
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Fall 2016
Y. N. Patt, Instructor
Siavash Zangeneh, Ali Fakhrzadehgan, Steven Flolid, Matthew Normyle TAs
Exam 1
October 5, 2016

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (15 points):

Problem 4 (25 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

siavash

Name:

Problem 1 (20 points): Please answer any four of the following five parts. Please draw a line through the box of the
part you choose not to answer.

Part a (5 points): A zero-address machine explicitly specifies NONE of the three relevant addresses (two source
operands, one destination operand) of an operate instruction. How does the microarchitecture know where to get the
sources and where to store the result?

Part b (5 points): The Alpha 21164 chip had a 96KB L2 cache. 96 is not a power of 2. Why did the designers
implement such an unusual size cache?

Part c (5 points): An important tradeoff exists in the decision as to whether ornot to use condition codes. The positive
of using condition codes is that it gives you an extra piece ofinformation without requiring an extra instruction to get
that piece of information. The negative is:

Part d (5 points): We would like to fetch a full packet of useful instructions from the on-chip instruction storage each
cycle. Three things can prevent that from happening. They are:

Part e (5 points): A recent term in the vocabulary of microarchitects is Dark Silicon. What does it refer to, and how
can it be a feature, rather than a bug?

2

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

Name:

Problem 2 (15 points)
An array of x1000 16-bit 2’s-complement integers are storedin contiguous memory locations, starting at address
x5000. The following program sums the positive integers contained in the array (ignores the negative integers) and
stores the sum in R3.

.ORIG x4000

LEA R5, DATA LOCATION
LDW R0, R5, #0 ; r0 <- M[DATA LOCATION]
LEA R5, LENGTH
LDW R1, R5, #0 ; r1 <- M[LENGTH]
AND R2, R2, #0

LOOP LDW R3, R0, #0 ; get the next integer
BRnz SKIP
ADD R2, R2, R3

SKIP ADD R0, R0, #2 ; increment the pointer
ADD R1, R1, #-1 ; decrement the iteration count
BRp LOOP ; go to next iteration

HALT

DATA LOCATION .FILL x5000
LENGTH .FILL x1000

.END

The program is executed on a computer whose microarchitecture supports:
(a) virtual memory,
(b) a 12 stage pipeline,
(c) a per-branch last time taken branch predictor, and
(d) 8-way interleaved physical memory.

Memory accesses take 5 cycles.

If the 2’s-complement integers in the array are sorted, the program takes approximately 100 nanoseconds to execute.
If the integers are unsorted (i.e., stored in random locations within the array), the program takes approximately 200
nanoseconds to execute.

Part a (3 points): Is this performance difference explained by the ISA or the microarchitecture?

Part b (12 points): Considering the 5 possibilities (i.e., the ISA and the four microarchitecture structuresa to d
above), explain your best guess as to what is causing the enormous difference (100 nanoseconds vs 200 nanoseconds)
in execution time.

3

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

Name:

Problem 3 (15 points):
We wish to use one of the unused opcodes to define a new instruction, which we will call INIT. INIT initializes a
region of up to 63 memory words with a specific value in each location. The instruction format for INIT is:

 1 0 1 0 SR BaseRINIT Amount6

15 12 11 9 8 6 5 0

where, the starting address of the region is specified in BaseR, the number of words is specified in Amount6, and the
value to be written to each location is specified in SR.

For example, if R0=x3050, R1=x0007, execution of INIT R1, R0, #5 would produce the result shown below.

0

1

2

6

4

0

4

3

x3050

x3054

x3056

x3058

x305A

x305C

x305E

x3052

7

7

7

7

7

0

4

3

x3050

x3054

x3056

x3058

x305A

x305C

x305E

x3052

Your job: Implement INIT on the LC-3b by making the required changes toboth the state machine and data path,
shown on the next two pages. (We will save the microsequencerchanges for another day).

4

Name:

Problem 3 continued:
Part a (9 points): Fill in all boxes to complete the state machine for the path 1010.
Note: we have not asked you to specify which states (A, B, C, D)will be used. That is a microsequencer problem
which we will save for another day.

CTRBUS <

IR[11] & N + IR[10] & Z + IR[9] & PBEN <

32

[IR[15:12]]

To state 18

Z

R

Z

R

10

[Z]

B

A

From State 35

...
ADD

AND

INIT ...
BR

JMP

C

D

5

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

Name:

Problem 3 continued:
Part b (4 points): The data path changes can be accomplished within the two dashed boxes shown. We have made
the changes for one of them. Your job: the other.

LD.MAR

GatePCGateMARMUX

1616 16 16

SEXT
[10:0]

16

+2

PCLD.PC

16

+

16

[7:0]

LSHF1

16

16

16

16

REG
FILE

16
16

16

16

16

SR2MUX

SEXT
[8:0]

SEXT

SEXT
[4:0]

[5:0]

16

LOGIC

LD.CC

R

CONTROL

CTR LD.CTR

16MARMUX

16

0

16

ADDR2MUX

2

ZEXT &
LSHF1 ADDR1MUX

PCMUX
2

IRLD.IR

SR23 3
SR1

DR

SR2

ALU
B

GateALU

A
2

3

OUT
SR1
OUT

LD.REG

IR[5:0]SHF

GateSHF

6

ALUK16

PN Z
IR[5:0]

MAR

+2

To Memory Module

Part c (2 points): The instruction just before INIT sets the condition codes. Can the instruction after INIT use those
condition codes? Why or why not? Explain;

6

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

Name:

Problem 4 (25 points)

Shown on the next page is a non-interleaved memory module containing a single byte addressable memory chip, and
the logic to control the memory. Address space is 16 bits. As Faruk described in class the address is broken into
row bits (bits[15:8]) and column bits (bits[7:0]). A memorylocation is accessed in two stages. The first stage takes
8 cycles. In the first cycle, the row bits are loaded into the row address register, accompanied by the load control
signal RAS (row address strobe). The following seven cyclesare needed to load the row buffer with the contents of
all locations in the row. Then, the column bits are used to extract the desired byte from the row buffer. This takes one
cycle. That is, a memory access takes 9 cycles total in general.

However, if the next memory access is to the same row, we do notneed to load the row buffer (since it is already
loaded). We can immediately extract the byte from the row buffer in one cycle. In that case, a memory access takes
only one cycle.

Note the 3-bit counter (CTR) which is useful in controlling the memory. It is initially set to zero. When COUNTUP
is asserted, CTR is incremented.

Part a (3 points): What is the purpose of the registerTMP?

Part b (3 points): What doesX=1 indicate?

Part c (3 points): What doesY=1 indicate?

Part d (16 points): Complete the output functions of the truth table. Note that some entries (labeled x) are don’t cares.

ReadEn X Y Z RAS CAS LD.TMP COUNTUP

0 x x x

1 0 0 0

1 0 0 1

1 0 1 x

1 1 x x

7

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

Name:

Problem 4 continued:

MDR

=

LOGIC
= 7

= 0

CTR

X

Y
Z

TMP

8

LD.TMP

RAS

CAS

Addr

Row Buffer
.....

R
ow

 A
ddr

.....

1

0

MAR

[15:8] [7:0]

ReadEn

8
COUNTUP

Ready

8

Name:

Problem 5 (25 points)

The following program sums the contents of all memory locations in an array.

.ORIG x3000

LEA R5, DATA LOCATION
LDW R0, R5, #0 ; R0 <- M[DATA LOCATION]:x6FFE
LEA R5, LENGTH
LDW R1, R5, #0 ; R1 <- M[LENGTH]:x400
AND R2, R2, #0

LOOP LDB R3, R0, #0 ; get the next integer
ADD R2, R2, R3
ADD R0, R0, #1 ; increment the pointer
ADD R1, R1, #-1 ; decrement the iteration count
BRp LOOP ; go to next iteration

HALT

DATA LOCATION .FILL x6FFE
LENGTH .FILL x400

.END

Assume the program executes on an implementation of the LC-3b that supports virtual memory. The 16-bit addresses
you are familiar with are virtual addresses. Physical memory is 8KB. Page size is 512 bytes.

Part a (1 point): How many frames of physical memory are there?

The memory management system uses the two-level page table scheme similar to the VAX. Virtual memory is parti-
tioned into twohalves. User space starts at x0000, System space starts at x8000. The high bit specifies whether you
are in user space or system space. A PTE is 16 bits. For purposes of this question only, we will assume the PTE has
the following form:

V 00..0 PFN

Part b (1 point): How many bits in PFN?

Also assume for this problem that the microarchitecture hasan 8-entry TLB which contains PTEs for user space only.
Assume the TLB is empty before the above program executes.

The table on the next page lists in sequence the first nine physical memory accesses required by the LDB instruction
to fetch data from the memory array. The table ignores all physical memory accesses due to fetching instructions.

When the program starts executing, memory locations x6FFE,x6FFF, ..., x73FD all contain the value #5.

9

siavash

siavash

Name:

Problem 5 continued:
Part c (16 points): Complete the table.

Virtual Address Physical Address Data TLB Hit
— x1202 x800F

x821E

x6FFE

x1BFF x5

x800A

Part d (4 point):

System Base Register:

User Base Register:

Part e (3 points): How many physical memory accesses are required to satisfy all data accesses of the LDB instruc-

tion in the execution of the entire program?

10

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

siavash

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

11

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

12

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

13

