Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2014
Y. N. Patt, Instructor
Stephen Pruett, Emily Bragg, Siavash Zangeneh TAs

Exam 1
October &, 2014

Name:;: S?‘U\:: el

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature: _ -

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (S points): s a type of exception that allows the processor to complete the instruction before

taking the exception. does not allow the processor to complete the instruction before taking the

exception.

Part b (5 points): In class, we said a controller that does not want the bus forwards BG until it gets the NOT(BGin)

signal from the PAU. On the I/O handout, we say the controller forwards BG until it gets the SACK signal. The correct
answer 1s NOT(BGin), i.e., SACK does not work. Why?

AV\G‘\‘\'\Q_(’ Aeq{c_e, Contol\ler ﬂﬂky See ‘\‘L\Q.

SAcC Siane\ before +Hhe (PAS Cedrocrs Yhe

S(c,wx'\‘ o [lhes “Hwo Con 4o llecs C‘-”"“"IA Pm‘eﬁh‘b\““y

Part c (S points): The first Alpha processor wasted a clock cycle every time a branch was taken because it could not
fetch the target address until after it decoded the branch instruction. Intel’s Pentium chip had no such penalty. Why?

’r\r\u/ 1’\.6\& O~ BT’R

Part d (5 points): We use a bus to source some value, and then load it to a desired register. We wish to make our
control store work with as few bits as necessary. If I have 16 sources for the bus, how many bits of control store do I

need? If I have 16 destinations for the value, how many bits of control store do I need?

Destination

Name:

S e e - e e e

Problem 2 (15 points)

A processor implements the GAg branch predictor as part of its microarchitecture. Assume the Branch History Regf
ister and Pattern History Table are as shown below when a branch is encountered. The direction of the most recent

branch is the right-most bit of the BHR: i.e., 1=taken, O=not_taken.

0 | 11 0O | 1Y
1 {00 1 | 09
2 | Ol 2 | od
3 | 11 3] ¢
4 | 01 4 | o\
5 | 00 | 5 | oo
6 | 10 | 6 | 10 \
1101 7 [11 £ & XD
- 8 10 8 [io
Table 1: BHR) .._1.0_..) A
10 L_QQ__ 10 | 00
11 | Ol 11 | o
12 [10 12,0
qm 1/ 13 m P
1471 14 ii.
15 [0 t
Table 2: PHT-before Table 3: PHT-after

Part a (1 point): Will the branch be predicted taken or not taken.

Part b (2 points): The branch is taken. Complete the table labeled PHI- after.

Part ¢ (12 points): After this branch, the processor continues, executing three additional branches. At time T, the
third additional branch has completed execution. Assume no additional branches have been encountered since that
third branch was fetched. At time T, the counter in location #13 of the PHT is 01. Your job: complete the BHR at time

BHR at time T: [ol O

Name:

Problem 3 (20 points)

Assume a Tomasulo-style, out-of-order execution machine that handles ADD and MUL instructions. Instructions are
of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed in class. Each instruction requires a fetch cycle, a
decode cycle, two cycles of execution in the case of ADD and five cycles of execution in the case of MUL, and a final
cycle to store the result into a register and/or a reservation station entry waiting for that result. A result is available to

subsequent instructions after it is stored in a register or reservation station entry.
W

Assume a program consists of four instructions, with the first instruction fetched in cycle 1.

Shown below is a snapshot of the register file before cycle 1, the register file at the end of cycle x, and the reservation
stations at the end of cycle x.

Reservation station entries are allocated in order, from top to bottom. That is, for example, the first MUL is allocated to

the top reservation station entry associated with the mul functional unit, the second MUL with the second reservation
station entry, etc. Each instruction remains in its reservation station until its result is stored.

===

e S

=== |

RO ' RO

| | R 0 | o

(R1L |1 | -7 R1 | O T | -

(R2 11]-12 RO |1 =12 |

' R3[1]-]3 R3|[1[-[4

Figure 1: Registers Before Cycle 1 Figure 2: Registers After Cycle X
V TAG VALUE V TAG VALUE V TAG VALUE V TAG VALUE o \Z)Q—

o] — | s (1] — | 7 -} = == =1 =180 NS V@\ AJA
BIl-| — | — || —| — o] O | — 1] — | 3 nl/ SQCQ
S o S A o B N I e e

N ¥ /

Figure 3: Reservation Stations after Cycle X

The machine has one add functional unit and one mul functional unit. Neither is pipelined. The timing diagram below
indicates the cycles (with the letter E) that each functional unit is busy in the execution phase ot an instruction.

 Adder
Multiplier

- —_—

Name:

Problem 3 continued

Part a (5 points): What is x?

Part b (15 points): Identify the four-instruction program that results in the snapshot of the register file and
reservation stations at the end of cycle x. (Note: Identifying an instruction means identifying its opcode, its

destination register, and its two source registers.) § sk howz. been celeleted here

— e ———m—

1 R — ===

Instruction | Opcode DR SRI SR2 3 AM .

-~ *_ — T—

11 AAA @35 Qz—q’ 23 3| (N\m‘-{—iply
I2 | Mu \ V-QO""L_ ?O | e:\ _
s | Add Rl 5| 004] B s commot be the § 0

o e e SRS e

14 Adc(3 %% 71| RZ Auer LN
D

Someosne ne~S 4 e Pert *flﬂc.._

“ in rhe ﬂg ister $rle (by C/Cle.‘)()

lullll
BENEGEE

IIIII-II-Q-

X 4 £ g | (L

("If-(r\ (AGh e 1O~
MASE eYecote

thf'b) *\'Le,f'd Yor e
&Qe{)erdaﬂue S

Name:

Problem 4 (20 points)

In class, we discussed what is called a “pending” bus, which is characterized by the fact that the bus master holds onto
the bus until the transaction is complete, regardless of how long it takes. There is a better way: a “’split transaction”
bus, whereby the master releases the bus while waiting for the slave to respond, allowing other transactions to occur.
When the slave is ready to respond, it acquires the bus as bus master and initiates the completion of the transaction.

Assume we have a multiplexed bus, and the processor wants to read from memory. Assume the memory access time
s sufficiently long that a split-transaction bus is the right answer. Assume, for this problem only, no bus master can
assert the same address lines until the transaction in progress has completed.

Your job:

Part a (10 points): Complete the timing diagram for the transaction.

Note: In order for this to work, when the Processor first asserts MSYN, BT, and Address, it (the processor) must save
that Address. When the slave initiates the second half of the bus transaction, it asserts MSYN and the same address.

vem
Processor

| BBsy, MSYN, ADDREsg BT=READ

SSYN |
U 5. - -
&
| “}
CSY
Time (f”/—_\, |
| | RO Sg

Name:_ , -)

Problem 4 continued | |)
Part b (10 points): Complete the state machine for the processor with those states that are necessary to complete the

transaction (that is, ALL states AFTER the processor has asserted SACK).

Note: we have provided far more states than are necessary to complete this problem. Use only what you need.

BBSY|y

D&BG,

Name:

Problem 5 (25 points):
Many ISAs provide an instruction that allows procedures to save all registers that the procedure will need to use, and

then another instruction to restore those registers after the work of the procedure is done. We wish to add an
instruction to the LC-3b to do exactly that.

The instruction SAVE_REGS has the following format:

15 1211 9 8 7
— T T T T T T T T T T

SAVE_REGS 1 01 0| BaseR |0 MASK
ESSIES) FRSIING] ISSSHI SR (ENTWSS SPOTSTL, OSSR meve) DUSSPSY. RESRUIG) (SISIRY UGN [WNUSEL) RIS (SRR (SR,

We use one of the unused opcodes, 1010. BaseR contains the starting address of the memory locations that will be
used to save the registers. MASK is an 8bit bit vector that identifies which registers are to be saved. We encode them

as follows:

Instruction[7] =1 means save register 7
Instruction[6] =1 means save register 6
Instruction[5] =1 means save register 5

Instruction[0] =1 means save register O

As a result of execution of SAVE_REGS, the registers that are saved will be stored in contiguous memory locations,
starting at the address specified by the intial contents of BaseR.

The ARM ISA has such an instruction and its Programmer’s Reference Manual provides a footnote: If the register
BaseR 1is to be saved, the instruction is not guaranteed to execute correctly. This is because ARM modifies BaseR

during the execution of their version of that instruction. We will allow you that luxury in your implementation of
SAVE_REGS, also.

Your job: Implement SAVE_REGS for the LC-3b.

Name:

Problem 5 continued:

Part a : Complete the state machine necessary to implement SAVE_REGS.
(Note: we start the state machine right after decode, with state #10.)

(Hint: if you are having trouble with part a, it may help to first work on part b.)

| BEN <~ IR[11] &N+IR[10] & Z+IR[9] & P

[IR[15:12]]

i e,mé é—'IQ£7:O_] I

e

Qs < Temp
L Sercc (),

32

10

20

l 37
MDR <— REG[COUNTER]

[N]
—

—

MAC <— Bose 2

Y

\

MEM[MAR] <— MDR

e g3 | -
R

54

Bose R~ (Bosel ‘_] i

Ty 1 38
| sh’?\a*a“ge _
| - QA YL
k D;C“ St
To state 26 To state 18

To state

Figure 1: State diagram for SAVE_REGS instruction

Name:

Problem 5 continued:
Partb : We have provided some of the structure needed in the data path to perform SAVE_REGS, in particular a

TEMP register, and a 3-bit COUNTER. The COUNTER can be reset to 111 or decremented. Your job is to add
whatever additional structures are needed in the dashed boxes in the data path diagram.

A 16

.,
SRIMUX

REG 1

FILE 00 R (114)
SR2 SR1 01 IR [8:6]
OUT OUT

< RESET.COUNTER
10 Counter
16 +—— DEC.COUNTER

A16 '

Done

SEXT (IR[4:0])

[7:0]

__*-_-_;

iy — T X
_________ ‘. % s LSHF1. TEMP
LD.IR “ ALU 47

16
GateALU

GateTEMP

Figure 2: Modified Datapath for SAVE_REGS instruction

10

Name:

Problem 5 continued:

Part c : We have provided the original microsequencer for the LC-3b. You will note from the state machine that two
additional microbranches are needed. Your job: Add the additional logic to account for these two microbranches.

C o nA L CONDI CONDO

BEN R | IR[11]
®] &® j
Branch Ready Addr.
1 Mode
1[5 (4] J(3] I[2) I J[0]
0,0,IR[15:12] ')
6 N

|)

3%1 \ OI1\VO

IRD
SH: (lifo 1V O
(¢ O\llool ©
Address of Next State

26 O\|\lol ©

Part d : Complete the control store entries for states #37 and #38. (Note: We have provided a maximum of three
additional control signals for your use. We have labeled them ECS1, ECS2, and ECS3 for Extra Control Signals. You
may use as many of them as you need to do the job. Those you use should be properly identified on your data path.)

lodoel Aon¥ cofes s X

“——

N =
¥ 5 D ;E
s8fg3z s = 5, 4B A ETY
[RD COND J 5 8 8 88 & = 5 5 SO RR =

E RESET.COUNTER

>
P
>
>
X
-+
>
B3
EE LSHF1. TEMP
5
<
3
Pl
s

e] 1o g [1Tole 11 o]0
e 38 [o[o 1 [of 1101 lo]°

SO | pcc
>
' E SRIMUX
GE MIO.EN

11

