Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015

Y. N. Patt, Instructor

Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Final Exam

May 15,2015

56\\:\'\’]0\(\

Name:

Problem 1 (10 points):
Problem 2 (10 points):___
Problem 3 (10 points):
Problem 4 (20 points):__
Problem 5 (25 points):
Problem 6 (30 pdints):—
Problem 7 (25 points):___

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (10 points)

Part a (5 points): An application that is 96% parallelizable is executed on a single processor in 2.5 hours. If the
application is allowed to run with an unlimited number of processors, what is the lower bound on its execution time?

6 ™min e s

Part b (5 points): We wish to use even parity to protect each single-byte value we transmit, by adding a ninth bit. If
we wish to transmit 01010101, what nine bits should we transmit?

Olop 1o O

If we wish to transmit 00110111, what nine bits should we transmit?

OO\l Oo\WI)

Name:

Problem 2 (10 points)

The following program fragment operates on 8-bit IEEE-like floating point format. Your job is to figure out how
many bits for exponent, how many bits for fraction, and to complete the table below. BIAS (excess) is 4. Rounding is
unbiased nearest.

float B;
float A = 5/16;

for(int i=0; i < 6; ++i)

{
}

B = A/ (1<<i);

Note that (1< <i) is equal to Z

Each row of the table below specifies the results of one iteration of the for loop. Note that some iterations cause
underflow and/or inexact exceptions, in addtion to producing a value for B.

Hint: Some representations of B are subnormal.

Iteration | Binary Representation | Floating point representation Exceptions
(1) of B of B Underflow | Inexact
0 [fOolx 27 (-2) O 001D |10 NO NO
1 (o)l KR " (-3) o |evo|.lO o NO NO
2 O« ol ¥ 2" (-3)| o |ovco |1l o | NO NO
3 B:010x R(-3)| ol|losec |0 1O NO YES
4 0:c0l x 2" (~-3) O loceoc|{o o\ NO Y ES
5 o O{e QOO (O © D Y ES YES

Name:

Problem 3 (10 points)

Consider a tightly coupled mutltiprocessor system with two processors (P1 and P2). Each proeessor has its own private

data cache.

The Goodman “write-once™ snoopy cache protocol we studied in class is used for maintaining cache coherence. On a
cache miss, if another processor has the line in the modified state, its cache supplies the line to the processor having

the cache miss.

The table shows the behavior of the system for eight consecutive data accesses, all to location A. Assume the caches

are initially empty. Each access is performed by either P1 or P2. Your job: complete the entries in the table.

Note: In the last column, the entry "No one” means there is no need to supply the cache line because the private cache

had a cache hit.

Instance | P1 Executes a | P2executesa | Bus Activity | Cache line
LOAD/STORE | LOAD/STORE supplied by

1 LOAD A — Pi READS A |MEMBRY
2 — LOAD A P2 READS A | MEMORY

3 STORE A —_— P1 WRITES A | NO ONE
4 — STcRE A o WRITES A | P1 CACHE
5 LcAbd — P1 READS A | P2 CACHE

6 — STOREA |P, WRITES R | NO ONE

7 | — STORE A - NQ oNE
8 LOAD A — PLRERDS A P2 CACHE

Name:

Problem 4 (20 points)
Recall the Tomasulo problem on midterm two. The rules are very similar here.

Instructions are of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed in class. Each instruction requires a
fetch cycle, a decode cycle, some number of execution cycles, and a final cycle to store the result into a register and/or
a reservation station entry that is waiting for that result. A result is available to subsequent instructions after it is stored
in a register or reservation station entry. Functional units not pipelined. Reservation stations are assigned from the
top down. The top-most reservation station with both data entries valid is the next to be processed. Each instruction
remains in its reservation station until its result is stored.

The only differences in the problem today are the following: There may be more than one adder and more than one
multiplier. We have changed the number of execution cycles to 3 cycles for the adder and 4 cycles for the multiplier.
All the adder(s) share three reservation stations. All the multiplier(s) likewise share three reservation stations. Finally,
each instruction has two unique source registers; that is, for all instructions OP Rx,Ry,Rz, y#z

A program fragment, consisting of five instructions, is executed on this machine. The first instruction is fetched in
cycle 1. Part of your job: Complete the table below, i.e., the complete specification of the five instructions.

Instruction | Opcode DR SR1 SR2
1 MU L RO | R\ | RR
2 ADD RA RO |RR
3 MU L R\ R2 |R3
4 ADD RR |R2 |R3Z
5 ADD R3 R o R3

Information on the next page will help you identify the five instructions executed.

Name:

The table below shows in what cycles the function units are executing. An E in row ADD indicates that in that cycle
at least one adder is executing. An E in row MUL indicates that at least one multiplier is executing.

1112|3456 |7 [8|9[10]11]12
ADD E|E|E|E|E|E
MUL E|E E|E|E|E|E|E

Initial values in the Register File are shown below:

ROJ1|-|7
RI||1|-]|4
R2ZJI1]|-|5
R3|1|]-19

The rest of your job is as follows: Provide the missing entries in the Register File and in the reservation stations for
the adder(s) and multiplier(s) at the end of cycle X and at the end of cycle 10. Identify which cycle is X.

After Cycle X) After Cycle 10
Register File: Register File:
RO (7N | — RO 1 |- |20
Rl 1O [~ | — RI | Q |6 |-
R2|1 |- |5 R2Z |1 |- |14
R3 || — |9 R3 |0 | |—
Reservation Stations for adder(s): Reservation Stations for adder(s):
a|O || -1 |- |B al L|—|R®1 |- |5
Bll— |= [« = |= |= . Bl e e = |-
Y- (- |- 1- |- |- Y1 [—|Ro|tl |- {9
Reservation Stations for multiplier(s): Reservation Stations for multiplier(s):
1 | =& 1| =B all- |- [- |- |- |-
c|l1 |- |5 \ [—- |9 alf b {—=|B |1 |-]9
T — — — — — —_ T - — - — — —

Finally, how many adders and multipliers are there?

Adders Z Multipliers l

Name:

Problem 5 (25 points): An LC-3b supporting VAX-style virtual memory has 16-bit virtual addresses, 11-bit physical
addresses, and a 128-byte page size. User space occupies virtual memory locations 0x0000 to 0x 7FFF; system space
occupies locations 0x8000 to OXFFFF.

Each PTE has the following format (Note: The PFN size is not given):
7 0

T T T 73 T T T
A 0.0 PFN
1 1

1 1

A user space TLB contains two entries, with perfect LRU replacement.

The computer executes the following three instructions:

LDW RO,R1,#0

ADD

STW RO,R2, #0

You can assume no exceptions occur during their processing.

Before execution:
The TLB contains one valid entry: Page x14, 10000110
PC: x4000
R2: x1278

Your job: Complete the table and fill in the four additional boxes.

Virtual Physical Data TLB Hit
Address Address
— X 194l x81 MLSS
x8880 x O8O x 84 MLISS
¥ 40Q0 X200 ¥ 6040 | Mm18S
- x 190 x 8RR MLSS
XBR60 | x16O x88 M1SS
x3064 Loy XxABCD M\S S
XLOoOR |xROCR X 1021 HLT
X400y [xRok x +080 | HIT
- x190 X BR M(SS
XBBRY |xi124 x87 MisS
x (2F8 [x3FQ xABCE ML SS
UBR: X200 SBR:| x {¥0 Initial value of R1:| % 30 Q_,L‘
15 0

The second instruction:

000 1.0;0. GIOIOJOI(IOTOTO‘O:(

Name:

Problem 6 (30 points)
A 64KB byte-addressable memory is 4-way interleaved. The processor/memory bus is 16 bits wide, and each memory
access takes 4 cycles. There is only 1 channel.

The address bits are specified as shown below:

15 11,10 3,2 1 0

Chip |Bank (Interleave)
Rank Address Bits Byte on Bus

128 64-bit signed integers are stored in a 1024-byte array, starting at address x0000. We wish to know how many of
these integers are negative.

The sign of a 64-bit signed integer is specified by its sign bit, i.e., the most significant bit of the most significant byte
of the integer. Thus, to determine the signs of all 128 integers, we only need to load and examine 128 bytes from
memory, as opposed to all 1024 bytes of the array.

Part a: What is the minimum number of cycles needed to read these 128 bytes from memory?

M™Me number o oydes needed 5 the same \eﬁofci\eaf) L endionness. 1€ litde
erdian then e St9n bits ae at '07125 1,15 23 -, \o13. # 1€ !0‘:‘)“ '”Yl“““,
the Stjw bts ow ac \31'*?5 G, %, 16, _ 10i6 . Either woy the dflevence

between dMevent accesses s BB. Since the EQ“\L(TMQr\ecv@) bies aw
ID"{'? [fl'-I], Qc\&\n:) B to on addess uid not c\"\cngye the bods thac ’t\’k
Q&iwﬁb mqps ‘l‘o.-';uv*c\'\tvmc\r' o\ _\D’]_’T*\}-"ft Aoy s €n*'.\c\7 T
rank O Hgane all 1% wccesses Nﬂ\ con€lce to ‘t‘f‘(’ same bank
anrd " ed to \)Q Ser'.d\})-ﬂ)J K‘i\.\‘\v.""j 4128 = 512 “/C"°'> “f'c_*'d,

Part b: A smart engineer realized the time to read these 128 bytes from memory can be decreased if two bytes of
padding were added to each array element (i.e. the entire array now requires 1280 bytes instead of 1024 bytes). What’s
the minimum number of cycles needed to read the 128 bytes from memory after padding has been added?

Sincg e \oqr_ ('\f*ﬁfer\éud93 \3'\t5 aw h{ts D'B ot ‘&\Q G&A\Qsﬁ, C’\Q\A.mﬁ L to
"l'\'\z Q&; X3S W\\\ O\\W ﬁ-‘ S wWoeve \[A Yo A new h@ 1\\4_, 1‘t &09‘7 Vot watey
Ud\\? \\'\Qr 'é?\e a \’-‘T“?b O"l(Pmaa\rj) [qé\(‘?c\ ba'(c-x—e Oy qf‘pr 'Q(Nz % \"TTK‘ " e QV

\

O\(D\b'\) as W9 (0‘\5">#Q\r\t,_“r\m$ U\{ﬁ\" ’\\Ne ‘)c}&a'\r\j;&@ Sulless5W@ acce

wil\ Q\\Nc-]‘p ge To C};L‘(t\?t\ﬁ bades and e get Ph“ef‘tﬁ J"“\NCY t\\n‘\'@r\@nv\ﬁ
Th LTL\Q \ we star ‘\S(\Q occes, Lo JY\‘Q \. j

st byte e de 2 +h

yte, ty cle we stait ¢
AcCle = -Q-Cnr ‘t\mz 1«\() b-/‘fa/ C,\v-c‘ 50-€C¥"t'\‘-' \‘,\f\() ' (TC\? \Q_? We sta,t ‘\'5(\
los ¢ (\294h) access The ” e

\Ubt QcClesges ‘c'u\r\.-)\\as T C«(de \\5)
W‘e“’w‘“/ \UW"‘] o & m((.'es_ 8 T

S5eS

.

4 Sinle

Name:

Part c: Assume our algorithm for determining the number of negative integers processes the 128 integers in sequential
order. As previously stated, the algorithm only needs to access 1 byte per integer to determine its sign. The processor
includes an initially empty 8KB, 4-way set associative data cache having a line size of 16 bytes. Compute the cache
hit ratio when the algorithm processes 64-bit integers without padding.

Note the coche 15 ‘tn'\\"ld“y Swpl ond each E>‘1 Te ot “"ﬁg\j” C\c“q hm"fj\\t

nte the c@c\\e will gg\j be ufaecl once (ie ‘Qhete 15 No r&;seﬁ_ \-\ence
he G“\~/ Wits we-l | get ave Rits ;—_o\\\er 'wﬁeéers @riained wWithin
ﬂ\e Sawe cache \ine _S‘\nce e \'me 3¢ s lfSB,OmA eoc\'ﬁ inYe

: yer
is 3B we hove 2 m*e\c_z)ew per cache live. The access to the <€

wst
'\Me\cltr T e Cmc\\e \'\\ng wsa\ts TN A miss ‘\'\{< NeLt ocress w'\\\lce

o 4he O’{\'\er 'wﬁeser [%% ‘Y\\E Same A CGC\\& \ine

,\QSQ\‘\"M') M oo e
The codne \(\tK Yoo 15 t\\uy 5070)

Compute the cache hit ratio when the algorithm processes 64-bit integers with padding.

WHh e (o ‘)r_\&c\'mj eoh teagr NOW . MSB £ 2 |\ + Lsg
' N cote Ve O I 7771 WW77777777
XolLes wp \OB, ond ma_/ not O‘\S“ w0 | V771 - LLLL 7777

CO.Q\'\Q \‘pne ka-M’\CLlT‘i(’S . H()\u e\er . 2 2 ‘?\ 2 I
Q\IQP’j % th ‘\v*iev‘_«?.t- \.m\\ s-{l\\ Q\\\j’“ CaCre \‘H\Q ! m/ (/1T
X

Ao Co.(,\‘\g \'\nq Bmv\ Am-'a?}, Qs 6&(.\'\

- : : I ‘ 2
Wieger 15 10B, eodh Coche \ive lGB}F"“&“’ e 2 //? /7 e
ord the Leost Com mon Multiple ot I0B v X

N 68 W
> s 308, ohin '.-;‘8'.m'€jws! cee \ioe 3 VI WW7T7TTITT]
r\eme we cm\7 need o comPu*\Q Yre | X |

e ey rAihy \ _ T if F 21 3
. e €wse | ae L mLL/_u_A_]ZZ:ZZ'
]) |Codne Mg S
-tn*t’\je'f', as ’i\'g Same MR mor- \m,au(\ ¥ X
15 \ePeo—te&- The dlq\c)(oﬂr\ O he h\j\\t\\
::S.mmc'sdA \‘\71-\&*@.‘\.dnm95 th)« assames | ‘ Tnteger &c& NSB
e addin 3 ' : u,
bw‘(Sh jd\ecow\@'& czu‘?To.r 4:\«@ e Qf‘,' /) 'l(\"‘fjer do\"w«’ net MSB
e (o he Yoo 1o the Same | (O Po&c\'mt)

Y ’)

\jari\ess c)'\' Q‘“A\QV\’AQ 39 0Ov \m{em?nﬁ "

ng Pculc\'u\j _ '5 .‘\\';tﬁ {‘0" Q,VQ1~/ < 9 X C&Q\'\E ﬂ\|?t‘>
ac(esses 7 oY 3/8 \/ CM\\Q \{\\{'.

l

coand C... \efmo\fs)

Name:

Problem 7 (25 points): We wish to augment the LC-3b with a new instruction LTA, which copies a linked list into a
sequential array. (LTA: Linked To Array). The LTA instruction can be of either of the following two formats:

15 12 11 9 8 5,4
=1 T — 0
10 0 DR SR1 1 imm5
L 1 i f o
15 12 11 9 8 5,4 3 2
I T — T
10 0 DR SR1 0(0 0| SR2
L L L !

An example may help explain what is going on:

{ x6010 x0001
x4000 x0001 x5002 x0004 x0002
x0002 x0005 x0003
x0003 x0006 x0004
x5002 x0000 x0005
e x0006
Linked list to be copied Resulting sequential array

SR1 contains the memory address of the head of the linked list (x4000, in the above example). Each node in the
linked list consists of n consecutive 16-bit words, followed by the pointer to the next node. SR2 or the immediate field
contains the value for n (in the above example, n=3).

LTA copies the nodes into sequential locations of memory, starting with the location specified by DR (in the above
example, x6010). Note: there is no need to copy the pointers, since the nodes are now stored in sequential memory

locations.

Assume that DR, SR1, and SR2 (if SR2 is being used) all refer to different registers. Assume that all the linked list
nodes and the destination array are aligned in memory and do not overlap.

Note: After processing the LTA instruction, SR1 contains the null pointer, since the linked list no longer exists; DR
contains the address of the next location following the sequential array (in the above example x601C). The condition
code will be set to Z.

Part A. Implement the state machine.

Part B. Complete the data path diagram by augmenting the DRMUX and adding any other necessary structures and
control signals inside the provided box. Note: we have given you a counter which can be incremented or reset to 0.

Hint: Axor A=0

Part C. Complete the microsequencer. Hint: you will need to add one AND gate and one OR gate.

10

Name:

Astet &\0(:3 G\."L ‘,

also INREMENT

cov 40 N

Q.:\“é(\iz.\'

SYaoXe

from sitate 32 /

RESET l
!

.

Bus « sR2 XOR
couNTE%
Sef._catﬁ{,

'MAR < SR ’
47
[z] 4]

MDR < MLMAR]
iR

MRR < DR
1
MIMAR] < MDR

IR
DR < DRY¥R

t
5R|<“5ﬂ\+2

(

INCREMENT

O
MDR< M [MAR]
tR)
SRt < MDR
SETcc O @
!
[Z]
1 N0
/ \

’ (this state is empty)

'

to state 18

Name:

GateMARMUX
3
MARMUX
o ot ,‘Z‘;’ff; < IR[11:9]
3 < 110
LD.REG—>]
-
3, |SR2 SR | 3 111
SR2 OUT OUT [<7<sRI
= ag
G~ ADDRIMUX e e e IR [‘3 'E‘il
2
DRMUX
19 IB
—ry
i I ; émcu.vmm
CONTROL
T j COUNTER
R
RESET
. 3 \ 6
w.cc—=[n]z]p 2 SHF IR[5:0]
ALUK
LOGIC 6 3
GateALU GateSHF
16
GateMDR
MAR LD.MAR
DATA SIZE
0
LOGIC WE jﬂ.w
[—MAR[0] :
LOGIC et e
= ATA MIO.EN i
|'wr.|wru SIZE ' ‘L :
15 ADDR. CTL 1
MEMORY LOGIC]
I
MDR |o—LDMDR T 2 L -
MIOEN 4
6 A6
LOGIC =
la—DATA SIZE] \
la—MAR[0] THMLIC "l

12

Name:

COND 2 COND1

CONDO

L&

Branch

I[5] J[4] J[3] J[2]

Z iﬁji

J1]

Ready

IR[11]

J[0]

0,0,IR[15:12]

L

Address of Next State

_

Addr.
Mode

