Department of Electrical and Computer Engineering

EE460N Spring 2021
Y. N. Patt, Instructor

University of Texas at Austin

Siavash Zangeneh, Ben Lin, Juan Paez, TAs

Final Exam
May 14th, 2021

Name:

Solutions

EID:

Extra Explanations

Part A:
Problem 1: 10 points
Problem 2: 10 points
Problem 3: 10 points
Problem 4: 10 points
Problem 5: 10 points

Note: Please be sure that your answers to all questions (and all supporting work that is required) are

contained in the space provided.

Please read the following sentence, and if you agree, sign/print your name where requested: I have not

Total: 130 points

given or received any unauthorized help on this exam.

Part B:
Problem 6: 20 points
Problem 7: 20 points
Problem 8: 20 points
Problem 9: 20 points

Signature:

Good Luck!

General Instructions:

1. You are free to use anything in the Handouts section of the course website that is listed under
“Powerpoint Presentations”, “Other Handouts”, “LC-3b Handouts”. In particular, Appendix A
and Appendix C may be of use. Anything else from the course website is not allowed. Anything
from any textbooks or the Internet is also not allowed and considered unauthorized access.

2. Use of a calculator is not required but is permitted.

3. Ifyou have any questions, join the class Zoom link and ask a TA. Do not stay on the Zoom call
during the exam unless you have questions.

4. Announcements will be posted here. Check this page periodically throughout the exam.

5. You will take the exam by editing a Google Doc. Unlike exam 1, we will not accept handwritten
answers by either printing the exam or editing a pdf using a tablet.

6. Read the instructions below.

7. You are required to stop working on the exam promptly at 10:00 PM.

Editing a Google Doc:

1. Open the Google Doc version of the exam from here.

2. Save a copy of the document to your Google Drive. Click “File”-> “Make a copy.”

3. While working on the exam, DO NOT expand any boxes that are given to you. Do not
change the font size. Feel free to show your work in the available space. If you need more
space, you are writing too much.

4. When you are ready to submit your exam, click “File”-> “Print” and select “Save as PDF”.

5. Upload the PDF to Gradescope by 10:05 PM.

6. Ifyou fail to upload your exam to Gradescope on time, email your exam to the TAs as soon as

possible. Late penalties may apply.

http://users.ece.utexas.edu/~patt/21s.460n/handouts.html
http://users.ece.utexas.edu/~patt/21s.460n/handouts/appA.pdf
http://users.ece.utexas.edu/~patt/21s.460n/handouts/appC.pdf
https://utexas.zoom.us/j/96851628088
https://docs.google.com/document/d/1NmyWabE3SaG2q3p00gV7iHrm41tOHZOoG1Fvy82BKZQ/edit?usp=sharing
https://docs.google.com/document/d/180sGv5Ghw_O1ywyrqKWNJdLjk7rgi1ooL2ADxWgq-tI/edit?usp=sharing

Problem 1 (10 points): Answer each question below. Use as many words as needed, but your answer
must fit in the box without expanding it.

Note: On the final exam, you will get no points for any part of Problem 1 that you leave blank.

Part a (2 points): In the LC-3b, what register is used for the Stack Pointer?

R6

Part b (2 points): Does the stack grow towards 0x0000 or towards OXxFFFF?

x0000

Part ¢ (2 points): Does the Stack Pointer have to be changed before pushing a value on the stack? If
yes, what is the change?

It needs to be decremented by 2 before storing the value.

Part d (4 points): The PSR contains state information of the executing process. The LC-3b PSR
contains the privilege mode bit, priority bits, and condition codes.

Why are the condition codes stored in the PSR? Explain, using a concrete example. If you do not show
a concrete example, you will get no credit for your answer.

Suppose the user program has an ADD followed by a branch instruction and an interrupt is taken
between the execution of the two instructions. After the processor returns from the interrupt routine, it
should use the condition codes that the ADD instructions produced.

We can achieve this by including the condition codes in the PSR, so the condition codes are saved
when taking the interrupt and restored after returning from the interrupt.

Problem 2 (10 points): A byte-addressable machine with a 64KB physical memory has an 8-way
physically addressed, set associative cache. The cache is write-through, and it uses a pseudo-LRU
replacement policy that uses 2 bits per way. The cache has 32 sets. The line size is 16 bytes.

Your job: Provide the following information. Show your work in the boxes provided. You get no points
if you get the correct answer without showing how you got it.

The capacity of the data store:

Capacity = number of sets * number of ways per set * line size
=32*8*16
=27(5+3+4) = 212 bytes = 4KB

Number of index bits:

Number of sets = 2" index bits =
32=2"5=2"1index bits
Therefore, index bits = 5

Number of tag bits:

Tag bits = total address bits - index bits - byte on line bits
=16-5-4=17

Number of bits in each tag store entry:

Bits in each tag store entry = tag bits + 1 (valid bit) + 0 (write-through cache doesn’t need a dirty bit)
+ 2 (pseudo-LRU bits per way)

Bits in each tag store entry =7+ 1 +2 =10

Problem 3 (10 points): You have just written a new program, but you are unhappy with its long
runtime on a single processor. You know that the program has the property that part of the algorithm is
parallelizable and the rest has no parallelism at all, i.e., it can only make use of one processor. The
parallelizable part can make use of all the processors in your machine, working concurrently. So you run
your program on a 16-processor machine and get a 4x speedup. For this problem, assume no
communication delay between processors. Show your work.

1. What percent of your program is parallelizable?

Use Amdahl’s law to solve for alpha, given S=4 and p=16.
S=1/((alpha/p)+ (1 - alpha))
4=1/((alpha/16) + (1 - alpha))

alpha = 0.8 = 80%

2. What is the maximum speedup we can achieve with an infinite number of processors?

Use p -> infinity in Amdahl’s law:

S=1/(1-alpha)=1/(1-0.8)=5

3. Since you are not satisfied with the performance, you modify the program so that half of the
previously serial portion of the program is now parallelizable. Now what is the maximum
speedup we can achieve with an infinite number of processors?

By halving the serial portion, the serial portion becomes 10% of the total serial
execution time (alpha=1-0.1=10.9)

S=1/(1-alpha)=1/(1-0.1)=10

Problem 4 (10 points): We want to multiply 47 (the multiplicand) by 23 (the multiplier) using Booth’s
algorithm.

How many operations (additions and subtractions) are necessary to perform this multiplication using
Booth’s algorithm? Show your work.

Some students used a Booth algorithm different from what we studied in class.

Unfortunately, that algorithm gave an incorrect answer to part a. ONLY three operations are needed,
rather than the four that were spelled out by that algorithm. That algorithm also included the
yet-to-be-used bits of the multiplier in the accumulator, which allows the right shift of the intermediate
result and the right shift of the multiplier bits to be done in a single operation. We can do the same thing
with the algorithm I taught in class, but I chose not to in the interest of making the explanation clearer.,
In any case, if you used the web-based Booth algorithm and included the multiplier bits, I did not deduct
any points for doing so. I admit I do not know why you used the sub-optimal web-based algorithm
instead of what we did in class.

[assume you surfed the web BEFORE the exam to obtain the algorithm, and NOT during the exam
since doing so during the exam would be against what was permitted.

Booth’s algorithm operates on two bits of the multiplier at a time. The multiplier is 23 =010111.
The 2-bit groups are: 01, 01, 11

11 requires one subtraction and produces a carry

01 with the carry requires one addition and does not produce a carry

01 without carry requires one addition and the multiply finishes.

Total = 2 additions, 1 subtraction

What is the intermediate result in the accumulator after doing the first operation? Show your work.

Since the first operation is the subtraction due to the first two bits of the multiplier, the accumulator
gets the starting value of 0 minus the multiplicand.

Value of the accumulator =0 - 47 = -47
Or in binary form:

-47=1111 1101 0001

Problem 5 (10 points): An out-of-order processor executes instructions based on the original Tomasulo

algorithm without in-order retirement. The processor implements a 4-stage pipeline: Fetch, Decode,

Execute, Writeback. The Execute stage of the pipeline contains one pipelined adder and one pipelined

multiplier.

Fetch and Decode take one cycle each.

The result of a functional unit is broadcast during the writeback stage and is ready for use in the

next cycle immediately after writeback.

The following snippet of code is executed.

Instruction
Instruction
Instruction
Instruction

Instruction

g b W N

ADD
MUL
MUL
ADD
ADD

RO,
R3,
R4,
R5,
RO,

RO,
R1,
RO,
R2,
RO,

Fetch, Decode, and Write Back stages can only operate on one instruction at a time.
An ADD takes 2 cycles to execute, and a MUL takes 4 cycles.
Both functional units have three-entry reservation stations that are initially empty.
Instructions with no dependencies can start executing immediately after Decode.

RO
R2
R3
R4
RO

Complete the dynamic timing diagram below for the execution of the program snippet, as we have done
in class, from the Decode (D) of Instruction 1 to the Write Back (W) of Instruction 5. We already filled

in the Fetch (F) of all five instructions for you.

e FEach row corresponds to one instruction.
e UseF, D, M (for MUL), A (for ADD), and W (for write back) to indicate what is going on with
each instruction during each clock cycle.

Use * to indicate a clock cycle when an instruction is waiting to continue processing.

Use as many columns as needed.

Inst 1 3 4 5 6 7 8 0 11 12 13 14 15 16 17 18 19 20
Instruction 1| F D A A W
Instruction 2 D M M M M W
Instruction 3 F D * * * * M M M W
Instruction 4 F D * * * * * * * A A W
Instruction 5 F D A A

Problem 6 (20 points):
We will use the unused opcode 1010 to create a new instruction, Save Regs (SREQG), that saves LC-3b
general purpose registers R0-R4 to 5 contiguous memory words specified by PCoffsetl 1.

15 12 11 10 0
1010 0 PCoffset11

Save Regs
(SREG)
MEM[PC' + LSHF(SEXT(PCoffsetl1),1)]=RO
MEM[PC' + LSHF(SEXT(PCoffset11),1) + 2] =R1
MEMI[PC' + LSHF(SEXT(PCoffset11),1) + 4] =R2
MEM[PC' + LSHF(SEXT(PCoffset11),1) + 6] =R3
MEM[PC' + LSHF(SEXT(PCoffsetl1),1) + 8] =R4

where PC" is the incremented PC. This instruction can be very useful to subroutines that have to save the
registers it will need to perform its function before performing the actual function.

Datapath additions needed to make the instruction work are shown below in red. Note that we added
three new control signals: MAR IN MUX, CLEAR, INCREMENT, and modified 1 existing control
signal: SRIMUX. In addition, the signal NOT DONE is computed and used by the microsequencer.

Rgg SRIMUX
File
LD.REG —> 1~ DR
SR2 SR1 3 <—IR[11:9]
SR2 =T ouT OUT <— IR[8:6]
SR1 <J}—CLEAR
COUNTER
iw iﬂi 3 <}—INCREMENT
LOGIC
NOT_DONE

MAR_IN_MUX

2]
LD.MAR MAR

Additions to the microsequencer are shown below:
COND2 CONDI CONDO

BEN R IR[11]
NOT_DONE

J[5] 2] J1] J[0]

4] 3]

0,0,IR[15:12]

IRD
6

Address of Next State

The state machine to complete the instruction is shown below.
REG[COUNTER] denotes the value of SRIOUT out when SR1 is equal to the 3 bit COUNTER.

(BEN <= IR[11] & N + IR[10] & Z + IR[9] & P |
[IR[15:12]]

.

A

A

v

MDR <- REG[COUNTER]

&

Y

E

Y

0

M[MAR] <- MDR

m

R
Y

1 B
[NOT_DONE] 38

io

to state F

Part a (5 points): Fill in the two missing parts (A and B) of their corresponding states of the state
machine.
Fill in A:

Clear Counter
MAR « PC + (SignExtend(PCOffsetl1) << 1)

Fill in B:

Increment Counter
MAR «— MAR +2

Part b (3 points): Identify the state numbers C, D, E, and F.

C D E F

10 50 or 51 36 18 or 19

Part c (5 points):
Complete the table with the values of the control signals for each state. If the value does not matter, put
an X in the corresponding entry. For example, we have put an X for MAR IN MUX for state D.

State | CLEAR | INCREMENT | MAR_IN MUX [SRIMUX | ADDR2MUX | LD.MAR | COND
(Oorl) (Oorl) (BUS or +2) (11.9, (ZERO, Oorl) | (0-7)
8.6, offset6,
COUNTER) | PCoffset9,
PCoffsetl1)
C 1 0 BUS X PCoffsetl1 1 0
D 0 0 X COUNTER X 0 0
E 0 0 X X X 0 1
38 0 1 +2 X X 1 4
Part d (2 points):

What is the LOGIC in the datapath required to compute the NOT DONE signal used by the
microsequencer?

(COUNTER =4) : NAND(COUNTER[2], NOT(COUNTER[1], NOT(COUNTERJ[0]))
Alternatively (COUNTER < 4) : NOT(COUNTER[2])

10

Part e (5 points):

One can use the Save Regs instruction to save the caller register values on a subroutine call. However,
the current method of using PCoffsetl1 in the instruction to specify where in memory to save the
registers will not work for recursive subroutine calls. Why?

Since PC-relative addressing mode always points to a fixed memory location address, each instance of
the recursive call will overwrite the saved registers in previous instances, making it impossible to
restore the state when returning after the recursive call.

How can we fix this?

Instead of using PC-relative addressing mode, change the instruction behavior so that it pushes the
saved registers on the stack.

After the fix, how many explicit operands will the Save Regs instruction require? Explain.

Zero. There is no need for any explicit operands because the stack pointer is implicitly R6 in the
LC-3b ISA (as you know from problem 1, part a).

If you assumed that the stack pointer could be any general-purpose register, and therefore you need
one operand to specify the stack pointer register, we graded that as the alternative correct answer. But
note that in the LC-3b ISA, R6 is the stack pointer by convention, so assuming that R6 is implicitly
the stack pointer is the better answer.

11

Problem 7 (20 points): We wish to enhance the LC-3b ISA by providing VAX-like virtual memory
support as we studied in class. The 16-bit LC-3b addresses you are familiar with are virtual addresses,
BUT user space and system space will follow the VAX model in this problem. That is, user space starts
at address x0000, system space starts at address x8000, and we use a two-level page table scheme.

Physical memory is 32KB. Page size is 16B. The TLB contains 8 entries and is fully-associative. The
TLB is used only for storing user process PTEs. A PTE is 2 bytes. For purposes of this question only, we
will assume the PTE has the following form:

V[0000 PFN

We wish to execute the following three instructions sequentially in a program fragment:
At address x3000: LDW RO, R1, #0 (instruction encoding: x6040)
At address x3002: ADD RO, RO, #2 (instruction encoding: x1022)
At address x3004: STW RO, R2, #0 (instruction encoding: x7080)

Before the execution of the three instructions, R1 = x6000, R2 = x6002, and the TLB is initially empty.
After the execution of the three instructions, RO = x4002.

Part a (3 points): Part a (3 points): To execute the three instructions, what user virtual addresses are
accessed? Which ones are TLB hits?

Virtual Address | TLB Hit?
(Yes/No)
x3000 No
x6000 No
x3002 Yes
x3004 Yes
x6002 Yes

The execution of the three instructions leads to the following physical address accesses. Note that the
physical addresses are listed in numerical order, and NOT in the order they are accessed.

Physical addresses: x0400, x0500, x0502, x0504, x0600, x0800, x0802, x10C0, x1180

12

Part b (5 points): Specify the virtual address corresponding to each physical address. Write “N/A” if a
physical address does not correspond to any virtual address. Two entries are given to you.

Physical | x0400 | x0500 [x0502 | x0504 [x0600 |x0800 |x0802 [x10CO |x1180
Address

Virtual | x8600 [x3000 [x3002 |x3004 [x8CO00 | x6000 |=x6002 |N/A N/A
Address

Each TLB miss accounts for 3 physical accesses (system PTE access, user PTE access, instruction/data
access).
Each TLB hit account for 1 physical access (instruction/data access)

So, following the results of part a, we have 3 instruction accesses, 2 data accesses, 2 user PTE accesses,
2 system PTE accesses.

PA x500, x502, x504 are on the same frame, so they must correspond to the instruction accesses with
VA x3000, x3002, x3004, which are on the same page and have the same offsets as the PAs.

PA x800, x802 are on the same frame, so they must correspond to the data accesses with VA x6000,
x6002 which are on the same page and have the same offsets as the PAs.

The given VAs x8600, x8CO00 are system virtual addresses, so they must correspond to the user PTE
accesses.

With all the other type of physical accesses accounted for, the remaining two (x10C0, x1180) must be
the system PTE accesses, which do not correspond to any virtual addresses.

Part ¢ (3 points): What is the value of the User Process Base Register (PBR)? Show your work.

x8600 = PBR + Page number of (x3000) * size of PTE
x8600 = PBR + x300 * 2

Therefore, PBR = x8000

As discovered in part b, x8600 and x8CO00 are the virtual addresses of the PTEs corresponding to VA
x3000, x6000, respectively. We know that location x8600 is the PTE for x3000, and location x8C00 is
the PTE for x6000 because the PTE addresses are in the same order as their page number. The solution
uses the first pair (x8600 and x3000) to derive what is PBR. We could alternatively use the other pair
(x8C00 and x6000). x8C00 =PBR + x600 * 2 — PBR = x8000

13

Part d (3 points): What is the value of the System Base Register (SBR)? Show your work.

x10C0 = SBR + Page number of (x8600) * size of PTE
x10C0 = SBR + x060 * 2

Therefore, SBR = x1000

The process is very similar to part c. We know that location x10CO0 is the PTE for x8600, and location
x1180 is the PTE for x8C00. The solution uses the first pair (x10C0 and x8600) to derive what is SBR.
We could alternatively use the other pair (x1180 and x8C00).

x1180 = SBR + x0C0 * 2 — SBR = x1000

Note that when the address space is partitioned into two equal halves for the user and system regions,
the most significant bit of the virtual address does not contribute to the page number.

For example, the page number for address x8000 is 0, which makes sense because x8000 is the first
address in the system space. Similarly, page number for x8600, is x060, not x860.

Part e (6 points): What is the 2-byte word stored in each of the corresponding physical memory
locations after the three instructions are executed?

Physical | x0400 | x0500 [x0502 |x0504 [x0600 |x0800 |x0802 [x10CO |x1180
Address

Content | x8050 | x6040 |x1022 |x7080 [x8080 | x4000 |x4002 |x8040 [x8060

The contents of x0500, x0502, x0504 are simply the encodings of the three instructions.

The contents of x0800, x0802 are the value of RO before and after the ADD instruction, respectively.
Since R=x4002 after the instructions are executed, the two values are x4000 and x4002.

The remaining location are user/system PTEs, so each location is x8000 + the PFN that they point to:
- Location x0400 is the PTE for VA x3000 with PA x0500, so MEM[x0400] = x8050
- Location x0600 is the PTE for VA x6000 with PA x0800, so MEM[x0600] = x8080
- Location x10CO0 is the PTE for VA x8600 with PA x0400, so MEM[x10C0] = x8040
- Location x1180 is the PTE for VA x8C00 with PA x0600, so MEM[x1180] = x8060

14

Problem 8 (20 points): Consider the following addressing scheme for a byte addressable, 12-bit
physical memory:

e PA[1:0]: Byte on Bus

e PA[4:2]: Bank

e PA[8:5]: Column

e PA[11:9]: Row

Assume it takes a fixed 20 cycles to open a DRAM row, regardless of whether something was
previously in the row buffer, and that it takes 10 cycles to access (read or write) a column in an open
row. The memory controller will always issue accesses in order; that is, if the next access targets a busy
bank, the controller will wait until the bank becomes idle.

The following for loop operates on 32-bit integer arrays, A and B:
for (int 1 = 0; i < 24; i ++) {

A[i] = B[i] / 2;
}

Part a (7 points): We execute this for loop using a scalar in-order processor. We know the following:
e Array A begins at physical address x400, and array B begins at physical address x600.

“Divide by 2” takes 1 cycle to complete (using a right shift).

Iteration control takes 1 cycle at the end of each iteration.

There is no caching, and all local variables for iteration control are stored in registers.

Each iteration of the loop: (1) reads an element of B, (2) right shifts it one bit, (3) stores the

result in the corresponding element of A, and (4) performs iteration control.

e Since the processor is in-order, memory accesses are sent to memory one at a time, and a new
access can only be initiated after the previous one has completed, even if there is opportunity for
interleaving.

1. What is the size of a single DRAM chip in bytes, assuming the DRAM chips have an 8-bit data
interface?

2222 =2""=1KB

The total capacity of memory = 212 bytes

Since there are no rank bits or channels bits, we have only one rank and channel.

But width = 4 bytes, and each chip has an 8-bit data interface, so each rank is made of 4 chips that work
in lockstep to produce the 4-byte bus width.

Therefore, the capacity of each chip = total capacity of each rank of chips / number of chips

15

2. [If all the row buffers are initially empty, how many times will a new row be opened during the
execution of this for loop?

48 times- each iteration, a row is opened to get an element from B, and a row is
opened to get an element from A. Since each access to A and B targets a different row
in the same bank, each access has to close the row that is in the row buffer and open a
new row. Thus, we have to open a new row for every access.

3. How many cycles will it take to execute the for loop?

30+ 1+30+1)*24 =62%24 = 1488

In each iteration the access to both A[i] and BJ[i] are row misses. So the latency for each iteration is:

- 20 cycles to open a row to get BJi]

- 10 cycles to read BJ[i]

- 1 cycle to shift

- 20 cycles to open a row for storing A[i]
- 10cycles to store A[i]

- 1 cycle for iteration control

So total latency per iteration is 62 cycles. The for loop is executed 24 times, ergo 62 times 24 cycles =
1488 cycles total.

Part b (13 points): Now consider a vector processor with 256-element 32-bit vector registers. We use
this vector processor to perform the same task as the serial example above using the following vector
code:

LVS 4 ; load vector stride (1 element is 4 bytes)
LVL X ; load vector length

VLD ve, B ; load vector B into vector register ©
VSHFR V@, V@, 1 ; shift every element in V@ right one bit
VST Vo, A ; store VO into A

LVS and LVL each take 1 cycle. Vector loads and stores go directly to physical memory (i.e., no cache).
1. What numerical value should replace X in the line “LVL X?

24

16

2. [If all the row buffers are initially empty, how many times will a new row be opened during the

execution of this program?

16 times- we open 8 rows (one in each bank) to access B, and 8 rows to access A.

3. How many cycles will the instruction “VLD V@, B” take?

57 cycles- first 8 accesses need to open a row, so they each take 30 cycles (but can
interleave).

Next 8 accesses can begin as soon as bank 0 is free, at cycle 30.

Last 8 accesses can begin as soon as bank 0 is free again, at cycle 40.

Final access ends at cycle 57. See diagram below.

| ——==20-===|===10-——| ; access 0
| ——==20-=—=|=—=10-——| ; access 1
| ====20-===|=-==10-——| ; access 2
| -———=20-——=|-—=10-——| ; access 3
| ——==20-===|===10-—-| ; access 4
| ——==20-===|=-==10-——| ; access 5
| -———=20-——=|-——=10-——| ; access 6
|-——=20-—-=|-—=-10-——| ; access 7
|-—=10-——] ; access 8 (can start at cycle 30)
| -———10---] ; access 9
|===10-——| ; access 10
| ===10-——| ; access 11
|——=10-——] ; access 12
|——=10-——| ; access 13
|——=10-——| ; access 14
|=—=10-——| ; access 15
|——=10-——] ; access 16 (can start at cycle 40)
|——=10--——| ; access 17
[===10-——| ; access 18
|=—=10-——| ; access 19
|-—=10--——] ; access 20
|-—=10--—] ; access 21
|==—=10-——| ; access 22
| ===10-——| ; access 23

Final access starts at cycle 40 + 7 = 47 and ends at 57.

So the whole access sequence takes 57 cycles

17

4. How many cycles will the entire program take, assuming no vector chaining?

1+1+57+24+57=140

1 cycle for LVS, 1 cycle for LVL, 57 cycles for VLD, 24 cycles for VSHFR, 57 cycles for VST

= 140 total cycles.

18

Problem 9 (20 points)

A student has figured out that Dr. Patt uses a computer grader program to compute the final course grade

of each student using the following four arrays:
int FINAL_EXAM_GRADE_ARRAY[64]; /*
int EXAM1_GRADE_ARRAY[64]; /*

int EXAM2_GRADE_ARRAY[64]; /*
int LAB_AVG_GRADE_ARRAY[64]; /*

4 bytes each element, 256 bytes total*/
4 bytes each element, 256 bytes total*/

4 bytes each element, 256 bytes total*/
4 bytes each element, 256 bytes total*/

The arrays store the {final exam, exam 1, exam 2, lab average} grade for each of the 64 students in the

class.

The student strongly suspects that not all four grades are actually used in determining the students'

grades. To test this, the student wrote the following dummy program that processed four dummy arrays
(DUMMY1, DUMMY2, DUMMY 3, DUMMY4), identical in size to the four grade arrays that Dr. Patt says he is using.

The dummy program simply adds all 256 values stored in the four dummy arrays. What is important is

not what is computed, but rather which memory locations are accessed. We will explain how the student

will use this dummy program on the next page.

int DUMMY1[64]; /* 4 bytes each
int DUMMY2[64]; /* 4 bytes each
int DUMMY3[64]; /* 4 bytes each
int DUMMY4[64]; /* 4 bytes each

int x = 0;

for(int i = 9; i < 64; i++) {
X = X + DUMMY1[i];

}

for(int i = 9; i < 64; i++) {
X = X + DUMMY2[1i];

}

for(int i = 0; i < 64; i++) {
X = X + DUMMY3[i];

}

for(int i = 9; i < 64; i++) {
X = X + DUMMY4[i];

}

element,
element,

element,

element,

256 bytes total*/
256 bytes total*/

256 bytes total*/
256 bytes total*/

19

To test his conjecture the student runs the dummy program on Dr. Patt's computer before Dr. Patt runs
his grader program. Assume the computer's memory has a 16-bit physical address space, and no virtual
memory (all addresses are physical). Assume the computer has a data cache that is:

e physically indexed, physically tagged

e 2KB in capacity

e direct mapped

e with a line size of 256 bytes
The dummy program fills the cache with data from the four DUMMY arrays. Assume the student knows
where Dr. Patt's four grade arrays will be stored, and so he stores the dummy arrays exactly aligned with

the four grader arrays in the cache.

Later, when Dr. Patt runs his grader program, the four grading arrays will evict the student's dummy
arrays if and when the grader program accesses them. After Dr. Patt finishes computing final grades, the
student sneaks back into Dr. Patt's lab and executes each of his four dummy for loops, timing their
individual execution times. If a loop's dummy array had been kicked out of the cache by Dr. Patt's
grader program, the running time for that loop would be long. If a loop's dummy array had not been
kicked out of the cache, the running time would be fast, indicating that the corresponding grader array

had never been accessed in computing student grades. Shame on Dr. Patt!

For the student’s scheme to work, the four dummy arrays (DUMMY1, DUMMY2, DUMMY 3, and DUMMY4) have to
properly line up with the four grade arrays (FINAL_EXAM_ARRAY, EXAM1_ARRAY, EXAM2_ARRAY, and
LAB_AVG_ARRAY) in the cache. The student can control this by carefully choosing the starting address for
DUMMY1. He knows that:

e The four grade arrays are stored in one contiguous sequence of 1KB of physical memory.

e The first grade array FINAL_EXAM_GRADE_ARRAY is located at physical address 0x4000.

e The dummy arrays are also stored in one contiguous sequence of 1KB of physical memory, but

not necessarily next to the grade arrays.
e Each int is 4 bytes, meaning each array is 256 bytes.

20

Part a (5 points): Suppose the student picks 0x4400 as the starting address for buMMY1. Will he be able
to tell which of the four grade arrays has been accessed? Why or why not?

No! Since the cache is 2KB, and line size is 256 bytes, there are 8 lines in the cache.

Since the cache is direct mapped, that means one line per set, or 8 sets. Bits [10:8] are the index bits
that specify the set. Dr. Patt’s arrays are at addresses x4000, x4100, x4200, x4300 corresponding to
sets 0,1,2,3 in the cache. The dummy arrays are at addresses x4400, x4500, x4600, x4700
corresponding to sets 4,5,6,7 in the cache. Therefore, both sets of arrays fit in the cache and do not
collide with each other. As a result, whether Dr. Patt’s program accesses an array has no effect on the
timing of memory accesses of the dummy arrays in the student’s program.

Part b (5 points): Suppose the student picks 0x6000 as the starting address for buMMY1. Will he be able
to tell which of the four grade arrays has been accessed? Why or why not?

Yes! This time, the dummy arrays are at addresses x6000, x6100, x6200, x6300 corresponding to sets
0,1,2,3 in the cache. So each array has the same set number as its corresponding array in Dr. Patt’s
program. Since the cache is direct-mapped, for each of the 4 arrays, either the dummy array can be in
the cache or Dr. Patt’s array. Therefore, the student can know whether Dr. Patt’s program has accessed
each of the arrays by measuring the access time for the dummy arrays after the execution of Dr. Patt’s
program.

Part c (5 points): In general, what condition needs to be satisfied in order for the two sets of arrays to

properly line up in the cache so the student would be able to tell which of the four grade arrays has been
accessed?

Bit 10:8 (the index bits) of the addresses of each dummy array should be the same as its corresponding
array in Dr. Patt’s program.

Part d (5 points): How will the student’s scheme be affected if the cache had the same capacity (2KB)
and line size (256B), but is 2-way set associative instead of direct mapped? Will he still be able to tell
which of the four grade arrays has been accessed? Why or why not?

No, now that the cache is 2-way set associative, even if the set numbers of the dummy arrays and Dr.
Patt’s arrays are the same, both arrays can be in the cache without kicking out the other array.
Therefore, whether Dr. Patt accesses an array or not has no impact on the timing of accessing the
dummy arrays in the student’s program.

21

