
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2014
Y. N. Patt, Instructor
Stephen Pruett, Emily Bragg, Siavash Zangeneh TAs
Exam 1
October 8, 2014

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!



Name:

Problem 1 (20 points)

Part a (5 points): is a type of exception that allows the processor to complete the instruction before

taking the exception. does not allow the processor to complete the instruction before taking the

exception.

Part b (5 points): In class, we said a controller that does not want the bus forwards BG until it gets the NOT(BGin)
signal from the PAU. On the I/O handout, we say the controllerforwards BG until it gets the SACK signal. The correct
answer is NOT(BGin), i.e., SACK does not work. Why?

Part c (5 points): The first Alpha processor wasted a clock cycle every time a branch was taken because it could not
fetch the target address until after it decoded the branch instruction. Intel’s Pentium chip had no such penalty. Why?

Part d (5 points): We use a bus to source some value, and then load it to a desired register. We wish to make our
control store work with as few bits as necessary. If I have 16 sources for the bus, how many bits of control store do I
need? If I have 16 destinations for the value, how many bits ofcontrol store do I need?

Source

Destination

2



Name:

Problem 2 (15 points)

A processor implements the GAg branch predictor as part of its microarchitecture. Assume the Branch History Reg-
ister and Pattern History Table are as shown below when a branch is encountered. The direction of the most recent
branch is the right-most bit of the BHR; i.e., 1=taken, 0=nottaken.

1101

Table 1: BHR

0 11
1 00
2 01
3 11
4 01
5 00
6 10
7 11
8 10
9 10
10 00
11 01
12 10
13 01
14 11
15 01

Table 2: PHT-before

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Table 3: PHT-after

Part a (1 point): Will the branch be predicted taken or not taken.

Part b (2 points): The branch is taken. Complete the table labeled PHT-after.

Part c (12 points): After this branch, the processor continues, executing three additional branches. At time T, the
third additional branch has completed execution. Assume noadditional branches have been encountered since that
third branch was fetched. At time T, the counter in location #13 of the PHT is 01. Your job: complete the BHR at time
T.

BHR at time T:

3



Name:

Problem 3 (20 points)

Assume a Tomasulo-style, out-of-order execution machine that handles ADD and MUL instructions. Instructions are
of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed in class. Each instruction requires a fetch cycle, a
decode cycle, two cycles of execution in the case of ADD and five cycles of execution in the case of MUL, and a final
cycle to store the result into a register and/or a reservation station entry waiting for that result. A result is available to
subsequent instructions after it is stored in a register or reservation station entry.

Assume a program consists of four instructions, with the first instruction fetched in cycle 1.

Shown below is a snapshot of the register file before cycle 1, the register file at the end of cycle x, and the reservation
stations at the end of cycle x.

Reservation station entries are allocated in order, from top to bottom. That is, for example, the first MUL is allocated to
the top reservation station entry associated with the mul functional unit, the second MUL with the second reservation
station entry, etc. Each instruction remains in its reservation station until its result is stored.

R0 1 – 5
R1 1 – 7
R2 1 – 2
R3 1 – 3

Figure 1: Registers Before Cycle 1

R0 0 α –
R1 0 π –
R2 1 – 2
R3 1 – 4

Figure 2: Registers After Cycle X

α

β

Σ

V V TAG VALUEVALUEV TAG V TAG VALUEVALUE

1

TAG

αα

α −− −− 5

τ

ρ

π

−− 5 1 −− 7

−− −−

−−−−−−−−

−−

−−−−

−− −− −−

−−−−

−−

−

0

−

−−−

−−

−

−

−− 1

Figure 3: Reservation Stations after Cycle X

The machine has one add functional unit and one mul functional unit. Neither is pipelined. The timing diagram below
indicates the cycles (with the letter E) that each functional unit is busy in the execution phase of an instruction.

1 2 3 4 5 6 7 8 9 10 11 12
Adder E E E E E E

Multiplier E E E E E

4



Name:

Problem 3 continued

Part a (5 points): What is x?

Part b (15 points): Identify the four-instruction program that results in the snapshot of the register file and
reservation stations at the end of cycle x. (Note: Identifying an instruction means identifying its opcode, its
destination register, and its two source registers.)

Instruction Opcode DR SR1 SR2

I1

I2

I3

I4

5



Name:

Problem 4 (20 points)
In class, we discussed what is called a ”pending” bus, which is characterized by the fact that the bus master holds
onto the bus until the transaction is complete, regardless of how long it takes. There is a better way: a ”split
transaction” bus, whereby the master releases the bus whilewaiting for the slave to respond, allowing other
transactions to occur. When the slave is ready to respond, it(the slave) acquires the bus as bus master and initiates the
completion of the transaction.

Assume we have a multiplexed bus, and the processor wants to read from memory. Assume the memory access time
is sufficiently long that a split-transaction bus is the right answer. Assume, for this problem only, no bus master can
assert the same address lines until the transaction in progress has completed.

Your job:

Part a (10 points): Complete the timing diagram for the transaction.

Note: In order for this to work, when the Processor first asserts MSYN, BT, and Address, it (the processor) must save
that Address. When the slave initiates the second half of thebus transaction, it asserts MSYN and the same address.

Memory
Processor

BBSY, MSYN, ADDRESS, BT=READ

Time

BBSY, MSYN, ADDRESS

6



Name:

Problem 4 continued
Part b (10 points): Complete the state machine for the processor with those states that are necessary to complete the
transaction (that is, ALL states AFTER the processor has asserted SACK).

Note: we have provided far more states than are necessary to complete this problem. Use only what you need.

BBSYIN

BBSYIN

SACKIDLE

BG0OUT

BG0IN

BG0IND&BG0IN

D&BG0IN

BR

BG0

BG0

IN

IN
0D

7



Name:

Problem 5 (25 points):
Many ISAs provide an instruction that allows procedures to save all registers that the procedure will need to use, and
then another instruction to restore those registers after the work of the procedure is done. We wish to add an
instruction to the LC-3b to do exactly that.

The instruction SAVEREGS has the following format:

  1  0  1  0SAVE_REGS BaseR MASK0

15                12  11           9     8    7                                            0   

We use one of the unused opcodes, 1010. BaseR contains the starting address of the memory locations that will be
used to save the registers. MASK is an 8bit bit vector that identifies which registers are to be saved. We encode them
as follows:

Instruction[7] =1 means save register 7
Instruction[6] =1 means save register 6
Instruction[5] =1 means save register 5
...
Instruction[0] =1 means save register 0

As a result of execution of SAVEREGS, the registers that are saved will be stored in contiguous memory locations,
starting at the address specified by the intial contents of BaseR.

The ARM ISA has such an instruction and its Programmer’s Reference Manual provides a footnote: If the register
BaseR is to be saved, the instruction is not guaranteed to execute correctly. This is because ARM modifies BaseR
during the execution of their version of that instruction. We will allow you that luxury in your implementation of
SAVE REGS, also.

Your job: Implement SAVEREGS for the LC-3b.

8



Name:

Problem 5 continued:
Part a : Complete the state machine necessary to implement SAVEREGS.
(Note: we start the state machine right after decode, with state #10.)
(Hint: if you are having trouble with part a, it may help to first work on part b.)

MDR < REG[COUNTER]

MEM[MAR] < MDR

38

R

R

36

To state 18To state 26

[                     ]

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

26

10

37

32

54

RESET.COUNTER

[N]

To state

55

Figure 1: State diagram for SAVEREGS instruction

9



Name:

Problem 5 continued:
Part b : We have provided some of the structure needed in the data pathto perform SAVEREGS, in particular a
TEMP register, and a 3-bit COUNTER. The COUNTER can be reset to 111 or decremented. Your job is to add
whatever additional structures are needed in the dashed boxes in the data path diagram.

16

OUT OUT
SR1SR2

FILE
REG

TEMP 00...0

16

16

RESET.COUNTER
DEC.COUNTER

ALU2

16

IR [11:9]

IR [8:6]

16

16

[7:0]

Counter

DoneIR[5]

ALUK

GateALU

SR2MUX

GateIR

LD.IR

SEXT (IR[4:0])

LD.TEMP
LSHF1.TEMP

GateTEMP

IR

00

01

10

SR1MUX

Figure 2: Modified Datapath for SAVEREGS instruction

10



Name:

Problem 5 continued:
Part c : We have provided the original microsequencer for the LC-3b.You will note from the state machine that two
additional microbranches are needed. Your job: Add the additional logic to account for these two microbranches.

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Part d : Complete the control store entries for states #37 and #38. (Note: We have provided a maximum of three
additional control signals for your use. We have labeled them ECS1, ECS2, and ECS3 for Extra Control Signals. You
may use as many of them as you need to do the job. Those you use should be properly identified on your data path.
Mark ”x” for don’t care values.)

A
LU

K

M
IO

.E
N

R
.W

D
A

T
A

.S
IZ

E

LD
.C

C

LD
.R

E
G

LD
.M

D
R

LD
.M

A
R

G
at

eA
LU

D
R

M
U

X

S
R

1M
U

X

L
D

.T
E

M
P

L
SH

F
1.

T
E

M
P

J G
at

eI
R

G
at

eT
E

M
P

D
E

C
.C

O
U

N
T

E
R

R
E

SE
T

.C
O

U
N

T
E

R

E
C

S1

E
C

S3

E
C

S2

IRD

state 37

state 38

COND

11



+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 3: LC-3b Instruction Encodings

12



Table 4: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 5: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

13



R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
     MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 4: A state machine for the LC-3b

14



MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 5: The LC-3b data path

15



IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 6: The microsequencer of the LC-3b base machine

16


