Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015

Y. N. Patt, Instructor

Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Exam 1

March 11, 2015

Name;

Problem 1 (20 points):
Problem 2 (30 points):
Problem 3 (25 points):
Problem 4 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (bsubporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaine

Please sign the following. | have not given nor received amguthorized help on this exam.

Signature:

GOOD LUCK!

Name;

Problem 1 (20 points)
Part a (5 points): The x86 ISA has variable length instructions. This chanégtie of the ISA has pluses and minuses.

The major plus is

The major minus is

Part b (5 points): If two locations are in the same row buffer on a DRAM, the oniis lof their corresponding
addresses that are different are the

Part c (5 points): If the contents of a memory location is protected with a pdyit, and two bits are inverted during
transmission, what happens? Is this a problem? Why or wHy not

Part d (5 points): If two processes translate different virtual addressebéir own virtual address space to the same
physical address, and the cache is virtually indexed, ghilgitagged, the location corresponding to that one playsic
address can be present in two different locations in theecaklfe call the two instances of the same physical cache

line and the problem is referred to as the

Name;

Problem 2 (30 points)
A computer system contains a physically-indexed, phylsi¢aljged, 2-way set associative, write-back cache. The
ISA specifies an n-bit physical address space, and an 12®hygtesize.

With the cache initially empty, the processor makes ten eomsve memory reads, as shown in the table below. Note
that some result in cache hits, others result in cache midsate that the actual number of bits of physical address is
not shown.

Physical Address Hit/Miss
00...0000010000 Miss
00...0100000101 Miss
00...0000011000 Hit

00...0110000111 Miss
00...0111100001 Miss
00...0100000010 Hit

00...0110100111 Miss
00...0100100000 Miss
00...0111100010 Miss
10| 00...0100001111 Hit

O©Coo~NOoOUh~,WNPE

In order to concurrently access the TLB, the Tag Store, aadtita Store, the index bits are selected from the page
offset, i.e., they are not affected by the virtual to phyksmdress translation.

Part a (10 points): What is the cache line size? Why?

Part b (10 points): What are the index bits? Why?

Part ¢ (5 points): What is the size of the cache (i.e., how many bytes of data eatdved in the cache)?

Part d (5 points): Given that the tag store requires 68 bits, and that the casb®perfect LRU replacement, what is
the physical address space of memory for this computerrsyste

Name;

Problem 3 (25 points)

The following program fragment executes on a machine thgpass virtual memory.

LD RO, A RO <-- MA]
LD R1, B ‘Rl <-- M B
ADD RL, Rl, RO ;RL <-- RL + RO
STRL, C M <-- RL

A, B, and C are virtual addresses.

The ISA specifies:
Virtual address space: 64KB
Physical address space: 8KB
A page is 256 bytes

The memory management system uses the two-level page tdit@me similar to the VAX. Virtual memory is parti-
tioned into two halves. User space starts at x0000, Systaresgtarts at x8000. A PTE is 16 bits. For purposes of
this exam only, we will assume that a PTE has the followingifor

[V]00.0] PFN |

Assume no cache and no shared memory(thatis, no two page®iegpsame frame). Assume the TLB only contains
PTEs for pages in user space.

For the snippet of code above, if one gets no TLB hits, thegesar makes nine accesses to physical memory (we are
ignoring the fetching of instructions). The table belowwkdhe sequence of nine memory accesses needed to do the
job.

Virtual Address Physical Address Data
x1AA8
x5400 x0700 x5410
x8008
x80C2
x0646
x8016
x8005
X7618 x5824

On the other hand, IF the TLB initially contained the entsaswn below,

V PageNo PTE
1 x14 x8001
1 x23 x8006
1 X28 x8004
0

the processor would only need to make seven accesses taahysmory.

Your job: Complete the table.

Name;

Problem 4 (25 points)

Let’s use one of the unused opcodes to add an instruction A¢G gverage) to the LC-3b ISA. Its format will be

15 12 11 9 8 6 5 4
I — 1 — T
AvG |1 0 1 O DR SR1 1 imm5
| | | | | | | | | |
15 12 11 9 8 6 5 3 2
I — 1 — — —
AvVG (1 0 1 O DR SR1 000 SR2
| | | | | | | | | | |

depending on whether the second operand is an immediate aotitents of a register. AVG will sum the n £n0)
16-bit integers in consecutive memory locations startinthe location specified by SR1, divide that sum by n, and
load the result into DR, setting the condition codes. Theeal is either an immediate value or the contents of SR2.
Assume that the n integers are aligned in memory (i.e. SRdshenh even number), and assume that DR, SR1, and
SR2 (if SR2 is being used) all refer to different registers.

For this problem, you can assume no overflows will occur. Netecution of this instruction will destroy the initial
contents of SR1.

Your job: augment the LC-3b state machine, the data pathladicrosequencer as necessary to add AVG to the
LC-3b ISA.

Part a (8 points): The state machine (see page 6). From state 32 (the decodgo wemediately to the eight states
needed to carry out the work of the AVG instruction. One of stetes has been specified for you, and another (state
39) has been partially specifiedfour job is to complete the specifications of all the states ahadd the missing
state numbers

Part b (8 points):
The data path (see page 7). To implement AVG you will needtimofdil structures. Four are shown in boldface on the
data path diagram.

The DIVIDE UNIT takes two inputsX,Y and produces a resuk /Y. The divide is a multi-cycle operation that
latchesX, Y internally in the first cycle, and signals completion with BVDR (for Divide Ready) signal when done.
The DIVIDE UNIT starts processing when the control signaV/lié asserted.Your job is to connect the DIVIDE
UNIT to other elements of the data path as needed.

The CTR is a step-down counter. It can be loaded when a LD.@hRa signal is asserted, and it can be decremented
when a DEC.CTR control signal is assert&¥dur job is to connect it to other elements of the data path as eeded.

Registers containing x0000 and x0002 have also been addie wata path.Your job is to connect it to other
elements of the data path as needed.

Feel free to add tri-state devices for any signals you wigbutoon the bus.

There is also a dashed box in the data patiur job is to put in that box any other necessary structuresfegister
or combinational logic) to complete the data path for implenmenting AVG.

Part ¢ (9 points): The microsequencer (see page 8). The augmented state maelures additional control
provided by the microsequenceéfour job is to augment the microsequencer.You will need an additional COND

bit, call it COND2, which will be used to modify J[5] and J[4he&n necessary. The necessary OR gates have already
been put in place. Add whatever additional logic structy@s need.

5

from state 32

¢

10

41

42

37

39

Div_Rd

Div_R|
To state 18

e
SR1<-SR1+2

Figure 1: State diagram for AVG instruction

GateMARMUX—/\ GatePG
16 6 i6 A6
x0002
—>/ MARMUX 16 x0000
X 1
16 A6 REG
FILE
3
LD.REG— l—<-DR
3 SR2 SR1 3
—— SR2—4> OUT OUT <SRl oIV
LSHF1 >[LSHF1 <-ADDRIMUX M
] 16 16
L 16 16 AN
7:0 2 *“ X —/—
[7:0) w4(7/ 16 16 " DIVIDE | RresuLt
ADDR2MUX r— vy —z»] UNIT -
16 A6 fi6 fi6 DIV_R
[10:0] 0 SR2MUX
[16 LD.CTR
¥
] e e . |
.[8'0] SEXT I 16 $ 16
1} 1} 1} o o o |_ 1 1 CTR |-/
[5:0]
A SEXT—— CONTROL | | C[fc
[4:0] DEC.CTR
4 SEXT ' T I) I 1
R I I
LD.IR—(>|_IR " ¥
L ALUK B A 6
LD.CC—>. . <ZR[5:0]
s z[p| ALU SHF [5:0]
\/-GateALU \/-GateSHF
16
/\— GateMDR
MAR Ki—LD.MAR
<+—DATA.SIZE [0]
LOGIC e RW
< MAR] LoGIC MIGEN —o = =] et R
JI— baTA . : INPUT : yOUTPUT |
A \i KBDR _|>| DDR
WE1 WEO
16 ADDR. CTL : Y : Y I
™ MEMORY LoGIc | _‘>|E£|| _'>|_DSR |
I | I
MDR MEM.EN
MIO.EN i
T
6 M6
LOGIC pl
l+—DATA.SIZE INMUX
l<—MAR[0] <"I

Figure 2: Data path for AVG instruction

COND1 CONDO

J

BEN R IR[11]
) O U
Branch Ready Addr.
Mode
J[5] Ji] J[3] J[2] J[1] J[0]

— — — ~—

0,0,IR[15:12]

-

<}—— IRD

i 6
Address of Next State

Figure 3: Microsequencer for AVG instruction

ADD'
ADD’
AND
AND'
BR
JMP
JSR
JSRR
LDB*
LDW *

+

LEA
NOT’
RET
RTI
LSHF "
RSHFL
RSHFA'
STB
STW
TRAP

XOR'

+

XOR

not used

not used

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
oo | o8 | s Jo] o0 | s
o | o s 1| s
:01:01: :DR: :SRI: 0 0:0 :SR2:
oo | o 1 s
o |nlzlp| | rcomes
o | w0 e | womn
o 1| o
om0 (o] m | som | womn
:00:10: :DR: B:qse:R : t:)off:set% :
:01:10: :DR: B:qse:R : :offs:etéi :
o | o | reomn
ot | ok | s 1]
o | wo | | www
o woowoew
o | of | % 0|0 amouts
o1 | R | sk 0|1 omouns
ot | oR | ® [1]1] amouns
w0 | e | sesoR | | botkets
:01:11: :SR: B:dse:R : :offs:etéi :
| oo | s
o | 0w | w
‘10‘01‘ ‘DR‘ ‘SR‘ 1 | ir‘nm‘s |
——————T—— m—
‘10‘10““““““
— T — T T T T T T T T
‘10‘11‘

Figure 1: LC-3b Instruction Encodings

Table 1: Data path control signals

Signal Name

Signal Values

LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)
PCMUX/2: PG+2(0) ;select pe-2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7
SRIMUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]
ADDR1IMUX/1: PC(0), BaseR(1)
ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]
MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)
MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)
DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: CONDL ;Unconditional
COND; ;Memory Ready
COND, ;Branch
CONDs; ;Addressing Mode
IRD/1: NO, YES

10

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDB

P

To 18

To 18 15

6AR<—LSHF(ZEXT[IR[7:O]]9

To 18

R7<-PC
PC<-BaseR

R7<-PC

To'18 GC<—PC+LSHF(Off1

3

13
T0 18/ HR<-SHF(SR,A,D,amt
set CC

To 18/ DR<- PC+LSHF(off9 0
setCC CMAR< B+offED CAR< B+LSHF(off6} @AR< B+LSHF(off6}) CMAR< B+offED

To 18/ \
24

23
NOTES C@DR< M[MAR[15 1](D CDR< M[MAR)D MDR<-SR MDR<-SR[7:0]
B+off6 : Base + SEXT[offset6]

PC+0ff9 : PC + SEXT[offset9]

i

To 18

17

set CC

I ' " R "

To 18 To 18 To 18 To 19

MAR[0]

Figure 2: A state machine for the LC-3b

11

*OP2 may be SR2 or SEXT[imm5)| DR<- MDR
** [15:8] or [7:0] depending on ER< SEXT[BYTE DAT} C MAR]< MDR M[MAR]< MDR*DD

GateMARMUX

—?/MARMUX

A A

16 16

<—ADDR1MUX 16

LD.REG—>

3
SR27L|>

SR2
ouT

SR1
ouT

l<t-4-DR
3
I<t4—SR1

z}z}z}ooo

v

—l>; SR2MUX7

Y

CONTROL

4

6
SHF \vLIR[S:m

[[
youTPUT

|<+—DATA.SIZE o)
LOGIC WE RW
l<—MAR[0]
Loeic MIO.EN
DATA.
y \Y SIZE v
WE1 WEO
16 _ ADDR. CTL.
MEMORY LoGIC
2 ||
MDR LD.MDR MEM .EN
MIO.EN i
[y
16 A6
LOGIC <
|<+——DATA.SIZE INMUX
l<—MAR[0] 4-‘

Figure 3: The LC-3b data path

12

J5]

0,0,IR[15:12]

|

J[4]

J3]

COND1

J

CONDO

BEN

J2]

J

Branch

N

J[1]

RN

Ready

IR[11]

J[0]

~—

ie

Address of Next State

<}— IRD

Figure 4: The microsequencer of the LC-3b base machine

13

J

Addr.
Mode

