Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2013
Y. N. Patt, Instructor
Faruk Guvenilir, Sumcdha Bhangale, Stephen Pruett, TAs

Exam 1
March 6, 2013

Name: 0 [) \J\‘(O N\

Problem 1 (20 points): Z_

Problem 2 (20 points):lg
Problem 3 (20 points): lﬂ

Problem 4 (20 points): ZO
Problem 5 (20 points): ZO

Total (100 points): §0)0)

Note: Please be sure (hat your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature: é M{/ZJL\Q—M,

GOOD LUCK!

Sd O‘}i‘(.}m

Problem 1 (20 points)

Name:

Part a (5 poin{s): A Eigroarchitecture is predicting whether a branch is taken or not taken using a single saturating
2-bit counter. The |, ve, branches were: taken, taken, taken, taken, not taken. What does the branch predictor
predict? Circle onet Taken/Not Taken. Explain.

Coonter Satormtes Ao Strongly foe.,

a}'l-g(’}'Lp_ ?#bm Sf) Feihain € on
W@tuy 1"&16(?4/\ alﬁi"f—f’ fte no%%ﬁkawgﬂ

Part b (5 points): The LC-3b data path has several tri-states connected to the bus: Gale_MDR, Gate_PC, Gate_ALU,
to narme a few. What is the maximum number of these signals that can be asserted in a single clock cycle if you are
sourcing the bus in that cycle?

Answer: (

Explain.

0"‘[)(1605/ &arékg/é/ tvvil-l
(06, o~ Lo f‘# mort ’hmu. ’

Part c (5 points): If you were asked to design the HEP processor, which branch predictor would you use? Explain,

NU"\C—! HEP gu»‘!'f'l»bs 'Hsrt,uoLS every c-jol«t,
htn Tt reSumes * foread, the B

por ‘hwjr 'h\rcéal ﬂlre,uol}/ F&SDLN_A.

Part d (3 points): To perform a DRAM access, do you always need to assert-the Row Address Strobc (RAS) so that
the high bits of address are applied to the DRAM chip? Circle one: Ye: @ y or why not? Explain.

Da « row Lo P L\f-l—) Only (AS
U\SS‘Q{M Se cavse 'H»L Corect row

a[re,adt/ o/em (~ rouw Su\&fﬂf.

Name: So {" 4‘?0\/‘

Problem 2 (20 points)

A 2 MB, byte addressable physical memory consists of two IMB memory chips (20 bit address, 8 bits of data), con-
nected to a 16 bit data bus. The processor is a 32-bit machine, i.e., the ALU processes 32-hit data, registers are 32 bits
wide, etc. The instruction set allows byte, half-word, and 32-bit word loads via LD8, LD16, and L.D32 instructions.
Note that Memory Chip 0 is connected to the low 8 bits of the bus, and Memory Chip 1 is connected to the high 8
bits of the bus. You should assume anything that is not explicitly stated should be treated as discussed in class and as
treated for the unaligned question on the problem set.

Memory Memory
Chip 1 Chip 0

N Al JC@J(F Cor

S el G i

N B ssine
. Y e ke Bobber)

ﬁﬁim all memory accesses, the system requires a control logic unit containjnz' 1 through ¢, and
1 ou

01 through o,,), as shown below:

i — 0
S I
SIZE—— L . CE
LD/ST— = Combinational { . wpp

MEM.EN Logic = WE1

—_— ——

o 6

Note that a few of the control signals have been provided.

Part a (5 points): Identify all @Zals. Unaligned access is allowed.

[DADE (4 oih o el by k)
Lo bule

Mu X

Name: Sm luJFM

Problem 2 continued

Part b (6 points): Identify all m inputs to the control in the table below. Note that L.ID/ST, SIZE, and MEM.EN have
been provided. Note that some rows in the table may not be needed.

Control Signal Purpose Values
LD/ST Load or Store Load, Store
SIZE Data Size Byte, Halfword, Word
MEM.EN Enable Memory No, Yes
MA’{&!:UJ VM!{;}U_{/J X ,\.o"' O) }
I [d
Aeess | Uhih “aecess fo mEM ;/gf/ 2,"""! 3

Part c (9 points): We wish to process the instruction LD32 R1, A. Recall LD32 means load 32 bits of data from A
into the 32-hit register R1.

Construct those rows of the m-input, n-output truth table that are needed to guarantee that the correct 32 bits of data
are loaded into the MDR as a result of LD32 R1,A. Assume a little endian ISA. Note that some rows in the table may

not be needed.

sr2eVed /st lneacn] MARLT heess || CE[LEd we D] Mux] Botate] LP.MDR
WL | ! 0 [i lo o O | oot}
WL [P 0 [2%frloo| XD |lleo
wle [0 1 lliloo] x) [ooer
VAR 22 W ool x| 1 |ou0
AL NN 4 lirtoo {x {1 |/we

Name: ﬁ ZJ 'L(fpf\

Problem 3 (20 points)

Assume a 256-byte, byte-addressable virtual memo
mernory address space is 128 bytes, consisting of|
equally between a single process (user) region sta
{i.e., two regions, not four).

Each page requires a one-byte PTE, as shown below:

misystem of the same style as the VAX discussed in class. Physical
@ ge frames. We will assume virtual address space is divided
s at VA 0x00, and a single system region starting at VA 0x80

44 PRN

LV 7]

Note that the actual location of the PFN within the PTE is not specified. But, the bits of PEN are continuous within

the PTE.

Like the VAX, the user space Page Table is in System Virtual Memory, and the System Page Table is in physical

IEMmory.

The table helow lists the sequence of accesses iq ph
(excluding instruction fetch) to addresse:
miss (the TLB only contains PTEs for user space). Nopage

SQriser virmal spacd

memory required by n consecutive LD_Byte instructions
Exactly one of those instructions resulted in a TLB
aults occurred during these accesses.

Ma{’(« ’{'L\Q,I\ACOWS.‘BH«?L/\/ hee AﬁceSS T wr?olol

— e s ystua auss

o+ part OLP‘;jff

v WAL agess

Physical Address Data
Access 1 1111001 10101010 v

2 110 (o010 | v
3 [501110 —H{IO00L |
4 10008301 10000001 v’
5 10} 1001310

00T {101 11400301
7 |\ 1007000 10111011
8 | 0111p01 10101110

Part a (3 points): What is n? Explain.
a (ees

b@,iﬂj N

Tﬂ'{;',, gmem,. “CC@SS .

@)(5 hots - | 992) 4 sy

Part b (3 points): Identify which of the accesses in the table resulted in a TLB hit by putting a check mark in the

corresponding rows of the column labeled TLB hit.

Part ¢ (4 points): What is the data returned by the LD _Byte instruction that resulted in the TLB miss?

“Caccesses @

Answer:

[ol/ /&l/

Namme. 59 { 0 ‘llfam

Problem 3 continued

Part d (4 points): Two of the virtual addresses listed below correspond to accesses incurred in geiting from the
LD Byte instruction that resulted in the TLB miss to the actual data required. Please circle them.

(5 ‘0(—[/) OF%Q;}’ Virtual Afidr

11000p01

qu Dn i _ j[ﬂl—tn’b %L—o)wﬂf%, oﬁaﬂiﬁ?L lwvf'olx&S

COTOTIoT

01101001

TV J6— 3y€ e ctxTom, othet patches

-‘l—'_-’

Part e (3 points): What is the UBR (User Space Page Table Base Register)?

Answer: X B %

Part f (3 points): What is the SBR (System Space Page Table Base Register)?

Answer: X 5—“ 2—

Uste VPN xPTEST3E +0UBR= System VA (Pt ot
olol x| LobR= |ofll (o] Fueble)

UBL= (o lllg)- ote] = |olllpo = x j@?ﬁ

e

Sys{t.-» VPN¥ DTE ST2E + SBR = PA (Ppml of s')/;qu\

Pasge table
Ot x| + SBR= (01l oo, ?)

552110/1001-—0!![= Joloo(o =x5)

Name: 30 ld"l‘(ov\

Problem 4 (20 points)

Consider a microarchitecture for an out-of-order processor, in the Tomasulo style. The data path has one adder and one
multiplier. Neither is pipelined. The adder requires 4 clock cycles to execute, the multiplier requires 6 clock cycles to
execute. All instmctions require one ¢yele each for Fetch, Decode, and WriteBack. The WB bus can accommodate
one result per WB cycle. Reservation station entries are allocated in program order. Instructions remain in the reserva-
tion stations until their tesults are written in the WB stage, and are then available for replacement by other instructions
needing a reservation station slot.

We wish to execute a program fragment consisting of five instructions Il to I5. All instructions are of the form
OPCODE DR,SR1,SR2. Figure 1 lists the fivc instructions in program order. In processing these five instructions, a
sequence of writes to the Reservation Stations and to the Register Alias Table occurred. Figure 2 lists that sequence in
the order they occurred. Note that writes to the Reservation Stations occur at the end of Decode/Rename and writes
Lo the Register Alras Table occur during Write Back. (Other writes occur to the Register Alias Table, but we will not
concern ourselves with them in this problem).

Opcode DR SR1 SR2 Access Data Traffic

I ADD | RY R6 e RISzI|1 — 7 1 — 13
n mUL R2 R By RIST2|1 —| 2 0 a0 —
3 MUl R2 RL RS R/SI»|0Onm — 0 o0 —
4 Al | r2 | p{ | Eb RSI{ 1 — 3] 1—[=F]
IS, MvL. | g5 | BPY | R% RATz!| ¢ 20

Figure 1: Program Fragment RAT x4 O 21|

™~

(4

R/S 171
RAT 12
RAT7T3

No "L {/(M‘} ‘H/\TS RATIf
L\&V f)MS [a_-\'e,/ MU L p\IS Figure 2: Program Trace

s

L—[13]

[$00]
260

ql\;‘

Your job is to complete both tahles. Note that one source and one destmatzon in Flgﬁa 1 are already filled in, and
many of the entries of Figure 2 are partially {illed in.

Entries in Figure 2 are of the form “R/S sourcel source2.” or “RAT tag value.” For example,

RS 1-7 1-13

means a Reservation Station entry was written, and valid data values 7 and 13 obtained from the two registers identi-
fied in the corresponding instruction.

RAT o 20

means the value 20 was written to the Register Alias Table entry having the tag o,

SQ?/(L\‘; {aﬂw mpb\

Pt P”ab

PROBLEM IS CONTINUED ON THE NEXT PAGE!

4 € 21040

Name: SO ! U‘}:Dﬂ

Problem 4 continued

To help you complete the tables, we have included a mapping of the reservation stations, and the contents of registers
RO through R7 before and after the program fragment executes. Note that there are three reservation station entries
for the multiplier and three for the adder, You are not required to fill in the reservation stations. We include this figure
only to provide you with additional informaticn you might find useful in solving the problem.

V TAG VALUE V TAG VALUE V TAG VALUE V TAG VALUE
¢ i
§
b3
?-ﬂb [5}.2?. Figure 3: Reservation Stations
7
s BEFORE AFTER
E l . RO 4 4
= : : %Only L) om(/’ 4%
R2 2 21
R3 6 6 C W
R4 3 3 |
RS 5 260 %’Oﬂl){ H&Y +0 %b+
S B/ IR Re=S Y
R7 13 13 ?X

'3) R4 e J{'IL’ FUA)/ :\N‘-ul[@ug

Iy

Figure 4: Contents of Registers

Must b
?_i}a—;Rl "5'7‘:1|

13,2 F

J{,Oe\'ly ey foyet
260 20x1%

x Need 20 fwom RS
n THor I.S—) Se

I3 most (.-)Pf'\'\'«'l'o
P\LC€'OO r)nusw[)

Name: S@ EU '}IOV\-

Problem 5 (20 points):

We wish 10 add a new instruction BLOCKADD to the LC-3b ISA. BLOCKADD sums the integers contained in a
block of contiguous memory locations, writes the results to a destination register and sets the condition codes based
on the sum. Its format is as follows:

15 12 11 9 8 7 6 5 0

T
BLOCKADD 1010 PR BaseR |0 0 O SR2
| 1 | !

where 1010 is the opcode, BaseR contains the starting address of the block of memory, and SR2 contains the number
of 16-hit integers in the block.
Moeodifications to the data path required by BLOCKADD are shown below in boldface,

9

#90
SR2 SR1
ouT ouT
—| CONTINUE
LD.CONTINUE
16 16 :
3 ——={ TEMPI
IR]5] SR2MUX LD.TEMP1 ™
16 TO THE
_ CONTROL
—_— ¢
LD.TEMP2

6
GateALU

GateConst

Figure 5: Modified datapath to support BLOCKADD instruction
Assume

Na{c:AS{ZL wfl! a[wo\//s be. Z.

Sa(u%m’\

Problem 5 continued:

Three things must be done to complete the task of implementing BLOCKADD.

Part a (9 points): Five new states are required in the state machine. Fill in the missing information in the state
machine below, Don’t forget to give each state a state number (aka control store addrcss).

Name:

- ~N

32
BEN <—IR[11] & N +IR[10] & Z + IR[9] & P

[IR[15:12]]

\ A

{
[DR« O A |0

de
TEMP| & 3R2-| | S

L. vy

‘M AP &= Lasel+ Iswel(TEHPI) I 26505

MDR & M[MART 9

R

TEMPL £ DR b

T EMP| e TEMP! — |
CONTINUE «— TEMP1 ;:5?0

DR DR +TEMPL E 1 e

Se +ccl),)y

[CONTINUE]

lo

To state 18

42

Flgure tate diagram for BLOCKADD instruction

[‘\’E["\Wé" TEMP Can be “n g'f’kllfl D or E

10

Sa[u'iﬂ’or\-

Problem 5 continued:
Part b (6 points): Augment the Microsequencer as necessary, without using any muxes. Hint: cond (see part ¢ below)

sasbitield. Aisine SO chosen for Stnte .

CONDI CONDO

Name:

CoNTENVE ‘
l ?ODDZ BEN R IR[11]
i wRwA b
Branch Ready] ﬁdcér
J4] JI3] I2] I JEO]
A

0,0,JR[15:12]

6

Address of Next State

Part ¢ (5 points): Fill out the control signals that constitute the microinstructions for the five new states in the state
machine. List any signals that are don’t cares for a particular state as 0.

: =

» HEEE“ be

CoND ; 958595882 2 $2 549283 5 2

state A D'o'ol'['o'o'l'oo()[000000'00 olello|pltlo @0
state B OloloilolllolDlo,ODOOIOIOIOO OOOOOO{IDO
saeC Q' Q' [1'0170'0 0 0li 900 0100 lo"ols [o[t|O]0[T o000
saeD 19 09 1o U ot t|pplololl [O0 ole"0lololtlili I [Oloo])
state E ‘,0100|{|o|0|lr0001|0’000!0000 DOOOOIOO

—
[

ADD"

+

ADD
AND'
AND*
BR
JMP
JSR
JSRR
LDB"
LDW*
LEA®
NOT"
RET
RT]
LSHF "
RSHFL
RSHFA'
STB
STW

TRAP

+

XOR
XOR'

not used

not used

1 14 13 12 N 10 14 8 7 & & 4 3 2 I:
T T T T T T T T T B
0001 DR SR1 0| 00 SR2
L i 1 1 ! 1 !] | i
T T 1 T T T T T T T T
0001 DR 8R1 1 immb5b
1 | 1 t)] i 1 1 1 [;]
T T T T T T T T T T
010 DR SR1 0| 00 SR2

1 1 1 L] 1 | 1

: T T T T T JI ‘l T T .I
0101 DR SR1 1 immb
| 1 [] | 1 1 1 L 1 1
i I 1 T T T i T T T T
0000 h|lz|p PCoffset?

1 1 L [] } 1 1 1 1 l
T T T T T T T T T T T T
1100 000 BaseR 000000 -
| | 1 [1 H 1 I | ! I 1
T T BN R S S D . S p——
0100 1 PCoffset11 .
| 1] | 1 1 | 1 1 1 1 1 1
T T T T H I_ T T 1 T T
0100 0| 0C BaseR 000000

] 1 L] 1 1 1

I\ T T T T : I\ : T T T T
0010 DR BaseR boffseté -
— — — ey
0110 DR BaseR offseté .
1 1] 1 1 1 H
T T T T : : : T : T T T :
1710 DR PCoffset? :
1 1 | 1 L ! 1 1] 1 1 1 1 1
T T T T T T T T T T T
1001 DR SR 1 i -
1 | 1 i 1 i 1 | 1 1]
T T T T T T T T T T T T
1100 000 111 000000
B E—“Mte S
1000 000000000000
l 1 L]] 1] 1 | 1 1 1 1 |
T T T T 1 T T T T T
1101 DR SR 00| amounid
— — = —
1101 DR SR 0| 1! amountd
1 i 1 1 I 1 L | 1]
T T T T T T T T T T
1101 DR SR 111, amountd
1 1 |] 1 L 1 1
T T T T T T T T T T : }
0011 SR BaseR boffseté -
— — — —
0111 SR BaseR offseté
! 1 1 1 I 1 | i 1 i | L
T T T T T T T T T T T T T
1111 0000 trapvects
! 1 1 I3 1 1 | ! I 1 | 1 |
T 1 1 | T T T T F T
1001 DR - SR1 0| 00 SR2
1 | 1 1 L] 1. l i
T T T : T T T T T : ;
1001 DR SR 1 imm5
! 1 I 1 | | | 1 1] 1
T T T H T T T T T T T T
1010
! 1 | ! 1] i 1 L H 1 1] 1
T T T T T T T T 1 1 Ll T
1011

1 1 1 1 1 i 1 1 1 1 1 1

Figure 7: LC-3b Instruction Encodings

12

Table 1: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
ILD.MDR/1: NO{O), LOAD(1)
- LDIR/L: NO(D), LOAD(1)
LD.BEN/1: NO©), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1}
L.D.PC/1: NO), LOAD(D
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(G), YES(1)
GateALU/1: NOO), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(ID
PCMUX/2: PCH+2(0) ;sclect pe+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) destination R7
SRIMUX/1: 11.9(0) :source IR[11:9]
8.6(1) ;source IR[8:6]
ADDRIMUX/1: PC(0), BaseR(1)
ADDRZMUX/2: ZERO((D) ;select the value zero
offseté(1) sselect SEXTIIR[5:0]]
PCoffset9(2) ;select SEXTIIR[8:0]]
PCoffset] i(3) ;select SEXT[IR]{10:0]]
MARMUX/1: 7.0(0) sselect LSHF(ZEXTIR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD((), AND(1), XOR(2), PASSA(D)
MIO.EN/T: NO), YES(1)
RW/1: RD), WR(1)
DATA.SIZE/t: BYTE(0), WORD(1)
LSHF1/1: NO(O), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:
COND/2: CONDy ;Unconditional
COND; :Memory Ready
COND; ;Branch
COND; ;Addressing Mode
IRD/1: NO, YES

13

IR <— MDR

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
{IR[15:12]]

To 18

To 18 To18

To 18

15
@R<7L SHE(ZEXT[IR[7 :O]]’D

Tol8

: 20
; R7<-PC
. PC<-BaseR

R7<-PC
To'18 \PC<-PC+LSHF(0#f11,1)

PC<-MDR
To 18 13
DR<-SHF(SR,A,D.amt4)
set CC T'18

/ 14 2 6 7 i 3
To 18 DR<-PC+LSHF(off9, 1) i
set CC CMAR<—B+0££6) GIAR‘:—B-PLSHF(OHG,I) GJAR<—B+LSHF(off6,1) (MAR<—B+0ff6)

To 18

NOTES C@IDR<wM[MAR[151 701] [MDR< 1\@) MDR<-SR
B+offts : Base + SEXT[offset6]

PC+off9 : PC + SEXT[offset9]

*OP2 may be SR2 or SEXT[imms] ~
*% [15:8] or (7:0] depending on (R< SEXT[BYTE DAT‘Q) DRS; gg) R) (MNAR]«MD@D
MAR[0]

24

MDR<—SR[7:0]

MIMAR]<-MDR**

To' 18 To 18 To 18 To'19

Figure 8: A state machine for the LC-3b

14

GateMARMUX —/\

6 Zlé

GatePC :
it ifls
¥
REG
FILE
3
LD REG—t>] ; <t>£-DR
3, |SR2: SRI| 3
SR2 > OUT - QUT [47~sRi
Als
16 At
16
rd

Figure 9: The LC-3b data path

15

i A A
SEXT CONTROL
L SEXT [y 1‘ b 4 4
R
1 .
" 2 B w A 6
LD.CC—~{N| Z|P ‘ ALU / SHF IR[5-01
ALUK :
fo s
o GateALU \/—GateSHF
/\—GateMDR
M@—LD.MAR
[—DATA SIZE ot
LOGIC WE ujf RW
*“AR[O] LOGEC —_— et = e e] = —— - — = -
g Baral |MOBN 1 mwpuT ! J'OUTPUT
r'y Y SIZE t
WEI WEQ Y I
15 _ ADDR. CTL. [
7 MEMORY LOGIC I
. e
MDR LD MDR MEMEN 4_J : f E '
MICEN i
F Y)
Als Als
T.OGIC -t
<+-DATA.SIZE
l—MARI0) IMUX <_l

CONDI CONDO

BEN R R11]
O U U
Branch Ready

J[5] I4] 3] 2] J1]

0,0,IR[15:12]

"

Address of Next State

Figure 10: The microsequencer of the LC-3b base machine

16

