Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015

Y. N. Patt, Instructor

Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Exam 2

April 22, 2015

Name;

Problem 1 (20 points):
Problem 2 (15 points):
Problem 3 (15 points):
Problem 4 (25 points):
Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (besub@orting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaime

Please sign the following. | have not given nor received arguthorized help on this exam.

Signature:

GOOD LUCK!

Name;

Problem 1 (20 points)

Part a (5 points): A 7 by 6 word array (i.e. 7 rows by 6 columns) is stored in Row anajrder. Memory is word-
addressable. We wish to load column 1 (i.e. the second cqlaolumn 0 is the first column) into a vector register.
Before we initiate the vector load, what values must we lodol VSTRIDE and VLEN registers.

VSTRIDE VLEN

Part b (5 points): The Decoupled-Access-Execute (DAE) execution relaxecconstraint from VLIW, i.e., the parts
of a wide instruction did not have to execute in lock-stepfakt, the access stream (LDs and STs) could slip ahead or
behind the execute stream (ADDs, MULSs, etc.). The diagralmwshows the two streams.

Memory M Execute

Access Unit

Unit
— [+

LDs, STs ADDs, MULs, etc.

?—\]—?

Instructions

One might think that allowing one stream to slip ahead or hettihe other could cause the wrong result of a LD to
be supplied to a subsequent ADD, for example. What chaiatiteof the execution model made this not a problem.
(Ten words are more than enough to answer this question.

Name;

Part c (10 points): The data flow graph shown below gets two inputs, the value N (0) and the value 3. What is
output at "Answer”?

3

B

BR

BR

' *
i

ANSWER

Name;

Problem 2 (15 points)

The numbers 25/8, 9/16, and 1/16 can all be representatedyexdth a 7-bit floating point representation, in the
format of the IEEE Floating Point standard. Note: One or nadrthe numbers may be represented as a subnormal
number.

Part a: Show the representation of the three numbers, clearlyiigérg which bits are the fraction and which are the
exponent.

25/8:

9/16: The bias is;

1/16:

Partb: Add the three numbers in the following sequence. First ad8 a6d 9/16 and show the resulting 7-bit floating
point number. Whenever necessary, round to zero, i.e., offdpe low order bits:

Now add 1/16 to the intermediate result, and show the finaltrégsre:

Part c: Add the same three numbers, this time by first adding 9/16 &6l Show the result here. Again, whenever
necessary, round to zero, i.e., chop off the low order bits:

Now add 25/8 to the intermediate result, and show the finaltrésre.

Part d: Compare the final result of part b and of part c. If they are fdah explain why. If they are not identical,
express the difference as a fraction and explain why.

Name;

Problem 3 (15 points)

| learned recently that current ARM chips have improved angtandard method of processing interrupts in the fol-
lowing sense:

Suppose the machine is operating at priority 2 and an inpésignals at priority 4. We push PSR and PC onto the
system stack and initiate the interrupt. During the executf the interrupt service routine, an interrupt at priprit
3 signals. Since priority 3 is less than priority 4, we congrprocessing the priority 4 service routine. HOWEVER,
When we execute RTI at the end of the priority 4 service raytiather than do what we currently do, ARM immedi-
ately initiates the priority 3 service routine.

We wish to implement this improvement. Your job is to augntaetstate machine to make it happen. In this exercise,
you can assume we do not have to be concerned with exceptions.

Part a (7 points): What do we currently do when we execute RTI from the priorigefvice routine and then intiate
the priority 3 interrupt? Hint: Four accesses to the systksare necessary to do this.

On the next page is an improved state machine that will allewur scenario, the priority 3 service routine to imme-
diately initiate as part of the execution of RTI for the piip# service routine. In fact, by so doing, we will save three
of the four accesses required in your answer to Part a.

We include below definitions of new signals we have used irsthge machine: You may or may not need to look at
them to understand what is going on.

e INT _Priority: the priority of the highest priority interrupt vith is currently pending

INT: a signal signifying a pending interrupt whose priorigyhigher than the priority of the running process
— i.e. INT = (INT_Priority > PSR[10:8])

INTV: the vector of the highest priority interrupt which isigently pending

Vector: the vector of the interrupt which we will handle next

SavedUSP: the saved User Stack Pointer

SavedSSP: the saved System Stack Pointer

e TEMP: a temporary register

Part b (8 points): Identify the appropriate modifications to the execution ffRTI to accomplish this improvement.
That is, identify X, identify the state that RTI takes you torh state 32 (shown in bold), fill in state 58 (shown in
bold), and connect the arrow out of state 58 to the state ydo gext.

Xis

Name;

A few hints about the state machine to help you get started: flbhwv starting at state 49 is the normal interrupt from
states 18,19. The flow on the left is the flow for RTI. NormaMyjs 0 and the RTI completes as usual along the
left path. If a higher priority interrupt is pending, you tead go to state 58 to initiate processing the higher pyiorit
interrupt. Finally note that in state 44, you are loadin@iMDR the next to top element on the stack, NOT the top of

the stack.

(MAR<-sP+2)

MAR<-SP

SP<-SP +4
[PSR[15]]

18

MAR<-PC
PC<-PC+2
[INT]

35

IR<-MDR

* 32
DA/RT[BEN<-R<115N + IR<10>Z + |R<9>[EP]

[IR[15:12]]

SR VTN

rest of state machine

49
Vector <— INTV
PSR[10:8] <— INT_Priority
MDR <- PSR
PSR[15]<-0
[PSR[15]]

0 “

45
Saved_USP <- SH
SP <- Saved_SSH

37

MAR, SP<- SP-2
\ a1
: Write
R

R

y 43
MDR <- PC-2

47

MAR, SP<-SP-2
\j 48
: Write
R

R
A 50

(MAR<- x0200 + LSHF(Vector@

To 18

. Saved_SSP<-SP
[Nothing] [SP<—Saved_USP}

i i

To 18 To 18

V} 52
MDR<-M

54

PC<-MDR

Name;

Problem 4 (25 points)

A Vector Processor is attached to a multiplexed, asynchuspgending bus. (Recall pending is the opposite of split-
transaction.) A non-interleaved memory is also attachetiitobus. We wish to perform a vector store, transferring
the components of the vector register to memory locatiommdwne very long bus cycle.

We assume that the controller on the memory side is a typigaldcontroller. If it receives an address it latches it to
an address register. If it receives data, it stores the ddteeilocation specified by the address register. The cdatrol
on the memory side does no arithmetic.

The vector processor bus controller, on the other hand atemtll that is needed to make this work. It contains a
64-element BUFFER to hold the vector to be stored, an indgister i, so we know which BUFFER]i] we are deal-
ing with at any moment, a VSTRIDE register, a VLEN registerda Memory Address Register (MAR). We load
BUFFER, MAR, VSTRIDE, VLEN, and set i to O before the bus cofiér requests the bus.

Note: BUFFER entries are BUFFER[0] to BUFFER[VLEN-1].

Your job: complete the timing diagram and the state maclonéhie processor bus controller.

Two new signals are provided for you: M-CNTRL for the proagssnd S-CNTRL for memory.

Processor Memory

BBSY, MSYN, MAR, WRITE

Time

Name;

Note: Your job is to complete the Moore-model (not Mealy-refydtate machine, starting with the state shown in
boldface. You can assume VLEN is non-zero. Any signal nottemiin a state we will assume is not asserted while in
that state.

Note that we have provided one state for you. This is the statdich MAR is updated, i is updated, and i is tested.
Use this state as you find useful in your state machine.

D BBSY
D&BGg,, BGy,, N

b BRo BGo,, SACK

i < (VLEN-1)

AR<-MAR+
VSTRIDE

O
O

Name;

Problem 5 (25 points)

Assume a Tomasulo-style, out-of-order execution machiaehandles ADD and MUL instructions. Instructions are
of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed irsslaEach instruction requires a Fetch cycle, a
Decode cycle, some number of Execution cycles (2 for ADD,rAMblL), and a final cycle to store the result into a
register and/or one or more reservation station entrigsafeawaiting for the result. A result is available to subsamtu
instructions after it is stored in a register or reservastation entry.

A program fragment, consisting of four instructions, is ex@d on this machine. The first instruction is fetched in
cycle 1. Your job: Complete the table below, i.e., the cortgépecification of the four instructions:

Instruction | Opcode DR SR1 SR2
1
2
3 R1
4

Information on the next page will help you identify the fonsfructions executed.

Name;

The following information is provided to help you specifyropletely the four instructions executed. The machine has

one adder and one multiplier. Neither is pipelined. Eachthees reservation stations supplying it with instructiems
execute.

The adder and multiplier are in use only during the cyclegdaiomg an E in the table below:

1/12|3|4|5|6|7|8|9|10|11|12 13|14 | 15| 16| 17
Adder E|E E | E

Multiplier EIE|E|E|E|E|E|E]|E]|E

The Register Alias Table before cycle 1 and after cycle 9 hosva below. Note that some entries are missing. Part of
your job is to fill them in.

V TAG VALUE V TAG VALUE
RO 1 - 3 RO 1 - 3
R1 1 - 4 R1 0 -
R2 1 - 0 R2 1 — 7
R3 1 - 8 R3 0 -
Registers Before Cycle 1 Registers After Cycle

The contents of the Reservation stations after cycle 4. Natereservation stations are assigned from the top down,
and that the topmost reservation station with both datdesntralid is the next to be processed. Each instruction

remains in its reservation station until its result is stbridote also that some entries are not filled in. Itis also phrt
your job to fill them in.

V TAG VALUE V TAG VALUE V TAG VALUE V TAG VALUE

Reservation Stations after Cycle 4

The contents of the Reservation stations after cycle 9. M@tesome entries are not filled in. It is also part of your
job to fill them in.

V TAG VALUE V TAG VALUE V TAG VALUE V TAG VALUE
a |-| — | — - -] - 1l - 1] - | 8 L
1 — | 4 |1| — | 4 T

Reservation Stations after Cycle 9

Part b (5 points): The design of this machine was not particularly well suitedut-of-order execution. What simple

change would you make to it that would yield a lot more perfante processing instructions out of program order
(20 words or fewer).

10

ADD'
ADD’
AND
AND'
BR
JMP
JSR
JSRR
LDB*
LDW *

+

LEA
NOT’
RET
RTI
LSHF "
RSHFL
RSHFA'
STB
STW
TRAP

XOR'

+

XOR

not used

not used

15 14 13 12 11 10 9 8 7 [5 4 3 2 1 0

o | o | i o] w] s
o | o | 1o
:01:0]: :DR: :SRI: 0 0:0 :SRZ:
oo | o | 1o
o0 [nz]p] poomen
oo | o | soun | s
o0 (1|
o0 o o0 soun | s
:00:10: :DR: B:cxse:R : tj)Off:sef:é :
:01:10: :DR: B:cxse:R : :offs:efé: :
wo | o | e
oo | o | w |1
EREARTARE="S
CORBE
ot | R | % [0]0] amouns
Dot | o | s [o]1] amouns
Do | o2 | % [1]1] amouns
oon | % | boser | botiets
:01:11: :SR: B:dse:R : :offs:efé: :
e | s
o | o] |
‘10‘01‘ ‘DR‘ ‘SR‘ 1 | ir‘nm‘s |
————— —
‘10‘10““““““
‘IO‘H‘

Figure 1: LC-3b Instruction Encodings

11

Table 1: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)
PCMUX/2: PG+2(0) ;select pe-2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7
SRIMUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]
ADDR1IMUX/1: PC(0), BaseR(1)
ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffsetl1(3) ;select SEXT[IR[10:0]]
MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)
MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)
DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:
COND/2: CONDL ;Unconditional
COND; ;Memory Ready
COND, ;Branch
CONDs; ;Addressing Mode
IRD/1: NO, YES

12

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDB

P

To 18

To 18 15

6AR<—LSHF(ZEXT[IR[7:O]]9

To 18

R7<-PC
PC<-BaseR

R7<-PC

To'18 GC<—PC+LSHF(Off1

3

13
T0 18/ HR<-SHF(SR,A,D,amt
set CC

To 18/ DR<- PC+LSHF(off9 0
setCC CMAR< B+offED CAR< B+LSHF(off6} @AR< B+LSHF(off6}) CMAR< B+offED

To 18/ \
24

23
NOTES C@DR< M[MAR[15 1](D CDR< M[MAR)D MDR<-SR MDR<-SR[7:0]
B+off6 : Base + SEXT[offset6]

PC+0ff9 : PC + SEXT[offset9]

i

To 18

17

set CC

I ' " R "

To 18 To 18 To 18 To 19

MAR[0]

Figure 2: A state machine for the LC-3b

13

*OP2 may be SR2 or SEXT[imm5)| DR<- MDR
** [15:8] or [7:0] depending on ER< SEXT[BYTE DAT} C MAR]< MDR M[MAR]< MDR*DD

GateMARMUX

—?/MARMUX

A A

16 16

<—ADDR1MUX 16

LD.REG—>

3
SR27L|>

SR2
ouT

SR1
ouT

l<t-4-DR
3
I<t4—SR1

z}z}z}ooo

v

—l>; SR2MUX7

Y

CONTROL

4

6
SHF \vLIR[S:m

[[
youTPUT

|<+—DATA.SIZE o)
LOGIC WE RW
l<—MAR[0]
Loeic MIO.EN
DATA.
y \Y SIZE v
WE1 WEO
16 _ ADDR. CTL.
MEMORY LoGIC
2 ||
MDR LD.MDR MEM .EN
MIO.EN i
[y
16 A6
LOGIC <
|<+——DATA.SIZE INMUX
l<—MAR[0] 4-‘

Figure 3: The LC-3b data path

14

J5]

0,0,IR[15:12]

|

J[4]

J3]

COND1

J

CONDO

BEN

J2]

J

Branch

N

J[1]

RN

Ready

IR[11]

J[0]

~—

ie

Address of Next State

<}— IRD

Figure 4: The microsequencer of the LC-3b base machine

15

J

Addr.
Mode

