Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015

Y. N. Patt, Instructor

Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Exam 1

March 11, 2015

,Sm(:f T /oA gﬁ} T

Name:

Problem 1 (20 points):_ ‘ A
Problem 2 (30 points):
Problem 3 (25 points):_
Problem 4 (25 points):______

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

yy - A 4 2 /"f\
. AP 10 A O Az_‘é; vy
Signature: & 7 [/ 1A Z;?n Z7 f/{x.,ﬁ.,

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (5 points): The x86 ISA has variable length instructions. This characteristic of the ISA has pluses and minuses.

The major plus is

\/‘)\. X3 E N

CodiG OF Twe INSTRVCTI0n

The major minus is

DECODIM <
C ﬁft/{//.‘(;\fé y

MoiripPie [usireve Troms
IS VBRY DiFFIcoet

Part b (5 points): If two locations are in the same row buffer on a DRAM, the only bits of their corresponding

addresses that are different are the

/‘3/ TS

(C/ v

Part ¢ (5 points): If the contents of a memory location is protected with a parity bit, and two bits are inverted during
transmission, what happens? Is this a problem? Why or why not?

{f:/f/zgf/{ INFYA <_ NoT De De7EC7eD
Mo K <y N ok [T KAray |
JHArPas (STHT IS 7ICAL wdgrvdaice OF ey

Part d (S points): If two processes translate different virtual addresses in their own virtual address space to the same
physical address, and the cache is virtually indexed, physically tagged, the location corresponding to that one physical
address can be present in two different locations in the cache. We call the two instances of the same physical cache

. Y S Yo A
| Sl s

and the problem is referred to as the

Name:

Problem 2 (30 points)
A computer system contains a physically-indexed, physically-tagged, 2-way set associative, write-back cache. The
ISA specifies an n-bit physical address space, and an 128 byte page size.

With the cache initially empty, the processor makes ten consecutive memory reads, as shown in the table below. Note
that some result in cache hits, others result in cache misses. Note that the actual number of bits of physical address is
not shown.

Physical Address Hit/Miss
00...0000010000 | Miss
00...0100000101 Miss
00...0000011000 Hit
OO...Ol]OQOOlll Miss
00..0111100001 Miss
00...0100000010 Hit

00..0110100111 | Miss Wé/ /@é M w/
00...0100100000 | Miss /4 Or
00..0I11100010 | Miss /é/ ng

000100001111 | Hit 7 /“Ot

In order to concurrently access the TLB, the Tag Store, and the Data Store, the index bits are selected from the page

offset, i.e., they are not affected by the virtual to physical address translation.

Parta (10 pomts) What 1s the cache line size? Wh Z acess /

"W mm/%m MJZ(%%& m%m

é Zfzwaﬁ '% 4%5%?) k

Partb(l() pomts) What are the index bits? W. / !l
&/M"W WZ% Ly, eon “"W{., ,c%m,w o
/’ZM’M ,wa.a,c/cm Wt Ay iy

Would %W Lo vl %«%&fﬂw’z/w J

Part ¢ (5 points): What is the size of the cache (i.e., how many bytes of data can be stored in the cache)‘7 '
cachy .

Part d (5 points): Given that the tag store requires 68 bits, and that the cache uses perfect LRU replacement, what is
the physical address space of memory for this computer system.

6. 1 4 U= | Iy = plpadh
frd //%M@
it | LRJE(M T &’7 4§ ?L

i f qa - 12 -
‘l.ﬂ~(f‘r’a\‘i»M / /) /
[5’% b— U. //,g;y\[. oA~

- I = N BN PR S

Name:

Problem 3 (25 points)

The following program fragment executes on a machine that supports virtual memory.

LD RO, A ;RO <-- MI[A]
LD R1, B ;R1 <-- MI[B]
ADD R1, R1, RO ;R1 <-- Rl + RO
ST R1, C ;M[C] <-- R1

A, B, and C are virtual addresses. h
p = ¥Lbt Es
The ISA specifies: Bo

Virtual address space: 64KB P E N = 5 biks
Physical address space: 8KB

A page is 256 bytes

The memory management system uses the two-level page table scheme similar to the VAX. Virtual memory is parti-
tioned into two halves. User space starts at x0000, System space starts at x8000. A PTE is 16 bits. For purposes of
this exam only, we will assume that a PTE has the following form:

[V]00.0 [PFN |

Assume no cache and no shared memory(that is, no two pages map to the same frame). Assume the TLB only cohtains
PTEs for pages in user space.

For the snippet of code above, if one gets no TLB hits, the processor makes nine accesses to physical memory (we are
ignoring the fetching of instructions). The table below shows the sequence of nine memory accesses needed to do the

Job. gBR = xiARB — (2 x x0l) = X1RAL
Virtual Address Physical Address Data
— X1AA8 X30(b
XRML2Y4 XI6RY X+
)) X5400 %0700 X5410
rogeto. o —= A1lARG X8008 (c-R)
Al x80C2 ” e%cz. PRSI 4
XR3'xGb = X234 6 x0646 Lo\ = x 5’24 - r5410
PBR— v 2ac e XxIAAS x8016
. *g8oc’ K6 [X1k x8005
— (xR3 x2) X618 [R5 S x5824

/O/n the othe/r/{land, IF the TLB initially contained the entries shown below,

PQ\%Q Siye < PTE V__PageNo PTE
~No . Y = 1 x14 x8001
FLB el 7523 g | <«
PRBR=XQ0ZC 1| x28 | x8004
0 - N

the processor would only need to make seven accesses to physical memory.

Your job: Complete the table.

1 T(_B HAT

pEN bits
P(k(\ e ﬁ M Ea™Mm ﬁ
&d&,_»}&'@;*

maton with

of

xebab

Name:

Problem 4 (25 points)

Let’s use one of the unused opcodes to add an instruction AVG (i.e., average) to the LC-3b ISA. Its format will be

15 12 11 9, 8 6 5 4 0
. — — T T
AVG |1 0 1 O DR SR1 1 imm5
R L L [R B
15 12 11 9 8 6 5 3.2 0
T — — — T
AVG |1 0 1 O DR SR1 000 SR2
Lo L1 L Lo L

depending on whether the second operand is an immediate or the contents of a register. AVG will sum the n (n > 0)
16-bit integers in consecutive memory locations starting at the location specified by SR1, divide that sum by n, and
load the result into DR, setting the condition codes. The value n is either an immediate value or the contents of SR2.
Assume that the n integers are aligned in memory (i.e. SR1 holds an even number), and assume that DR, SR1, and '
SR2 (if SR2 is being used) all refer to different registers.

For this problem, you can assume no overflows will occur. Note: execution of this instruction will destroy the initial
contents of SR1. N

Your job: augment the LC-3b state machine, the data path and the microsequencer as necessary to add AVG to the
LC-3b ISA.

Part a (8 points): The state machine (see page 6). From state 32 (the decoder) we go immediately to the eight states
needed to carry out the work of the AVG instruction. One of the states has been specified for you, and another (state
39) has been partially specified. Your job is to complete the specifications of all the states and add the missing
state numbers

Part b (8 points):
The data path (see page 7). To implement AVG you will need additional structures. Four are shown in boldface on the
data path diagram.

The DIVIDE UNIT takes two inputs X,Y" and produces a result X/Y. The divide is a multi-cycle operation that
latches X, Y internally in the first cycle, and signals completion with a DIV_R (for Divide Ready) signal when done.
The DIVIDE UNIT starts processing when the control signal DIV is asserted. Your job is to connect the DIVIDE
UNIT to other elements of the data path as needed.

The CTR is a step-down counter. It can be loaded when a LD.CTR control signal is asserted, and it can be decremented
when a DEC.CTR control signal is asserted. Your job is to connect it to other elements of the data path as needed.

Registers containing x0000 and x0002 have also been added to the data path. Your job is to connect it to other
elements of the data path as needed.

Feel free to add tri-state devices for any signals you wish to put on the bus.

There is also a dashed box in the data path. Your job is to put in that box any other necessary structures(register
or combinational logic) to complete the data path for implementing AVG.

Part ¢ (9 points): The microsequencer (see page 8). The augmented state machine requires additional control
provided by the microsequencer. Your job is to augment the microsequencer. You will need an additional COND
bit, call it COND2, which will be used to modify J[5] and J[4] when necessary. The necessary OR gates have already
been put in place. Add whatever additional logic structures you need.

5

from state 32

[DA & <0000
CTR & op) 0
\L N
MAR & 5A] 41
!
e N
ﬁC Mo R & nlma] J 50
Termp E MO R
42
CTR & c:r& -\
‘-“’\0'\4. CTy
37
{ Smn(LM(’ J
[Z]
Y \)
i & DB/ paq X P
Div Rd i j/opl 50 SR1<—SRI +2 34
a 5« ¢ CC &)
Div R | |
To state 18

Figure 1: State diagram for AVG instruction

GateMARMUX —7/\

GatePC
16 6 16 16
o I x0002
>/ MARMUX x0000
i 1
s Lo REG Lo
FILE L()
3 ('t.::, >
| . Goeders bes
\ 3, [SR2 SRl| 3
peys \ SRR—4> OUT OUT [</~SRI IV
LSHF1 LSHFI1 ADDRIMUX {s y .
[y ‘ 16
o 2 \ 16 | DIVIDE |resuir
ADDR2MUX Y - UNIT
6 A6 A6 Ai6
[10:0] 0 p
[8:0) \
- SEXT b b
® o o
[5:0] A /
'7"-—__SEXT CONTROL PECCTR /
[4:0] X
A SEXT | T 1 i L{>
R ‘ -
LD.IR—(>| IR ” S
A 2 \ \/ Y 6 (.'z'dt Q_(:{ 2]
p.cc—={N[z]p] ALK \® A SHF \e/~Ris0]
s ALU
\/-GateALU \/~GateSHF
16
/X~ GateMDR
MAR Ki—LD.MAR
|<—DATA.SIZE 0
LOGIC WE J RW
I<—MAR[0] oaic 1 | oo .
! lTL" [Hatal | MOEN NpUT | youreur |
[WEI WEO SIZE A : KBDR v |
16 ADDR. CTL. |
> KBSR
MEMORY LOGIC | _DE :
2 1 = :
MDR MEM.EN
MIO.EN t
T i
16 Al6
] By p— <
ls—MAR[0] INMUX $’

Figure 2: Data path for AVG instruction

0,0,IR[15:12]

|

COND1 CONDO
BEN R IR[11]
a T (o nD2
1 ;
Branch Ready Addr.
Mode

JC

J[5] J4] J[3] J[2] J1] J[0]

|

Address of Next State

Figure 3: Microsequencer for AVG instruction

