Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2014

Y. N. Patt, Instructor

Stephen Pruett, Emily Bragg, Siavash Zangeneh TAs
Exam 1

October 8, 2014

Name;

Problem 1 (20 points):
Problem 2 (15 points):
Problem 3 (20 points):
Problem 4 (20 points):
Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (besub@orting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaime

Please sign the following. | have not given nor received arguthorized help on this exam.

Signature:

GOOD LUCK!

Name;

Problem 1 (20 points)

Part a (5 points): is a type of exception that allows the processor to completértstruction before
taking the exception does not allow the processor to complete the instructiooreetfaking the
exception.

Part b (5 points): In class, we said a controller that does not want the bus fasvBG until it gets the NOT(BGin)
signal from the PAU. On the I/O handout, we say the contrddlevards BG until it gets the SACK signal. The correct
answer is NOT(BGin), i.e., SACK does not work. Why?

Part c (5 paints): The first Alpha processor wasted a clock cycle every time adiravas taken because it could not
fetch the target address until after it decoded the brargthuation. Intel’s Pentium chip had no such penalty. Why?

Part d (5 points): We use a bus to source some value, and then load it to a desgister. We wish to make our
control store work with as few bits as necessary. If | havedifees for the bus, how many bits of control store do |
need? If | have 16 destinations for the value, how many bitoafrol store do | need?

Source

Destination

Name;

Problem 2 (15 points)

A processor implements the GAg branch predictor as parsahicroarchitecture. Assume the Branch History Reg-
ister and Pattern History Table are as shown below when ahranencountered. The direction of the most recent
branch is the right-most bit of the BHR; i.e., 1=taken, O=taden.

0|11 0

1|00 1

2 |01 2

3|11 3

4 | 01 4

5 |00 5

6 | 10 6

7 |11 7

g [10 g
Table 1: BHR 9 | 10 9
10 | 00 10

11| 01 11

12 | 10 12

13| 01 13

14 | 11 14

15| 01 15

Table 2: PHT-before Table 3: PHT-after

Part a (1 point): Will the branch be predicted taken or not takgn.

Part b (2 points): The branch is taken. Complete the table labeled PHT-after.

Part c (12 points): After this branch, the processor continues, executingetladditional branches. At time T, the
third additional branch has completed execution. Assumeadtitional branches have been encountered since that
third branch was fetched. At time T, the counter in locatid8 #f the PHT is 01. Your job: complete the BHR at time
T.

BHR at time T:

Name;

Problem 3 (20 points)

Assume a Tomasulo-style, out-of-order execution machiaehandles ADD and MUL instructions. Instructions are
of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed irsslaEach instruction requires a fetch cycle, a
decode cycle, two cycles of execution in the case of ADD arelddycles of execution in the case of MUL, and a final
cycle to store the result into a register and/or a reseraatiation entry waiting for that result. A result is availalb
subsequent instructions after it is stored in a registeeservation station entry.

Assume a program consists of four instructions, with the iiirstruction fetched in cycle 1.

Shown below is a snapshot of the register file before cycleeregister file at the end of cycle x, and the reservation
stations at the end of cycle x.

Reservation station entries are allocated in order, frqmiadoottom. That is, for example, the first MUL is allocated to
the top reservation station entry associated with the nmdtional unit, the second MUL with the second reservation
station entry, etc. Each instruction remains in its res@mestation until its result is stored.

RO

1/-|5 RO|O|a |-
R1|{1|-1|7 RL|{O|nw |-
R2{1|-1]2 R2|1|-|2
R3[1|-13 R3|1|-|4
Figure 1: Registers Before Cycle 1 Figure 2: Registers After Cycle X
V TAG VALUE V TAG VALUE V TAG VALUE V TAG VALUE

a (1| - 5 1| - 7 -l = = |- =] - 1P
- - — -] - - o «a — |1 — | 5

s|-l —| —FH - — A= = - =] - T

Figure 3: Reservation Stations after Cycle X

The machine has one add functional unit and one mul fundtioria Neither is pipelined. The timing diagram below
indicates the cycles (with the letter E) that each functiomit is busy in the execution phase of an instruction.

112|3|4|5|6|7]8|9|10|11]12
Adder E|E E|E E | E
Multiplier E|E|E|E|E

Name;

Problem 3 continued

Part a (5 points): What is x?

Part b (15 points): Identify the four-instruction program that results in thapshot of the register file and
reservation stations at the end of cycle x. (Note: Identifyan instruction means identifying its opcode, its
destination register, and its two source registers.)

Instruction | Opcode DR SR1 SR2

Name;

Problem 4 (20 points)

In class, we discussed what is called a "pending” bus, whidaharacterized by the fact that the bus master holds
onto the bus until the transaction is complete, regardleksw long it takes. There is a better way: a "split
transaction” bus, whereby the master releases the bus whitang for the slave to respond, allowing other
transactions to occur. When the slave is ready to respofttigitslave) acquires the bus as bus master and initiates the
completion of the transaction.

Assume we have a multiplexed bus, and the processor wargaddmom memory. Assume the memory access time
is sufficiently long that a split-transaction bus is the tighswer. Assume, for this problem only, no bus master can
assert the same address lines until the transaction ingsedpas completed.

Your job:
Part a (10 points): Complete the timing diagram for the transaction.

Note: In order for this to work, when the Processor first asg&ISYN, BT, and Address, it (the processor) must save
that Address. When the slave initiates the second half dbtisdransaction, it asserts MSYN and the same address.

vViem
Pr ocessor

BBSY

» MSYN, ADDRESS, BT=READ

Time

BBSY, MSYN, ADDRESS

Name;

Problem 4 continued
Part b (10 points): Complete the state machine for the processor with thosesstlaat are necessary to complete the
transaction (that is, ALL states AFTER the processor hasrtess SACK).

Note: we have provided far more states than are necessaoyriplete this problem. Use only what you need.

TN BBSY,
D&BG,, BGy .

IN

IDLE b Ro BGo,, SACK

ar

O O O Cr

O O O

Name;

Problem 5 (25 points):

Many ISAs provide an instruction that allows proceduresaeesall registers that the procedure will need to use, and
then another instruction to restore those registers dftewmork of the procedure is done. We wish to add an
instruction to the LC-3b to do exactly that.

The instruction SAVEREGS has the following format:

15 12 11 9 8 7

SAVE_REGS 1.0 1 BaseR | 0 MASK
1 1

o

We use one of the unused opcodes, 1010. BaseR containsttimgstadress of the memory locations that will be
used to save the registers. MASK is an 8bit bit vector thattifies which registers are to be saved. We encode them
as follows:

Instruction[7] =1 means save register 7
Instruction[6] =1 means save register 6
Instruction[5] =1 means save register 5

Instruction[0] =1 means save register 0

As aresult of execution of SAVIREGS, the registers that are saved will be stored in contigneemory locations,
starting at the address specified by the intial contents eéBa

The ARM ISA has such an instruction and its Programmer’s Refee Manual provides a footnote: If the register
BaseR is to be saved, the instruction is not guaranteed tuexeorrectly. This is because ARM modifies BaseR
during the execution of their version of that instructione Will allow you that luxury in your implementation of
SAVE_REGS, also.

Your job: Implement SAVEREGS for the LC-3b.

Name;

Problem 5 continued:

Part a: Complete the state machine necessary to implement SREES.
(Note: we start the state machine right after decode, wittest10.)

(Hint: if you are having trouble with part a, it may help to firork on part b.)

4 N
32

BEN <- IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

\L J

d N
10

RESET.COUNTER

J

d \L N
26

J

s a\
37

MDR <— REG[COUNTER]
[N]
NS /\
J/ To state

e N
54

. J

e N
55

. l/ J
/ ~N 36

MEM[MAR] <— MDR

U

N\ J
R
Ve M
38
[]
N / \ J
To state 26 To state 18

Figure 1: State diagram for SAVREGS instruction

Name;

Problem 5 continued:

Part b : We have provided some of the structure needed in the datagp#rform SAVEREGS, in particular a
TEMP register, and a 3-bit COUNTER. The COUNTER can be res#ifl or decremented. Your job is to add
whatever additional structures are needed in the dashesshoxhe data path diagram.

SR1MUX
REG l

FILE 00 IR [11:9]
IR [8:6]

SR2 SR1
ouUT OouT 01

RESET.COUNTER
DEC.COUNTER

16

16

SEXT (IR[4:0])

Done

\J

LD.TEMP i |TEMP 00...0
,,,,,,,,,,,, LSHFL.TEMP

LD.IR

GateALU
GateTEMP

Figure 2: Modified Datapath for SAVIREGS instruction

10

Name;

Problem 5 continued:
Part c: We have provided the original microsequencer for the LC¥2lu will note from the state machine that two
additional microbranches are needed. Your job: Add thetadil logic to account for these two microbranches.

COND1 CONDO
BEN R IR[11]
) O U
Branch Ready Addr.
Mode
J[5] J[4] J[3] J2] J[1] J[o]

— — ——

0,0,IR[15:12]
\L 6
i 6

Address of Next State

<}—— IRD

Part d : Complete the control store entries for states #37 and #3&e{NVe have provided a maximum of three
additional control signals for your use. We have labeledtf#CS1, ECS2, and ECS3 for Extra Control Signals. You
may use as many of them as you need to do the job. Those youasld sie properly identified on your data path.
Mark "x” for don't care values.)

g
Hoy
a z W
s 25
x 2 x ﬁD‘EgB%
o (O] X n==- -
< 0wox 2 32 v @ <Ug poEx
= =2 xO0g = 5 5 oz ERET 00T HEA
N NoNNQs X o o = <A WW®E@ T OO O
IRD COND J O 3 3 30 0 9o < =2 X oOagax oo O www
stte 37 [T 1 [1 1 11 e
| | N I I I | 1 1
state 38 o T | |
| | AN R I A | I I

11

ADD'
ADD’
AND
AND'
BR
JMP
JSR
JSRR
LDB*
LDW *

+

LEA
NOT’
RET
RTI
LSHF "
RSHFL
RSHFA'
STB
STW
TRAP

XOR'

+

XOR

not used

not used

15 14 13 12 11 10 9 8 7 [5 4 3 2 1 0

o | o | i o] w] s
o | o | 1o
:01:0]: :DR: :SRI: 0 0:0 :SRZ:
oo | o | 1o
o0 [nz]p] poomen
oo | o | soun | s
o0 (1|
o0 o o0 soun | s
:00:10: :DR: B:cxse:R : tj)Off:sef:é :
:01:10: :DR: B:cxse:R : :offs:efé: :
wo | o | e
oo | o | w |1
EREARTARE="S
CORBE
ot | R | % [0]0] amouns
Dot | o | s [o]1] amouns
Do | o2 | % [1]1] amouns
oon | % | boser | botiets
:01:11: :SR: B:dse:R : :offs:efé: :
e | s
o | o] |
‘10‘01‘ ‘DR‘ ‘SR‘ 1 | ir‘nm‘s |
————— —
‘10‘10““““““
‘IO‘H‘

Figure 3: LC-3b Instruction Encodings

12

Table 4: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)
PCMUX/2: PG+2(0) ;select pe-2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7
SRIMUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]
ADDR1IMUX/1: PC(0), BaseR(1)
ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffsetl1(3) ;select SEXT[IR[10:0]]
MARMUX/1: 7.0(0) ;select LSHF(ZEXTIIR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)
MIO.EN/1: NO(O0), YES(1)
R.W/1: RD(0), WR(1)
DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 5: Microsequencer control signals

Signal Name Signal Values
J/6:
COND/2: CONDL ;Unconditional
COND; ;Memory Ready
COND, ;Branch
CONDs; ;Addressing Mode
IRD/1: NO, YES

13

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDB

P

To 18

To 18 15

6AR<—LSHF(ZEXT[IR[7:O]]9

To 18

R7<-PC
PC<-BaseR

R7<-PC

To'18 GC<—PC+LSHF(Off1

3

13
T0 18/ HR<-SHF(SR,A,D,amt
set CC

To 18/ DR<- PC+LSHF(off9 0
setCC CMAR< B+offED CAR< B+LSHF(off6} @AR< B+LSHF(off6}) CMAR< B+offED

To 18/ \
24

23
NOTES C@DR< M[MAR[15 1](D CDR< M[MAR)D MDR<-SR MDR<-SR[7:0]
B+off6 : Base + SEXT[offset6]

PC+0ff9 : PC + SEXT[offset9]

i

To 18

17

set CC

I ' " R "

To 18 To 18 To 18 To 19

MAR[0]

Figure 4: A state machine for the LC-3b

14

*OP2 may be SR2 or SEXT[imm5)| DR<- MDR
** [15:8] or [7:0] depending on ER< SEXT[BYTE DAT} C MAR]< MDR M[MAR]< MDR*DD

GateMARMUX

—?/MARMUX

A A

16 16

<—ADDR1MUX 16

LD.REG—>

3
SR27L|>

SR2
ouT

SR1
ouT

l<t-4-DR
3
I<t4—SR1

z}z}z}ooo

v

—l>; SR2MUX7

Y

CONTROL

4

6
SHF \vLIR[S:m

[[
youTPUT

|<+—DATA.SIZE o)
LOGIC WE RW
l<—MAR[0]
Loeic MIO.EN
DATA.
y \Y SIZE v
WE1 WEO
16 _ ADDR. CTL.
MEMORY LoGIC
2 ||
MDR LD.MDR MEM .EN
MIO.EN i
[y
16 A6
LOGIC <
|<+——DATA.SIZE INMUX
l<—MAR[0] 4-‘

Figure 5: The LC-3b data path

15

J5]

0,0,IR[15:12]

|

J[4]

J3]

COND1

J

CONDO

BEN

J2]

J

Branch

N

J[1]

RN

Ready

IR[11]

J[0]

~—

ie

Address of Next State

<}— IRD

Figure 6: The microsequencer of the LC-3b base machine

16

J

Addr.
Mode

