a character in a File.

; Character to be input fromthe keyboard.

; Result to be displayed on the monitor

; Programworks only if no more than 9 occurrences are found

; Initialization

.RIG
AND
LEA
LDW
TRAP
LDB

: Test character for end of file

TEST ADD
BRz

;. Test character for match

NOT
ADD
NOT
BRnp
ADD

1

: CGet next character fromthe

GETCHAR ADD
LDB
BRnzp

i

x3000
R2, R2, #0
R3, PTR
R3, R3, #0
x23

R, R3, #0

R4, R1, #-4

QUTPUT

R1, R
R1,R1, RO
RL, RL
GETCHAR
R2, Rz, #1

R3, R3, #1
R1, R3, #0
TEST

; Qutput the count.

QUTPUT LEA
LDW
ADD
TRAP
TRAP

RO, ASCl |
RO, RO, #0
RO, RO, R2
x21
x25

R2 is counter, initialize to 0
R3 is pointer to characters

RO gets character input
Rl gets the next character

;. Test for EOT

If done, prepare the output

If a match, increment count.

If match, Rl = xFFFF
If match, Rl = x0000
If no match, do not increnent

file

; Storage for pointer and ASC |

ASC | .FILL
PTR .FILL
. END

x0030
x4000

I ncrenment the pointer
Rl gets the next character to test

Load the ASCII tenplate

; Convert binary to ASCI |
; ASCI1 code in RO is displayed

Hal t machi ne

tenpl ate

Figure 7.2: The assembly language program to count ocoteseof a character

150 CHAPTER 7. ASSEMBLY LANGUAGE

A few notes regarding this program:

Three times during this program, assistance in the form ef@ee call is required
of the operating system. In each case, a TRAP instructiosdd UTRAP x23 causes a
character to be input from the keyboard and placed in RO (g TRAP x21 causes
the ASCII code in RO to be displayed on the monitor (line 29RAP x25 causes the
machine to be halted (line 2A).

The ASCII codes for the decimal digits 0 to 9 (0000 to 1001)x8@ to x39. The
conversion from binary to ASCII is done simply by adding x8Gthe binary value of
the decimal digit. Line 2E shows the label ASCII used to idfghe memory location
containing x0030.

The file that is to be examined starts at address x4000 (seHfih Usually, this
starting address would not be known to the programmer whaiting this program,
since we would want the program to work on files that will beeoavailable in the
future.

7.2 The Assembly Process

Before an LC-3b assembly language program can be executeuki first be translated
into a machine language program, that is, one in which eaathuiction is in the LC-3b
ISA. It is the job of the LC-3b assembler to perform that ttatign.

7.2.1 A Two-Pass Process

In this section, we will see how the assembler goes througlpthcess of translating
an assembly language program into a machine language prod¥e will use as our
running example the assembly language program of Figure 7.2

You remember that there is in general a one-to-one correspue between in-
structions in an assembly language program and instritiothe final machine lan-
guage program. We could attempt to perform this translatioone pass through the
assembly language program. Starting from the top of Figu2e the assembler dis-
cards lines 01 to 09, since they contain only comments. Camsrere strictly for
human consumption; they have no bearing on the translatioceps. The assembler
then moves on to line OA. Line OA is a pseudo-op; it tells theeasbler that the ma-
chine language program is to start a location x3000. Thenalsiee then moves on to
line OB, which it can easily translate into LC-3b machine&odt this point, we have

x3000: 0101010010100000

The LC-3b assembler moves on to translate the next insbrugtine 0C). Unfortu-
nately, it is unable to do so, since it does not know the mepaiithe symbolic address,
PTR. At this point the assembler is stuck, and the assemblyess fails.

To prevent the above problem from occurring, the assemhbggss is done in
two complete passes (from beginning to .END) through theeeassembly language
program. The objective of the first pass is to identify thaiakbinary addresses corre-
sponding to the symbolic names (or labels). This set of spwadences is known as

7.2. THE ASSEMBLY PROCESS 151

the symbol table. In pass one, we construct the symbol table. In pass two, ans-tr
late the individual assembly language instructions intrtiborresponding machine
language instructions.

Thus, when the assembler examines line OC for the purposartfiating

LEA R3, PTR

during the second pass, it already knows the correspondmtaeen PTR and x3028
(from the first pass). Thus it can easily translate line 0C to

x3002: 1110011000010011

The problem of not knowing the 16-bit address corresponttifiTR no longer exists.

7.2.2 TheFirst Pass. Creating the Symbol Table

For our purposes, the symbol table is simply a corresporelehsymbolic names with
their 16-bit memory addresses. We obtain these correspoedéy passing through
the assembly language program once, noting which instnuééi assigned to which
address, and identifying each label with the address of&iggaed entry.

Recall that we provide labels in those cases where we hawfé¢oto a location,
either because it is the target of a branch instruction oabse it contains data that must
be loaded or stored. Consequently, if we have not made argragmoming mistakes,
and if we identify all the labels, we will have identified allet symbolic addresses used
in the program.

The above paragraph assumes that our entire program egistedén our .ORIG
and .END pseudo-ops: This is true for the assembly languexgggm of Figure 7.2.

The first pass starts, after discarding the comments on@ihés 09 by noting (line
0A) that the first instruction will be assigned to addressOB0We keep track of the
location assigned to each instruction by means of a locaiemter (LC). The LC is
initialized to the address specified in .ORIG, that is, x3000

The assembler examines each instruction in sequence, emgdriants the LC once
for each assembly language instruction. If the instrucémamined contains a label, a
symbol table entry is made for that label, specifying the@ot contents of LC as its
address. The first pass terminates when the .END instruigtiencountered.

The first instruction that has a label is at line 13. Since this sixth instruction
in the program and the LC at that point contains x300A, a syirtdige entry is con-
structed thus:

| Synbol | Address |
[TEST | x300A |

The second instruction that has a label is at line 20. At toistp the LC has been
incremented to x3018. Thus a symbol table entry is congdjets follows:

| Symbol | Address |
| GETCHAR| x3018 |

152 CHAPTER 7. ASSEMBLY LANGUAGE

At the conclusion of the first pass, the symbol table has theviitng entries:

| Synbol | Address |
TEST x300A
GETCHAR | x3018
OUTPUT Xx301E
ASCI | x3028
PTR Xx302A

7.2.3 The Second Pass. Generating the Machine Language Pro-
gram

The second pass consists of going through the assemblydgegarogram a second
time, line by line, this time with the help of the symbol tabd¢ each line, the assembly
language instruction is translated into an LC-3b machinguage instruction.

Starting again at the top, the assembler again discards@ih¢hrough 09 because
they contain only comments. Line OA is the .ORIG pseudo-dpctvthe assembler
uses to initialize LC to x3000. The assembler moves on toOBeand produces the
machine language instruction 0101010010100000. Thendbensbler moves on to
line OC.

This time, when the assembler gets to line 0C, it can conmlgletgssemble the
instruction since it knows that PTR corresponds to x302Ae Tistruction is LEA,
which has an opcode encoding of 1110. The Destination sxdiBR) is R3, that is,
011.

PCoffset is computed as follows: We know that PTR is the |&dredddress x302A,
and that the incremented PC is LC+2, in this case x3004. $tii€e(x302A) must be
the sum of the incremented PC (x3004) and twice the sigmeeig:PCoffset (since the
offset is in words and memory is byte-addressable), PCofffeest be x0013. Putting
this all together, x3002 is set to 1110011000010011, and-@és incremented to
x3004.

Note: In order to use the LEA instruction, it is necessary thatstbrce of the load,
in this case the address whose label is PTR, is not more thag e5-510 memory
locations from the LEA instruction itself. If the addressR¥fR had been greater than
LC+2 +510 or less than LC+2 -512, then the offset would notrfibits [8:0] of the
instruction. In such a case, an assembly error would haveroat, preventing the
assembly process from completing successfully. Fortlyy@dR is close enough to
the LEA instruction, so the instruction assembled coryectl

The second pass continues. At each step, the LC is increthantkthe location
specified by LC is assigned the translated LC-3b instruatioin the case of .FILL,
the value specified. When the second pass encounters theirishlction, assembly
terminates.

The resulting translated program is shown in Figure 7.3.

7.2. THE ASSEMBLY PROCESS

| Address| Binary |
0011000000000000

x3000 | 0101010010100000
x3002 | 1110011000010011L
x3004 | 0110011011000000
x3006 | 1111000000100011
x3008 | 0010001011000000
Xx300A | 0001100001111100
x300C | 0000010000001000
x300E | 1001001001111111
x3010 | 0001001001000000
x3012 | 1001001001111111
x3014 | 0000101000000001
x3016 | 0001010010100001L
x3018 | 0001011011100001L
Xx301A | 0010001011000000
x301C | 0000111111110110
x301E | 1110000000000100
x3020 | 0110000000000000
x3022 | 0001000000000010
x3024 | 1111000000100001L
x3026 | 1111000000100101L
x3028 | 0000000000110000
x302A | 0100000000000000

153

Figure 7.3: The machine language program for the assemhbyukege program of

Figure 7.2

That process was, on a good day, merely tedious. Fortungt@lydo not have
to do it for a living—the LC-3b assembler does that. And, eigou now know LC-
3b assembly language, there is no need to program in machigeidge. Now we
can write our programs symbolically in LC-3b assembly laaxgeiand invoke the LC-
3b assembler to create the machine language versions tha&xeaute on an LC-3b

computer.

