

Department of Electrical and Computer Engineering
University of Texas at Austin

EE460N Fall 2020
Y. N. Patt, Instructor
Chester Cai, Sean Stephens, Arjun Ramesh, TAs
Exam 2
November 18th, 2020

Problem 1: 25 points
Problem 2: 15 points
Problem 3: 30 points
Problem 4: 30 points

Total: 100 points

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

Please read the following sentence, and if you agree, sign/print your name where requested: I have
not given or received any unauthorized help on this exam.

Good Luck!

Name: Solution

EID:

Signature: Solution

General Instructions:
1. You are free to use anything in the ​Handouts section of the course website that is listed under

“Course Related Handouts” or “LC-3b Handouts.” In particular, ​Appendix A and ​Appendix
C may be of use. Anything other than that from the course website, textbooks, or the Internet
is not allowed and considered unauthorized access.

2. Use of a calculator is not required but is permitted.
3. If you have any questions, join the ​class Zoom link and ask a TA. You do not need to stay on

the Zoom call during the exam unless you have questions.
4. Announcements will be posted here​. Check this page periodically throughout the exam.
5. You may take the exam by printing it, editing a PDF, or editing a Google Doc. Read the

instructions for your preferred method below.
6. You are required to stop working on the exam promptly at 6:30 PM.

Printing or editing a PDF:

1. Download and save the PDF.
2. Edit the PDF to fill in answers with a software of your choice. Feel free to show your work in

the available space. You may also choose to print the exam and solve it on paper.
3. When you are ready to submit your exam, save the edited PDF as “Exam 2 <your name>”; if

you printed your exam, scan in your written answers as a PDF with the same name. You may
use a scanner or an app such as CamScanner.

4. Upload the PDF to Gradescope by 6:40 PM. The entry code for Gradescope is ​9RPGX3​.

Editing a Google Doc:

1. Save a copy of the document to your Google Drive.
2. While working on the exam, ​DO NOT expand any boxes that are given to you. Feel free to

show your work in the available space. If you need more space, you are writing too much.
3. When you are ready to submit your exam, click “File”-> “Print” and select “Save as PDF”.

Save the edited PDF as “Exam 2 <your name>”.
4. Upload the PDF to Gradescope by 6:40 PM. The entry code for Gradescope is ​9RPGX3​.

http://users.ece.utexas.edu/~patt/20f.460n/handouts.html
http://users.ece.utexas.edu/~patt/20f.460n/handouts/appA.pdf
http://users.ece.utexas.edu/~patt/20f.460n/handouts/appC.pdf
http://users.ece.utexas.edu/~patt/20f.460n/handouts/appC.pdf
https://utexas.zoom.us/j/95589851944
https://docs.google.com/document/d/1k53Qj8NYuxClOhUtN2KYJ6LHNjStnPGKXr1RWXpvEks/edit

Problem 1 (25 points): ​If you leave the box empty, you will receive one point.

Part a (5 points): Recall the VAX virtual memory consists of 4GB of virtual address space: 2GB of
user space, 1GB of System Space, and 1GB reserved for future use.
True or False: A downside of VAX virtual memory is that the unused “Reserved” region wastes
frames in physical memory. Explain your true/false answer in 15 words or fewer.

Part b (5 points): True or False: In VAX virtual memory, the values of the Process Base Register
(P0BR or PBR) and the System Base Register (SBR) point to the starting locations of the Process
Region and System Region, respectively. Explain your true/false answer in 15 words or fewer.

Part c (5 points): ​In the asynchronous I/O system discussed in class, if device controller X receives
a BG but does not want the bus, it passes BG on (in a daisy chain fashion) to the next controller
operating at the same priority level.
True or False: ​Device controller X stops asserting BG when it receives the SACK signal from the
device controller that accepted BG. Explain in 20 words or fewer.

False, the reserved region is in virtual memory, which does not use frames unless allocated.

False, they point to the process page table and the system page table respectively

False, the device controller stops asserting BGout when its BGin signal is no longer asserted,
otherwise there is a race condition.

Part d (5 points): Most ISAs have, in addition to N and Z, a C condition code which stores the carry
resulting from a 2's complement integer ADD instruction. Many ISAs have an opcode ADC that
adds two register operands plus the contents of this Carry condition code in a single instruction.
Why is it helpful? Be specific, but please limit your response to not more than 20 words.

Part e (5 points): ​True or False: In order to satisfy a page fault, when a virtual page is evicted from
a frame of physical memory, the evicted page must be written back to the disk. Explain your
true/false answer in 15 words or fewer.

This is helpful for implementing long integer adds.

False, only need to write to the disk if the evicted page is dirty

Problem 2 (15 points):​ A byte-addressable machine has a 64KB physical memory with a 32 bit data
bus. The physical memory has the following parameters:
- 1 channel
- 8 ranks
- 4 chips per rank
- 2 banks
- 16 columns per row

Part a (6 points):​ Calculate the number of row bits.

Part b (9 points):​ The CPU issues the following six one-byte memory accesses in some order.

Specify which of the 16 address bits are row bits, which are column bits, etc. in the table, so that
regardless of the order, the six accesses take the ​most amount of time​ to complete. Note: there are
multiple correct answers to this problem. Your job: specify one of them.

What we want is for all of them to go to the same bank, same rank(so no interleaving), and different rows(no
row buffer hits). The column bits do not matter at all. The rest of the bits does not matter as long as the
number matches

64 KB -> 16 bits
16 - 3(rank) - 1(bank) - 4(column) - 2(BoB) = 6 row bits

0xB2AD (0b 1011 0010 1010 1101)

0x36AF (0b 0011 0110 1010 1111)

0x96AC (0b 1001 0110 1010 1100)

0xB4AE (0b 1011 0100 1010 1110)

0xB6A8 (0b 1011 0110 1010 1000)

0xB68F (0b 1011 0110 1000 1111)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ro
w

 Ro
w

 Ro
w

Ro
w

 Ro
w

 Ro
w

Bo
B

Bo
B

Problem 3 (30 points) ​Computing the dot product of two vectors is a very common operation in many
applications. The following code computes the dot product of vectors A and B, where A and B are
stored as one dimensional arrays in sequential locations of memory.

int result = 0;
for(int i = 0; i < N; i++) {

result += VectorA[i] * VectorB[i];
}

If the vector is sparse (i.e., most of the vector elements are zero), it can be represented in memory by
two one-dimensional arrays, a value array and an index array. The value array contains the values of
each of the non-zero elements and the index array entries contain the indexes of the corresponding
entries of the value array. The number of elements in each array is the number of non-zero elements
in the original vector. We call this representation a compressed sparse row (CSR).

For example, the CSR representation of the vector 0, 0, 1, 5, 0, 0, 2 is

The following code computes the dot product of vectors A and B, represented in CSR form.

int result = 0;
for(int i = 0; i < NumOfNonZeroInA; i++) {

for(int j = 0; j < NumOfNonZeroInB; j++) {
if(IndexA[i] == IndexB[j])

result += ValueA[i] * ValueB[j];
}

} // NOTE: this is not an efficient way to compute the dot product
 // of 2 vectors in CSR form, but it is a simple implementation to
 // make the exam easier.

Your job: Compare the data cache performance obtained by executing the two algorithms above on
the corresponding representations of vectors A and B.

The data cache is 32KB, 2-way set associative, 16 byte line size, LRU replacement. The two vectors
each consist of 256K 32-bit integers, of which only 1024 are non-zero. The index for each element
in the CSR arrays is represented by a 32 bit integer.

Index Array: 2 3 6

Value Array: 1 5 2

Case 1: Representing each vector as a one-dimensional array in sequential locations of memory.
Part a (3 points): ​Array A starts at memory location x8000 0000, Array B starts at memory location
xC000 0000. What is the cache hit ratio? Assume the loop variable and result are stored in registers.

Part b (3 points): ​What is the cache hit ratio if the cache is direct mapped with the same cache size?

Case 2 (24 points): Representing each vector in CSR form.
Part c: ​To simplify the problem, assume the if statement evaluates true on average 1 out of 2048
times, and the accesses to valueA and valueB are always cache misses. Below is the starting location
of each array.

What is the total number of accesses and cache misses? Show your work

Part d: Would the hit ratio a) stay the same, b) decrease by a little, c) decrease significantly if the
cache is only 4KB while the associativity and line-size stay the same? Explain in 20 words or fewer.

Part e: Would the hit ratio a) stay the same, b) decrease by a little, c) decrease significantly if the
cache is only 1KB while the associativity and line-size stay the same? Explain in 20 words or fewer.

3/4. This is a streaming pattern, so you get a miss when you bring the line in, then 3 hits for the
rest of the line.

0. A and B map to the same sets. So each of them would kick the other one out.

Array Name Starting Address

IndexA x8000 0000

IndexB x8000 1000

ValueA x8000 2000

ValueB x8000 3000

Everything fits in the cache
Accesses: 1k * 1k * 2 (accesses on Index A and B) + 1k * 1k * 1/2048 *2 (misses on Value A and
B)= 2M + 1K
Misses: 1024 / 4 * 2 (misses on index A and B) + 1k * 1k * 1/2048 * 2(misses on Value A and B)
= 512 + 1024

Decrease a little. Only one of the arrays fits in the cache. On each iteration of the outer loop, only
1 line of indexA needs to be in the cache to get the hits. Most of the indexB will stay in the cache
between the outer iterations.

Decrease significantly. The cache can only fit ¼ of one of the arrays. Now even indexB won’t fit
in the cache, so won’t be able to get the reuse pattern from indexB anymore between iterations

Problem 4 (30 points) ​Suppose the LC-3b ISA has a 13-bit byte-addressable virtual address space
with two levels of virtual-to-physical address translation, similar to the VAX. The virtual address
space is divided evenly into two regions. The first half is system space, and the second half is user
space. The virtual address consists of 1 region bit, a 4-bit VPN, and an 8-bit page offset. Each PTE is
2 bytes.

The microarchitecture includes a single TLB which is used to translate both system and user virtual
addresses. The interrupt/exception table is stored in virtual memory, with a base address of 0x0A00.
The system stack pointer is initialized to 0x1000 and the stack grows towards lower addresses.

TLB misses can be handled in hardware or software. In this problem we handle it in software with
an exception handler that is executed when a TLB miss occurs. The exception handler takes the
address that caused the exception, finds the corresponding PTE, and loads it into the TLB. The
exception vector for TLB misses is 0x05. Assume the TLB has infinite capacity.

Upon detecting a TLB miss exception, the hardware performs the following operations:
(​Note:​ This is different from what you implemented in Lab 4.)

● Saves the PSR and PC on the system stack
● Sets the privilege mode to supervisor level privilege
● Saves registers R0 through R7 on the system stack
● Sets R6 to point to the system stack if that is not already the case
● Sets R0 to the faulting address (i.e. the address that caused the TLB miss)
● Sets R4 and R5 to P0BR and SBR, respectively

The RTI instruction does the following:

● Restores registers R0 through R7 from the system stack
● Restores PC and the PSR from the system stack

Two new instructions are added to the ISA, User_TLB_Load and System_TLB_Load, which load
one user PTE and one system PTE into the TLB, respectively. User_TLB_Load takes a register that
contains the VA of the PTE as an input. System_TLB_Load takes a register that contains the PA of
the PTE as an input.

Part a (5 points): What location in the virtual address space needs to be filled with the starting
address (0x0E00) of the TLB miss exception handler in order for it to be executed during a TLB
miss? ​0x0A00 + 0x05(exception vector) * 2 (size of each entry in the exception vector table)

0x0A0A

Part b (15 points): Your job: Complete the TLB-miss exception handler. Put each instruction you
write into a separate box. We have provided space for more instructions than you need. Use as many
as you need. Enter “NOP” in the boxes that you do not use. ​Note in this question, the handler deals
only with one level. If another level of translation is needed, then a nested exception is triggered
during the execution of User_TLB_Load.

 .ORIG 0x0E00
 ;R0 = Faulting Address, R4 = P0BR,
 ;R5 = SBR, R6 = System Stack Pointer

 AND R2, R1, x10
 BRz LABEL

 RTI

 RTI

Part c (10 points): During the execution of the first instruction, if the TLB is empty, the machine
would trigger an infinite number of TLB miss exceptions. In order to fix the problem above, some
PTEs will need to be present in the TLB at all times. What pages do those PTEs correspond to?

RSHFL R1, R0, #8

AND R1, R1, 0x0F

LSHFT R1, R1, #1

ADD R1, R4, R1

User_TLB_Load R1

LABEL LSHFT R1, R1, #1

 ADD R1, R5, R1

 System_TLB_Load R1

Page A (exception vector table), Page E (exception handler), Page F (system stack)
Otherwise, whenever you start to translate something, trigger an exception, try to access the
stack, trigger another exception, try to access the stack, trigger another exception...

